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Abstract: Robust controller synthesis is of great practical interest and its automation is a key
concern in control system design. Automatic controller synthesis is still a open problem. In this
paper a new, efficient method has been proposed for automated synthesis of a fixed structure
quantitative feedback theory (QFT) controller by solving QFT quadratic inequalities of robust
stability and performance specifications. The controller synthesis problem is posed as interval
constraint satisfying problem (ICSP) and solved with interval constraint solver. The method is
guaranteed to find all feasible controllers of given structure in the search domain. The proposed
method is tested on two benchmark problems, and simple, low order controllers are successfully
obtained in quick time.
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1. INTRODUCTION

A key step in the quantitative feedback theory (QFT)
approach to robust control system design (see Horowitz
(1993)) is the one of synthesizing the controller. In this
step, a controller is synthesized to satisfy the magnitude-
phase QFT bounds on the nominal loop transmission
function at each design frequency. Traditionally, this syn-
thesis was done manually by the designer, relying on
design experience and skill. Recently, several researchers
have attempted to automate this step, see, for instance,
Bryant and Halikias (1995); Chait et al. (1999); Gera and
Horowitz (1980); Garcia-Sanz and Guillen (2000); Nataraj
and Tharewal (2007); Nataraj and Kubal (2007); Thom-
spon and Nwokah (1994).

The concept of controller design automation in QFT was
introduced by Gera and Horowitz (1980) who proposed
an iterative procedure based on Bode’s famous gain-phase
integral to derive the shape of a nominal loop transfer
function. The method, however, needs a rational function
approximation to obtain an analytical expression for the
loop transfer function, and straight line approximations
for the nonlinear QFT bounds.

Thomspon and Nwokah (1994) proposed a method based
on nonlinear programming techniques wherein the tem-
plates of the uncertain plant are approximated by over-
bounding rectangles. Such a template approximation leads
to overbounding in the constraints derived for the opti-
mization.

Bryant and Halikias (1995) addressed the problem of au-
tomatic loop shaping using linear programming techniques
wherein the QFT bounds are approximated by a series of
linear approximations. However, their method also leads

to conservatism in describing nonlinear QFT bounds by
linear inequalities.

Chait et al. (1999) proposed a method based on convexifi-
cation of the non-convex closed loop bounds. The QFT de-
sign problem in this method is posed in terms of the closed
loop complementary sensitivity function. In this method
the closed loop non-convex bounds are transformed into
linear inequalities without any conservatism, and then a
linear program is solved. However, as pointed by these
authors, the shortcoming of the method is that it involves
fixing the poles of the closed loop transfer function a priori.

Synthesis of controller is treated as an optimization prob-
lem in Chen et al. Chen et al. (1998), Garcia-Sanz and
Guillen (2000); Nataraj and Tharewal (2007); Nataraj
and Kubal (2007) reformulated the problem as one of
parameter optimization of a fixed structure controller. A
method has been proposed for low order QFT controllers
design based on non-iterative optimization of two parame-
ter controllers by Yaniv and Nagurka (2005). Further they
have shown that their method can be extended to design
controllers having more than two parameters by cycling
through free parameters two-at-a-time.

To the best of our knowledge, no method for QFT fixed
structure controller synthesis has been proposed using
quadratic inequalities of bound generation. In this pa-
per, an efficient method is proposed for automatic loop
shaping in QFT. A fixed structure QFT controller has
been synthesized by solving QFT quadratic inequalities of
robust stability and performance specifications by interval
constraint solver. We have applied this technique to two
benchmark problems, one with plant having nonparamet-
ric uncertainty and other with fixed plant, and obtained
simple, low order controllers in few seconds.
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Fig. 1. The two degree-of-freedom structure in QFT

The paper is organized as follows: The brief background
about QFT, interval analysis and interval constraint prop-
agation is given in section 2. The QFT controller synthesis
problem is formulated as a interval constraint satisfying
problem (ICSP) and proposed method is presented in
section 3. The proposed method is demonstrated on two
benchmark examples in Section 4. The conclusions of the
work are drawn in section 5.

