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Abstract: The hybrid solution to the pendulum swinging-up and stabilizing problem introduced
by Åström and Furuta is based in two steps: an energy injection and a linear stabilization around
the desired inverted position. However the energy injection stage only considers the pendulum,
and not the motion of the pivot. Furthermore, for the stabilization stage linear law, only a very
small basin of attraction can be guaranteed. In this paper the energy controller is enlarged to
cope with the pivot dynamics and a nonlinear controller is introduced for the stabilization stage
with a larger basin of attraction. The approach proposed allows to cope both with the pendulum
on a cart and the Furuta one. Experiments with a laboratory Furuta pendulum are included.
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1. INTRODUCTION

As it is well known, the inverted pendulum presents
two main problems: swinging up the pendulum to the
upright position Åström and K. Furuta [2000], Gordillo
et al [2003], Lozano et al [2000] and stabilizing it in
this position once it is approached. These problems have
traditionally been treated as two separate ones, and solved
with a switching controller which commutes between two
stages, see Zhao and Spong [2001]: energy injection and
stabilization. The contributions of this paper are related
to both stages of the problem.

With respect to the swing-up controller, it is well known
that the solution of Åström and Furuta can be interpreted
as an application of Fradkov’s speed-gradient method, see
Fradkov and Pogromsky [1998], Shiriaev et al [2000,
2001]. In the current paper this last method is used to
cope not only with the pendulum, but also with the pivot
(cart or arm). In this way both the pendulum on a cart and
the Furuta pendulum are treated. However we will be more
concerned with the Furuta case, which is more complex.
The approach here is close to the one of Acosta et al
[2001], Gordillo et al [2003] but simpler. The simplicity
comes from the fact that here a model of the pendulum
after partial linearization is used. In this paper we are only
concerned with stopping the pivot, and not with stopping
it at some prescribed position.

The goal of the controller is to stabilize the pendulum at
its open-loop unstable upright equilibrium. The method
for designing the controller proposed here is based on the
stabilization of a set containing the desired equilibrium.
This set is obtained from the system invariants for the
free or unforced system (u = 0). One of these invariants
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is the energy, so the method aims to stabilize a specified
energy level. The other one is a trivial one, as we shall see
later.

As pointed out above this approach can be applied both
to the pendulum on a cart and to the Furuta pendulum.
The main differences between the pendulum on a cart and
the Furuta one are 1) that the former may have problems
with the restricted cart track length and 2) the dynamics
are much more complicated in the latter due the rotating
forces.

With respect to the stabilization problem, in this paper the
usual LQR controller is not used. The reason for this is the
following. In order to implement the switching strategy
it is necessary to have an estimation of the domain of
attraction (DOA) of the desired point when the stabilizing
controller is used. The authors have noticed that the use
of the LQR cost function as Lyapunov funtion yields
extremely small estimations of the DOA, at least for our
particular implementation of the Furuta pendulum. If this
estimation is used for the switching strategy then the
controller would not work properly, since even sensor noise
would make the controller to continuously switch to the
swing-up law.

In this paper a new, nonlinear, local stabilizing controller
is designed using forwarding for both, the pendulum on a
cart and the Furuta pendulum. The corresponding DOA
is estimated yielding practical estimations a the DOA (at
least for our pendulum).

Experimental results are also presented showing the good
behavior of the resultant hybrid controller.

The paper is organized as follows. In the next Section the
energy injection to swing up the pendulum proposed by
Åström and Furuta is extended to the case where the pivot
of the pendulum is also considered. Then, in Section 3
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a switching controller is presented where the global law
found in Section 2 is complemented with a local nonlinear
controller which gives a wider domain of attraction than
the usual linear one. Section 4 deals with the stability
analysis and the estimation of the DOA for the nonlinear
local controller. A Section with experimental work on a
laboratory Furuta pendulum is also included.

2. GLOBAL CONTROLLER DESIGN

The model of the pendulum on a cart after partial linea-
rization Spong [1998] is given by

ẋ1 = x2

ẋ2 = α sinx1 − β cos x1u
ẋ3 = u,

(1)

where x1 is the angular position of the pendulum with
the origin at the upright position, and x2 and x3 are
the velocities of the pendulum and the cart respectively.
Parameters α and β include all the physical parameters of
the system.

