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Abstract: In this paper we investigate the minimum amount of input power required to estimate
a given linear system with a prescribed degree of accuracy, as a function of the model complexity.
This quantity is defined to be the ‘cost of complexity’. The degree of accuracy considered is
the maximum variance of the discrete-time transfer function estimator over a frequency range
[−ωB, ωB]. It is commonly believed that the cost increases as the model complexity increases.
The objective of this paper is to quantify this dependence. In particular, we establish several
properties of the cost of complexity. We find, for example, a lower bound for the cost asymptotic
in the model order. For simplicity, we consider only systems described by FIR models and assume
that there is no undermodelling.

1. INTRODUCTION

The purpose of system identification is to construct math-
ematical models of dynamical systems from experimental
input/output data. To this end, a judicious choice of
the input signal is crucial. This has motivated substan-
tial interest in the topic of optimal experiment design.
Indeed, many results have appeared on this topic, both
in the statistics literature [Cox, 1958, Kempthorne, 1952,
Fedorov, 1972] and in the engineering literature [Mehra,
1974, Goodwin and Payne, 1977, Zarrop, 1979, Jansson,
2004].

A key point as to why system identification can work in
practice lies in the nature of the input signal: it is noted
that experiment design can emphasize system properties
of interest, while properties of little or no interest can be
‘hidden’ [Hjalmarsson, 2005, Hjalmarsson et al., 2006]. As
remarked in [Hjalmarsson et al., 2006], some properties
can be more easily estimated than others, in the sense that
the amount of input power needed to estimate them with a
given level of accuracy does not depend on the complexity
of the model considered. However, some properties do
depend on the model order. For example, it has been
shown that the cost of estimating the transfer function at
a particular frequency, or one non-minimum phase zero, is
independent of the model order [Hjalmarsson et al., 2006].

This paper can be considered as an extension of the study
of this phenomenon. Here we investigate the minimum
amount of input power needed to estimate a given linear
system with a prescribed degree of accuracy, as a function
of the model complexity. This quantity is defined to be the
‘cost of complexity’. The degree of accuracy considered
is the maximum variance of the discrete-time transfer
function estimator over a frequency range [−ωB, ωB].
For simplicity, we restrict the model class to systems
described by FIR models. Also, we assume that there is
no undermodelling, i.e. that the true system belongs to
the model structure.

� This work was supported by the Swedish Research Council.

The contribution of this paper consists of establishing sev-
eral properties for the dependence of the cost on the model
complexity. We believe that these results can provide
a better understanding of the relationship between the
amount of information that we ask to be extracted from a
system, and the sensitivity of the cost of the identification
with respect to the model complexity. This appears to be
a key for understanding why system identification works
for complex systems.

In order to study the problem posed in this paper, we
employ a semidefinite optimization approach [Hildebrand
and Gevers, 2003, Jansson and Hjalmarsson, 2005, Bom-
bois et al., 2006]. In particular, the input design problem is
formulated in terms of Linear Matrix Inequalities (LMIs)
and the problem reduces to studying the positivity of a
specific Toeplitz matrix.

This paper is organised as follows. The problem is for-
mulated in Section 2. The main results are presented in
Section 3 and a numerical example is provided in Section 4.
Section 5 concludes the paper.

2. PROBLEM SET-UP

Consider the FIR system with input u(t) and output y(t),

y(t) = [θo
no

]T Λno(q)u(t) + eo(t) = G(q, θo
no

)u(t) + eo(t),

where Λno(q) := [ 1 q−1 · · · q−no ]T with q−1 denoting the
backward time shift operator and θo

no
= [ bo

0 · · · bo
no

]T .
Furthermore, eo(t) is zero mean white noise with variance
σ2

o , and the input signal is considered to be wide-sense
stationary. The model to be fitted to this system is given
by

y(t) =
n∑

k=0

bku(t − k) + e(t) = [θn]T Λn(q)u(t) + e(t).

where n ≥ no. Consider the following autocovariance
representation for the power spectrum of u(t):
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Φu(ω) :=
∞∑

k=−∞
rke−jωk. (1)