2. SOME PRELIMINARIES

2.1 Quantitative Feedback Theory

Consider a two degree freedom feedback system configura-
tion (see Fig 1), where G(s) and F (s) are the controller and
prefilter respectively. The uncertain linear time-invariant
plant P (s) is given by P (s) ∈ {P (s, λ) : λ ∈ λ}, where
λ ∈ ℜl is a vector of plant parameters whose values vary
over a parameter box λ

λ = {λ ∈ ℜl : λi ∈ [λi, λi], λi ≤ λi, i = 1, ..., l}

This gives rise to a parametric plant family or set

P = {P (s, λ) : λ ∈ λ}

The open loop transmission function is defined as

L(s, λ) = G(s)P (s, λ) (1)

and the nominal open loop transmission function is

L0(s) = G(s)P (s, λ0) = l0 expjΨ0 (2)

However, a plant having uncertainty that can not be
correlated to specific parameter changes is represented by
non-parametric uncertainty about a nominal plant. Several
representations have been suggested in Chait and Tsypkin
(1993) such as additive, multiplicative and divisive. A
plant with multiplicative uncertainty is described by

P = {P (s, λ0)(1 + ∆m(s))} : ∆m(s)rational and stable,

|∆m(jw)| ≤ 1, w ∈ [0,∞)

The objective in QFT is to synthesize G(s) and F (s) such
that the various stability and performance specifications
are met for all P (s) ∈ P. In general following specifications
are considered in QFT. See Horowitz (1993):

• Robust stability margin
∣

∣

∣

∣
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∣
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• Robust tracking performance
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• Robust input disturbance rejection performance
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• Robust output disturbance rejection performance
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• Bandwidth performance
∣

∣
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∣

1

1 + L−1(jω)

∣

∣

∣

∣

≤ Wd1(w)

In practice, the objective is to satisfy the given specifica-
tions over a finite design frequency set Ω. The main steps
of QFT design specifications are

Generating templates: For a given parametric uncer-
tain plant P (s) ∈ P, at each design frequency ωi ∈ Ω,
calculate the value set of the plant P (jωi) in the complex
plane.

However, for non-parametric uncertain plant there is no
need of template generation.

Computation of QFT bounds: The QFT method
translates control system specifications into bounds on-
nominal loop function. At each design frequency ωi, com-
bines the stability and performance specifications with
the plant templates which results in the stability margin
and performance bounds. The bound at ωi is denoted as
Bi(6 L0(jω), ωi) or simply Bi

Design of Controller : In QFT designing controller is
nothing but shaping nominal loop to satisfy the bounds.
A controller G(s) is designed such that,

• The bound constraints at each design frequency ωi

are satisfied.
• The nominal closed loop system is stable.

Design of Prefilter: Design a prefilter F (s) such that
the robust tracking specifications are satisfied.

2.2 Interval Arithmetics

R denotes the field of real numbers and Rn the vector
space of column vectors of length n with real entries.
A real, closed, nonempty interval is a pair x = [x, x]
consisting of two real numbers x and x with x < x. The
set of all intervals is denoted by IR. An interval vector
x = (x1, ...,xn)T with components xk = [xk, xk] is called
as a box x. The set of all boxes of dimension n is denoted
by IRn.

The lower bound of a box x is inf x :=x, its upper bound is
sup x :=x, and its midpoint is mid x := 1

2
(x + x). The set

of vertices of a box x is denoted by vert x. The width of
a box x is denoted by wid x :=x − x ≥ 0. A set inclusion
x ⊆ y is true only when y ≤ x and y ≥ x.

Natural interval extension F of a programmable function
f is obtained by replacing each occurrences of variables
by corresponding intervals and executing all operations
according to interval arithmetic rules (see Moore (1966)).

2.3 Interval Constraint Satisfaction Problem (ICSP)

A constraint satisfaction problem is given by a set of
constraints expressing relations between the unknowns of
a problem (varaibles), and search space defined as the
Cartesian product of variable domains. The solution of
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CSP is the set of all elements from the search space that
satisfy all the constraints. In case of Interval Constraints
satisfaction problem (ICSP) all domains investigated are
intervals. For more detail on ICSP see L. Granvilliers
(2001); Hansen and Walster (2005).