The energy of the simple unforced pendulum (with u = 0),
disregarding the pivot, is given by

E = α(cos x1 − 1) +
x2

2

2
. (2)

It should be realized that the energy (2) is an invariant or
constant quantity for the unforced system (1).

To swing up the pendulum from any position, including
the hanging one, energy should be injected to the system.
Åström and K. Furuta [2000] have proposed a controller
for this energy injection that can be interpreted using the
speed-gradient Fradkov method Fradkov and Pogromsky
[1998], taking as objective function Q = (E − E∗)2/2,
where E∗ is the system energy at the desired equilibrium
point; that is, E∗ = 0. Then the controller

u = kEx2 cos x1 (3)

is obtained. This is the classical solution of Åström and K.
Furuta [2000] to the swing-up problem. This controller
leads to the stabilization around a homoclinic orbit. In
this way, the system will eventually approach the desired
equilibrium but without achieving local stability on it
since, due to small disturbances, the system will go away
from this point. Then it oscillates in a homoclinic orbit.
One explanation of this behavior is that the desired
position is a saddle point and the (attractive) homoclinic
orbit is its stable manifold.

This controller has not only the problem of leading to
oscillations, but also the one associated with the fact that
it does not cope with the cart. Thus, the controller only
deals with the pendulum that goes to the upright position,
but the cart does not stop and has a remanent drift. In the
case Åström and K. Furuta [2000] the cart is stopped in
the stabilization stage, but not in the energy injection one.

However the cart can be driven to zero velocity in the
energy stage if we take into account that there is another
trivial invariant of the unforced system given by x3 since,
for u = 0, ẋ3 = 0. Therefore the speed-gradient objective
function becomes

Q = k1

E2

2
+ k2

x2

3

2
(4)

which leads to the control law

u = −gT∇xQ = k1Eβx2 cos x1 − k2x3. (5)

It can be checked by simulation the improvement of the
system behavior if controller (5) instead of (3) is used.
The cart tends now to rest in the energy injection stage.
Therefore, it improves the classical Åström-Furuta law.

This approach can be applied to the Furuta pendulum
in a similar way to Gordillo et al [2003], Acosta et al
[2001]. Here we reproduce the controller derived there in
lagrangian coordinates. Thus, after partial linearization
Spong [1998] the normalized system model for the Furuta
pendulum is

ẋ1 = x2

ẋ2 = α sinx1 + sin x1 cos x1x
2

3
− β cos x1u

ẋ3 = u,
(6)

Notice that the natural energy of the pendulum is no
longer an invariant of (6). However, here the corresponding
“energy” of (6) is given by the hamiltonian

H1 =
x2

2

2
+ α(cos x1 − 1) +

cos 2x1

4
x2

3
, (7)

because we have Ḣ1 = 0 for the unforced system of (6).
The other invariant is again the trivial one x3.

Now, following the speed–gradient algorithm, thoroughly
described in Gordillo et al [2003] for this case, we can
define the Fradkov objective function

Q = k1

(H1 − H∗

1
)2

2
+ k2

x2

3

2
. (8)

for the Furuta system. Notice that in the desired inverted
position (x1, x2, x3) = (0, 0, 0) and hence H∗

1
= 0.

The controller according the speed-gradient Fradkov met-
hod yields

u =−gT∇xQ

= k1H1

(

βx2 cos x1 −
cos 2x1

2
x3

)

− k2x3. (9)

Another possibility is

u = −φ(gT∇xQ) = φ(y), (10)

where φ is such that yφ(y) ≤ 0 and

y = k1H1

(

−βx2 cos x1 +
cos 2x1

4
x3

)

+ k2x3. (11)

One advantage of (10) is that it permits to take into
account the saturation effects of the controller actuator.

These results can be reformulated applying passivity. The
system (6) with output (11) is a passive system with
storage function Q, given by (8).

With controllers (9) or (10) it is clear that Q → 0, and
therefore H1 → H∗

1
and x3 → 0; that is, the trajectory

tends to the homocline defined by H1 = H∗

1
and x3 = 0.