Note that r0 corresponds to the input power, i.e. r0 =
1
2π

∫ π

−π
Φu(ω)dω. The (normalised) associated asymptotic

covariance matrix of the estimated parameter vector is

lim
N→∞

NE[(θ̂N,n − θo
n)(θ̂N,n − θo

n)T ] = σ2
oT−1

n ,

where θ̂N,n is the Prediction Error (PE) parameter esti-
mator of order n based on N observations of input/output
data, θo

n := [ bo
0 · · · bo

no
0 · · · 0 ]T and Tn := T ({rk}n

k=0)
is a Toeplitz matrix of the vector [ r0 r1 · · · rn ] [Ljung,
1999]. In order for Φu to define a spectrum, it must satisfy

Φu(ω) ≥ 0, |ω| ≤ π. (2)
We will design the sequence r0, r1, . . . , rn. However, we
must ensure that there exists an extension rn+1, rn+2, . . .
such that the nonnegativity constraint (2) holds. A nec-
essary and sufficient condition for the existence of such
an extension is that Tn ≥ 0 [Grenander and Szegö, 1958,
Byrnes et al., 2001, Lindquist and Picci, 1996].

In this paper we study the input design problem

min
Φu

1
2π

∫ π

−π

Φu(ω)dω

s.t. Φu(ω) ≥ 0, |ω| ≤ π

lim
N→∞

N Var {G(ejω , θ̂N,n)} ≤ 1
γ

, |ω| ≤ ωB.

(3)

where “s.t.” denotes “subject to”.

By the Gauss’ approximation formula [Ljung, 1999,
page 292],

lim
N→∞

N Var{G(ejω , θ̂N,n)} = σ2
oΛ∗

n(ejω)T−1
n Λn(ejω). (4)

This formula is valid when Tn is non-singular, i.e. when
Tn > 0 (since Tn must be positive semidefinite in order to
define a proper spectrum Φu). Under this assumption, by
applying Schur complements [Boyd et al., 1994, page 7],
the second constraint in (3) can be written as

Tn − σ2
oγΛn(ejω)Λ∗

n(ejω) ≥ 0, |ω| ≤ π.

Thus, problem (3) can be reformulated, for ωB ∈ (0, π],
as:

min
r0,...,rn

r0

s.t. Tn − σ2
oγΛn(ejω)Λ∗

n(ejω) ≥ 0, |ω| ≤ ωB.
(5)

(see e.g. [Hjalmarsson et al., 2006]). The constraint Tn > 0
has not been included in (5), because it can be shown (see
Lemma 10 in Appendix C) that Tn > 0 holds for any
solution of (5) if ωB > 0.

The case where ωB = 0 will be treated separately in
Remark 1 of the next section, since, in this case the optimal
solution gives a singular matrix Tn.

Let us denote by ropt
0 the solution to (5). The focus of

this paper is thus to study the dependence of ropt
0 on the

variables n, ωB and γ, by analyzing the frequency-wise
LMI

Tn − σ2
oγΛn(ejω)Λ∗

n(ejω) ≥ 0, |ω| ≤ ωB. (6)

The constraint (6) is infinite dimensional due to the
dependence on the continuous variable ω. However, us-
ing the Generalised Kalman-Yakubovich-Popov (KYP)
Lemma [Iwasaki and Hara, 2005], the dependence on ω
is eliminated and thus (6) can be written as a finite
dimensional problem. The trade-off is that we add two new

matrix variables and that the dimension of the semidefinite
program increases.

3. MAIN RESULTS

In this section the main results of this paper are presented.
We start by stating some general properties of ropt

0 in
Propositions 1 and 2. The implication of these propositions
is that the more information we require for the model, the
larger the cost. In particular, Proposition 1 shows that the
cost is a non-decreasing function of n. Proposition 2 shows
that the cost is a non-decreasing function of ωB.
Proposition 1. The optimal cost of (5), ropt

0 , is a mono-
tonically non-decreasing function of n.

Proof. Notice that

Tn+1 − σ2
oγΛn+1(ejω)Λ∗

n+1(e
jω) =

[
An Bn+1

B∗
n+1 r0 − σ2

oγ

]
,

where
An := Tn − σ2

oγΛn(ejω)Λ∗
n(ejω)

Bn+1 :=

⎡
⎢⎣

rn+1 − σ2
oγej(n+1)ω

...
r1 − σ2

oγejω

⎤
⎥⎦ .

Thus, if Φu satisfies An+1 ≥ 0, it also satisfies An ≥
0, for every ω ∈ [−ωB, ωB]. This means that ropt

0 is
monotonically non-decreasing in n. (This result can easily
be extended to general model structures.) �
Proposition 2. (Monotonicity of ropt

0 with respect to ωB).
Let ropt,1

0 and ropt,2
0 be the optimal costs of the input

design problem (3) for ωB = ωB1 and ωB = ωB2, respec-
tively, and a fixed model order n. If 0 ≤ ωB1 < ωB2 ≤ π,
then ropt,1

0 ≤ ropt,2
0 .