There are different techniques for solving ICSP e.g.
branch-and-prune approach, hull consistency, box consis-
tency. See Hansen and Walster (2005). A branch-and-
prune algorithm alternates pruning (removing inconsistent
part from domain of variables) and branching (bisecting)
steps on the search space to characterize the solution set
of ICSP. Reduction of the search space before branching
improve the practical complexity of this process. There-
fore pruning is very important. Consistency techniques
are the pruning methods which are polynomial in nature.
Constraint propagation enforce reductions for whole ICSP,
until no domain can be contacted or the desired precision
is obtained. Further domains are reduced using narrow-
ing operator. In our method we have used combination
of constraint propagation and narrowing operator which
uses hull consistency. With hull consistency computation
becomes very efficient.

Given a set of constraints C defined as general terms on
a set of variables x1, ....., xn and a tuple of domains D =
(D1, ......,Dn) for these variables, i.e. x1 ∈ D1, ..., xn ∈ Dn

a Constraints Propagation Method iteratively applies con-
straints on the given sets thereby restricting the domains of
the variables. The result will be a tuple of reduced domains
D∗ = (D∗

1
, ....D∗

n). In hull consistency main constraint
is represented by smaller constraint called as primitive
constraint. Constraint propagation and hull consistency
is demonstrated using simple constraints: Consider two
constraints C1 : x1 − x2 = 1 and C2 : x1 > 0, given
x1 = [−1, 1], x2 = [−1, 1]. Pruning with respect to C1

derives x1 = [0, 1] and x2 = [−1, 0]. Use modified domain
on C2, which will reduce x1 = [1, 1] and x2 = [0, 0].
A narrowing operator enforcing hull consistency for the
constraint C1 is broken into two primitives, compute the
following reductions:

x1 := x1 ∩ (1 − x2) = [0, 1]

x2 := x2 ∩ (1 − x1) = [0, 1]

If domain cannot be reduced further, it is bisected in
maximum width direction. Detail algorithm for solving
ICSP using above method is given in next section.

3. CONTROLLER SYNTHESIS METHODOLOGY

3.1 The Loop Shaping Problem

The QFT loop shaping problem for single-input single-
output (SISO) o r multi-input single-output (MISO) sys-
tems or the MIMO systems can be described as follows:
Find a stabilizing linear time-invariant (LTI) controller
G(s) such that the feedback system whose nominal open-
loop transmission function, L0(s, λ) = G(s)P0(s, λ0), sat-
isfies

L(s, λ) = G(s)P (s, λ) ∈ B(w), ∀ w ≥ 0

where, B(w), for any frequency w, denotes a set in the
complex plane.

3.2 The Proposed Method

The QFT controller synthesis problem is posed as a
constrained satisfaction problem (CSP) with the fixed
structure controller, and the constraint set as the set
of possibly non-convex, nonlinear magnitude-phase QFT
bounds for stability and performance specifications, at the
various design frequencies.

The controller synthesis procedures that lack an analytical
or closed form solution are usually iterative in nature, in-
volving trial-and-error techniques and/or thumb rules. The
success of iterative controller synthesis process depends
considerably upon the expertise of the designer. With the
exponential growth and easy availability of computational
power, such designs can now be automated.

The design automation can be posed as a constrained or
unconstrained solving problem (CSP). The steps involved
in this process would be as follows:

• Selection of the robust control methodology.
• Formulation of the synthesis problem:

· Conversion of the control synthesis problem into
ICSP

· Choice of the controller structure.
· Specification of the controller parameter search

space.
• Choice of the ICSP solver for the above problem.

With an engineering approach, proper choices can be
made at each steps mentioned above for the automatic
design of robust control systems. As far as the choice of
the controller structure and controller parameter search
space is concerned, it is desirable that the designer have
tight control over their specifications. However, this choice
primarily depends upon the selection of robust control
methodology and the way the problem is formulated. We
have chosen QFT as robust control methodology.