Hence, the system evolves towards a stable set containing
the desired equilibria; which, in this case, is an invariant
set of the unforced (u = 0) system. This means that the
system oscillates passing in every oscillation close to the
origin in the cylindrical state space where the system (6)
is defined. This fact is used in the next Section to capture
the trajectory near the origin and to switch the controller
to a nonlinear one that drives the system to the desired
upright position.
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3. LOCAL CONTROLLER DESIGN

Usually, the stabilization problem is solved using linear
methods. However the resultant hybrid law even if it works
well in experimental settings, has a big theoretical problem
regarding the domain of attraction of the linear part, which
can be very small and therefore the robustness of the law
can be only hardly guaranteed. To enlarge the domain
of attraction, in this paper a nonlinear law for the local
controller is proposed.

3.1 A motivational example

The nonlinear local controller proposed here is based on
a variant of forwarding Mazenc and Praly [1996]. In
this section a motivational example of this approach is
included. To that end consider the system

ẋ1 = x1 + x1x
2

2
− u

ẋ2 = u.
(12)

To put this system in cascade form suitable for applying
forwarding the following precontroller is applyed

u = 2x1 + x1x
2

2
+ v,

and then the system becomes

ẋ1 = −x1 − v
ẋ2 = x1(2 + x2

2
) + v.

(13)

The upper unforced subsystem has a Lyapunov function

V1 =
x2

1

2
. To find an invariant of the full unforced system

the following PDE has to be solved

−x1

∂ν

∂x1

+ x1(2 + x2

2
)

∂ν

∂x2

= 0, (14)

which gives the invariant

ν = x1 +
1√
2

arctan
x2√

2
. (15)

Then a Lyapunov function for the system (13) is

V =
x2

1

2
+ k

ν2

2
(16)

and therefore

V̇ = −x2

1
−

(

x1 − kν

(

−1 +
1

2 + x2

2

))

v,

hence the controller is given by

v = x1 − kν

(

−1 +
1

2 + x2

2

)

. (17)

3.2 Pendulum-on-a-cart case

The model of the pendulum on a cart system after partial
linearization Spong [1998] is given by (1).

First of all, using the ideas of Åström et al [2005], it is
desired to transform the first two equations of (1) in a
Hamiltonian system with energy

H2 =
x2

2

2
+ α(cos x1 − a cos2 x1), (18)

with a > 0.5. This is achieved with the energy-shaping
controller u = 2aα

β
sinx1 + v yielding

ẋ1 = x2

ẋ2 = α sinx1 − 2aα sinx1 cos x1 − β cos x1v

ẋ3 =
2aα

β
sinx1 + v.

(19)

An invariant ν for system (19) is given by the PDE

x2

∂ν

∂x1

+ α sin x1(1 − 2a cos x1)
∂ν

∂x2

+
2aα

β
sin x1

∂ν

∂x3

= 0,

(20)
which has the following solution

ν = x3 +
√

2aα ln

(

−

α
√

2
+

√

2aα cos x1 +
√

aαx2

)

−

√

2aα

2β
ln(aα).

(21)

This solution can only exist in region Ω defined by

Ω � {(x1, x2) ∈ S × R : α(2a cos x1 − 1) + x2

√
2αa > 0}

(22)

In region Ω we can define the Lyapunov function

V =
x2

2

2
+ α

(

cos x1 − a cos2 x1

)

+
k1

2
(ν − ν0)

2. (23)

Then

V̇ =

(

−βx2 cos x1 + k1(ν − ν0)

(

−β cos x1

∂ν

∂x2

+
∂ν

∂x3

))

v,

which leads to the controller

v = −k2φ1

(

−x2β cos x1 + k1(ν − ν0)

(

−β cos x1

∂ν

∂x2

+
∂ν

∂x3

))

,

(24)

where φ1 satisfies zφ1(z) ≥ 0. In this way, V̇ ≤ 0.

In order to define the switching strategy, an estimation
for the origin domain of attraction (DOA) is needed. This
estimation can be obtained looking for the largest closed
level surface of V that is included in Ω. For brevity, this
step is omitted here but a similar and more complex case
will be discussed below for the Furuta pendulum.