Consider the controller structure in the gain-pole-zero
form as

G(s, x) =

kG

nz
∏

i1=1

(

s

zi1

+ 1

)

np
∏

k1=1

(

s

pk1

+ 1

)

(3)

where the controller parameter vector is

x = (kG, z1, ...znz
, p1, ..., pnp

)

The magnitude and phase functions of G(s, x) are defined
as

gmag(ω, x) = |G(s = jω, x)|; gang(ω, x) = 6 G(s = jω, x)

Select any appropriate controller structure of the form (3).
The closed form bound generation (stability bound and
performance specification bounds) quadratic inequalities
are given in Chait and Yaniv (1991); Chait and Tsypkin
(1993)

• A robust stability specification

l2
0
(1 − R2(w)) + 2l0(cos Ψ0) + 1 ≥ 0
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• Robust gain phase margin specification, Ws

l2
0
(1 − R2(w))

(

1 −
1

W 2
s

)

+

2l0

(

cos Ψ0 −
R(w)

Ws

)

+ 1 ≥ 0

• A robust sensitivity (output disturbance rejection)
specification, Wd0

l2
0
(1 − R2(w)) + 2l0

(

cos Ψ0 −
R(w)

Wd0(w)

)

+

(

1 −
1

W 2

d0
(w)

)

≥ 0

• Bandwidth specification, Wd1

l2
0
(1 − R2(w))

(

1 −
1

W 2

d1
(w)

)

+

2l0

(

cos Ψ0 −
R(w)

Wd1(w)

)

+ 1 ≥ 0

where R(w) is radius of nonparametric disc, for fix plant
R(w) = 0. From (2), l0 is product of magnitude of plant
and magnitude of fixed structure controller. Ψ0 is angle
of plant plus angle of fixed structure controller. Therefore
l0 and Ψ0 are in terms of unknown controller parameters.
Solving above constraints for parameters of fixed structure
controller in given search domain is controller synthesis
problem. This becomes a problem of interval constraint
satisfaction (ICSP) and finding controller parameters val-
ues which will satisfy above constraints will be its solution.

Fix the controller structure and give initial search domain
for controller parameters. Use robust stability, gain-phase
quadratic inequality and other performance specifications
quadratic inequalities as constraints. From (2), l0 will be
in terms of controller parameters.

Algorithm for ICSP
Input: Constraints C, Initial Search Box, B and accuracy
ǫ
Output: Solution Box with all feasible controllers or ”NO
Solution Exists ”

(1) Initialize the box list L with initial box B
(2) Take a box from list L and prune it using the

techniques explained in section 2.3. If no box in list,
Exit.

(3) If box can not be pruned further and width of box
is less or equal to ǫ, store the box as solution. Go to
step 2

(4) Bisect the box in maximum width direction and put
the sub-boxes in list.

(5) Go to step 2.

The key features of the proposed method are:

• It enables the designer to specify in advance the
structure of the controller to be synthesized.

• It can deal directly with the numerical values of the
possibly non-convex, nonlinear QFT bounds at each
design frequency. The QFT bounds can be generated
with, say, the QFT toolbox.

• It automatically takes care of the internal stability of
the system.

• If for the specified structure and the given search box
of controller parameter values,

· no feasible controller exists, then the method is
guaranteed to computationally verify this fact.

· a feasible controller does exist, then the method
is guaranteed to find all controllers lying within
the search box.

4. DESIGN EXAMPLES

The proposed method was tested on two different bench-
mark examples. The variables are the following controller
parameters: the gain k, the zero(s) zi, and the pole(s) pi

of the controller transfer function given in the form (3).

The controller synthesized with the proposed method is
referred to as the proposed controller, and its transfer
function is denoted as Gp(s). The controller synthesis of
both the example is carried out on Core-2-Duo machine
with 3GB RAM.

Example 1. This is demo problem from MATLAB tool-
box (Borghesani et al. (1995)). This illustrates the design
of feedback system that do not have uncertainty. Consider
a fixed plant described by

P (s) =
10

s(s + 1)

The specifications are stability, gain margin of at least 1.8,
zero steady state error for velocity reference commands,
and bandwidth limitation of

∣

∣

∣

∣

P (jw)G(jw)

1 + P (jw)G(jw)

∣

∣

∣

∣

≤ 0.707 for all w ≥ 10.

The steady state error specification can be met by includ-
ing an integrator in the controller. Using the proposed
method, we synthesize a controller with one integrator,
two real zeros and two real poles by taking arbitrar-
ily large gain, the initial search box is constructed as
k = [0.1, 50], z = [0.1, 50], z1 = [0, 50], p = [0.1, 50], p1 =
[0.1, 50] and accuracy ε = 10−9. The proposed method
takes 24.190 seconds to give all possible controllers in
above search box. We choose a controller with minimum
gain as

Gp(s) = 0.643
( s
1.08

+ 1)( s
1.004

+ 1)

s( s
49.94

+ 1)( s
19.22

+ 1)

Figure 2 shows that the obtained controller achieves all
the given specifications.

Also, using proposed method, we synthesize a controller
with two poles and one zero by taking arbitrarily large
gain, the initial search box is constructed as k =
[0.1, 10], z = [0.1, 4], p = [0.1, 35], p1 = [0.1, 35] and accu-
racy ε = 10−9. The proposed method takes 3.910 seconds
to give all possible controllers in above search box. We
choose a controller with minimum gain as

Gp(s) = 1.518
( s
2.685

+ 1)

( s
35

+ 1)( s
35

+ 1)

Figure 3 shows that the obtained controller achieves all
the given specifications.
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Fig. 2. Loop shaping of Example 1 with proposed controller
having integrator, two poles and two zeros. The gain
margin specification is indicated by red bound and
bandwidth condition is indicated by green curve.

Fig. 3. Loop shaping of Example 1 with proposed controller
having one zero and two poles. The gain margin
specification is indicated by red bound and bandwidth
condition is indicated by green curve.

Example 2. This is a slightly modified demo example,
given in MATLAB toolbox (Borghesani et al. (1995)).
Consider a control system with a non-parametric uncertain
plant model given by

P (s) =
10

s(0.1s + 1)
(1 + ∆m(s)) :

∆m(s) stable, |∆m(s)| <

∣

∣

∣

∣

∣

0.09( jw
0.91

)
jw

1.001
+ 1

∣

∣

∣

∣

∣

The design specifications for this problem are as follows:

• Robust stability constraint is given by
∣

∣

∣

∣

P (jw)G(jw)

1 + P (jw)G(jw)

∣

∣

∣

∣

< ∞ for all w

.

• Robust stability margin,
∣

∣

∣

∣

P (jw)G(jw)

1 + P (jw)G(jw)

∣

∣

∣

∣

≤ 1.2 for all w ≥ 0.

• Robust sensitivity specification
∣

∣

∣

∣

1

1 + P (jw)G(jw)

∣

∣

∣

∣

≤ 0.089w2, for all w ≥ 0

Using the proposed method, we synthesize a controller
with one real zero and two real poles by taking arbitrarily
large gain, the initial search box is constructed as k =
[0.1, 1000], z = [0.1, 100], p = [0.1, 850], p1 = [0.1, 2500]
and accuracy ε = 10−9. The proposed method takes 3.040
seconds to give all possible controllers in above search box.
We choose a controller with minimum gain as

Gp(s) = 112.817
( s
48.146

+ 1)

( s
850

+ 1)( s
2500

+ 1)

Figure 4 shows that the obtained controller achieves all
the given specifications.

Fig. 4. Loop shaping of Example 2 with proposed controller
with one zero and two poles. The robust sensitivity
conditions are straight lines.

Discussion:

The first benchmark example is a fixed plant with robust
stability and bandwidth as performance specifications.
We tried two different fixed structure controllers. The
proposed method takes about 24 seconds time to give a
controller with gain, a integrator, two real poles and two
real zeros. Another controller structure with gain, a real
zero and two real poles is obtained in about 4 seconds
time. Loop shaping with obtained controllers (see figure
2, 3) respects all the bounds.

The second example is a plant with non-parametric un-
certainty having stability and robust sensitivity specifi-
cations. With proposed method a controller with gain, a
real zero and two poles is obtained in about 3 seconds
time. Loop shaping with obtained controller (see figure 4)
respects all the bounds.

5. CONCLUSION

A new computationally efficient method has been proposed
for the automatic synthesis of fixed structure controllers
by solving QFT quadratic inequalities of robust stability
and performance specifications. The proposed algorithm
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deals directly with the numerical values of the possibly
non-convex, nonlinear QFT bounds, thereby avoiding the
over design arising from approximation in QFT bound
representation. The issues of absolute and relative robust
stability are all taken into consideration in the proposed
method.

For given structure of controller and initial search domain,
if feasible controller does not exist, then proposed method
is guaranteed to computationally verify this fact. If feasible
controller does exist then method is guaranteed to find all
feasible controllers. However, the controllers reported here
are the one with minimum gain. In both the benchmark
problems, the proposed method gives simple controllers
with real poles and zeros in few seconds.
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