Now we can build a switching controller. When the state
of the system is outside the estimation of the DOA the
nonlinear global law (9) is applied until the DOA is
reached. Then the controller is switched to law (24). This
switch occurs only once, unlike in sliding controllers.

3.3 Furuta case

The system model, after partial linearization Spong
[1998], is given by (6). After applying the energy-shaping
controller

u =
sin x1

β
(2aα + x2

3
) + v, (25)

we obtain
ẋ1 = x2

ẋ2 = α(sin x1 − 2a sin x1 cos x1) − β cos x1v

ẋ3 =
sin x1

β
(2aα + x2

3
) + v,

(26)

where the two first equations are as (19) and therefore they
give rise to a Hamiltonian system with H2 given by (18).

An invariant ν for system (26) is given by a solution for
the partial differential equation

x2

∂ν

∂x1

+α sin x1(1−2a cos x1)
∂ν

∂x2

+
sin x1

β
(2aα+x2

3
)

∂ν

∂x3

= 0. (27)

One such a solution is

ν = 2 ln

(

− α√
2

+
√

2aα cos x1 + x2

√
aα

)

+ 2β arctan

(

x3√
2aα

)

− ln(aα) + ν0, (28)
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with the constant ν0 such that ν(0, 0, 0) = 0 and so

ν0 = 2 ln

(

α

(

− 1√
2

+
√

2a

))

− ln(aα).

The invariant ν exists in the region Ω defined by (22).
Actually we are only concerned with a subregion of Ω
defined around the origin. The controller is now

v = −φ

(

−βx2 cos x1 + bν

(

−β cos x1

∂ν

∂x2

+
∂ν

∂x3

))

,

(29)
where φ satisfies zφ(z) ≥ 0. The corresponding Lyapunov
function is

W = H2 +
1

2
bν2, (30)

with b some positive constant and H2 given by (18).

4. STABILITY ANALYSIS

In this Section only the Furuta pendulum is treated with
some detail. The pendulum on cart case is a simpler version
of the Furuta case, and can be solved in the same way as
this last.

Proposition 1. Consider the system (6) with the composite
controller given by (25)–(29) with the constants a > 1/2
and b > 0. Then there exits a value cmax > 0 such that
the sub–level sets W = c of (30), for all 0 < c ≤ cmax are
compact. Moreover, all the trajectories starting in W = c
are bounded.

Proof. After a geometric study of function W , which is
omitted here for brevity, it can be seen that the level
curves for W are compact for 0 < c ≤ cmax with cmax =
minx2

ϕ(x2), where function ϕ(x2) is given by

ϕ(x2) =
1

2
x2

2 +
b

2

(

2 ln

(

α(2a − 1) + x2

√

2αa

α(2a − 1)

)

+ πβ
√

αa

)

2

.

To prove the boundedness of trajectories, since the sub–
level sets W ≤ cmax are compact then we use the positive
definite function W as a candidate to Lyapunov function.
Thus, the derivative of W along the system trajectories
reads

Ẇ = Ḣ2 + bνν̇

=−
(

−βx2 cos x1 + bν

(

−β cos x1

∂ν

∂x2

+
∂ν

∂x3

))2

≤ 0, (31)

and therefore all trajectories starting in W ≤ cmax are
bounded.

Proposition 2. Consider the proposition 1 taking effect,
then for all the trajectories starting in W = c with
c ≤ cmax, the zero equilibrium is asymptotically stable.

Proof. By proposition 1 we know that all trajectories are
bounded in any sub–level set W = c with c ≤ cmax.
From (31) we know that Ẇ is semi–definite negative then
we use LaSalle’s Invariance Principle to prove that the
largest sub–level set inside W = c, with c ≤ cmax, is the
zero equilibrium. Thus, from (26) and forcing W = c the
residual dynamics become

ẋ1 = x2 (32)

ẋ2 =−α sin x1(2a cos x1 − 1) (33)

ẋ3 =
sin x1

β
(2aα + x2

3
), (34)

subject to the constraint W ≡ 0 given by

F �

(

−βx2 cos x1 + bν

(

−β cos x1

∂ν

∂x2

+
∂ν

∂x3

))

≡ 0.

(35)
Now, the equations (32)–(33) are the corresponding to
the Hamiltonian conservative two-dimensional system, and
then in the residual dynamics we know additionally that
H2 given by (18) is constant too, which means that

Ḣ2 =
∂H2

∂x1

(x1, x2)x2 −
∂H2

∂x2

(x1, x2)V
′(x1) ≡ 0. (36)

Thus, the fact that H2 is constant together with the
definition of W imply that ν is also constant in these
residual dynamics, say ν = ν0. Now, the time derivative
of F becomes

Ḟ =
∂F

∂x1

(x1, x2, ν
0)x2 −

∂F

∂x2

(x1, x2, ν
0)V ′(x1) ≡ 0. (37)

It is easy to see that functions H2, ν and F are linearly
independent. Thus we have three independent invariants
on a third-order dynamics and therefore, the residual
trajectory is a fixed point. From the residual dynamics
(32)–(34) the only fixed points have the form (x1, x2, x3) =
(0, 0, x0

3
). Now, the value of ν in these points reads

ν0 � ν(0, 0, x0

3
) = 2β arctan

(

x0

3√
2αa

)

,

and using the fact that the change of coordinates
(x1, x2, x3) � (x1, x2, ν) is a (local) diffeomorphism in
the compact set W ≤ c then, it only remains to prove that
either ν0 or x0

3
are zero. Further, evaluating (35) in these

fixed points becomes

ν0

(

(2a − 1) cos2
(

ν0

2β

)

− 2a

)

cst = 0,

which has as unique solution ν0 = 0 for any positive a,
concluding the proof.

5. EXPERIMENTS ON A LABORATORY FURUTA
PENDULUM

The implementation of the Furuta pendulum used in this
article is thoroughly described in Acosta et al [2001],
Gordillo et al [2003]. The laboratory electro-mechanical
system consists of: a DC motor (15 Nm / 2000 rpm) with
tachometer that measures the speed of the arm; a power
supply (50 VA); a PWM servo-amplifier; a pendulum; an
encoder that measures the angle of the pendulum and a
slip ring that drives the signal to the base. The control sys-
tem is composed by: a monitor PC with a target (DS1102)
for control based on DSP (TMS320C31)and a software
(DSPACE) for control, monitoring and supervisor. The
friction in the actuated coordinate was compensated with
a non–linear compensator based on the LuGre model Ca-
nudas et al [1995], to dominate the friction forces of the
arm of the pendulum. The full control system is shown in
Fig. 1. The physical values were α = 52.55 and β = 1.26
and, the controller parameters for the experiment a = 1
and b = 1. With these parameters the bound cmax ≈ 6.4
can be obtained solving the minimization problem presen-
ted in the proof of Proposition. For the experiment we
choose c = 6 < cmax. The successful experimental results
are shown in Fig. 2. Figure 2 is split into two parts: the
left one is the response with the global controller; and the
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Fig. 1. Laboratory Furuta pendulum.
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Fig. 2. Experimental results.

right one the response with the local controller (26)–(29).
The switching algorithm is:

u =

{

ulocal if W < c
uglobal if W ≥ c

In order to compare this estimate of the DOA and the
one obtained when an LQR is used, we compute an LQR

controller with the following parameters 1

Q = 103 diag{8808, 23.45, 0.281} and R = 1.

By numerical inspection, the maximum level curve VLQR =

1/2x⊤Px for which V̇ ≤ 0 is cmax ≈ 4.43, and the value of
VLQR at the time of switching 2 is equal to 794.12, meaning
that the system is far from entering in the estimated
DOA for the LQR controller. On the other hand, at this
time, the system is entering in the estimated DOA for the
presented controller, because W ≈ 5.93. This is a sign
that the presented estimate of the DOA is much larger
than the one of the LQR controller. Notice also that, the
control action saturates when the global controller is being
applied and, this fact does not affect to the stability result
because speed–gradient controllers are independent of the
saturation limit. Otherwise, when the local controller is
acting the control action does not saturate.
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