Proof. Follows from the fact that the set of allowable
input spectra Φu decreases with increasing ωB. �
The remaining results of this paper are consistent with
Propositions 1 and 2. In the next theorem an upper bound
for ropt

0 is derived by restricting the input spectrum to
white noise spectra, i.e. rk = 0, k �= 0. This means that
the only decision variable in (5) is r0.
Theorem 1. (White noise input spectrum). For the case
of white noise input spectra, we have ropt

0 = ropt
whitenoise :=

(n + 1)σ2
oγ.

Proof. White noise corresponds to rk = r0δk, where δk is
defined by δ0 = 1 and δk = 0 for k �= 0. From (4) we obtain
σ2

o

r0
Λ∗

n(ejω)Λn(ejω) ≤ 1/γ. Since Λ∗
n(ejω)Λn(ejω) = n + 1,

we obtain ropt
0 = (n + 1)σ2

oγ. �
From this theorem it is concluded that if we restrict
the input to white noise, the cost is proportional to the
model order n + 1 and the precision γ, but independent
of the bandwidth ωB. Note that ropt

whitenoise constitutes
an upper bound for ropt

0 due to the restriction in the
structure of the input spectrum. The next theorem appears
in [Hjalmarsson et al., 2006]. It considers the case when
ωB = 0, i.e. it provides a lower bound for ropt

0 . Also, it
shows that if we are only interested in estimating the static
gain of the system, the optimal input is independent of the
model order.
Theorem 2. When ωB = 0, the optimal cost is given by
ropt
0 = σ2

oγ.
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Proof. This proof is a particular case of the proof of
Theorem 3.1 of [Hjalmarsson et al., 2006]. Here we have
that

Tn − σ2
oγΛn(1)Λ∗

n(1) ≥ 0

⇔

⎡
⎢⎢⎣

r0 − σ2
oγ r1 − σ2

oγ · · · rn − σ2
oγ

r1 − σ2
oγ r0 − σ2

oγ · · · rn−1 − σ2
oγ

...
...

. . .
...

rn − σ2
oγ rn−1 − σ2

oγ · · · r0 − σ2
oγ

⎤
⎥⎥⎦ ≥ 0. (7)

A necessary condition for (7) to hold is r0 ≥ σ2
oγ, hence

ropt
0 ≥ σ2

oγ. On the other hand, if we take φu(ω) =
(σ2

oγ)δ(ω) (e.g. by taking u to be a constant equal to σ2
oγ),

we have ri = σ2
oγ for i = 0, . . . , n, which implies that

ropt
0 ≤ σ2

oγ. This then implies that ropt
0 = σ2

oγ. �

This theorem presents a loose lower bound for ropt
0 due to

the fact that ωB is fixed to zero. In Theorem 3 we derive
a more refined lower bound (asymptotic in n) for ropt

0 ,
where ωB is allowed to vary. However, before stating the
theorem, we make a heuristic observation regarding ropt

0
by exploiting the asymptotic variance formula in [Ljung,
1985].
Observation 1. Using Ljung’s asymptotic variance for-
mula [Ljung, 1985], the condition

lim
N→∞

NVarG(ejω , θ̂N,n) ≤ 1/γ

can be approximately replaced by (n + 1) σ2
o

Φu(ω) ≤ 1/γ.
This implies that

1
2π

π∫
−π

Φu(ω)dω ≥ 1
2π

ωB∫
−ωB

Φu(ω)dω ≥ (n+1)
σ2

oωBγ

π
, (8)

however, if we take

Φu(ω) =
{

(n + 1)σ2
oγ, if ω ∈ [−ωB, ωB]

0, otherwise,

(8) turns into an equality. Therefore a heuristic observation
is that ropt

0 is asymptotically proportional to the model
complexity n + 1, to the accuracy γ and the bandwidth
ωB. This derivation of the asymptotic cost is not entirely
rigorous (since Φu(ω) also depends on n), which calls for
some more detailed calculations. �

In the following theorem, we establish the findings made
in Observation 1 in a rigorous fashion.
Theorem 3. (Lower bound for the asymptotic cost). Assume
that 0 < ωB < π. Then, there is an nas ∈ N, depending
on σ2

o , γ and ωB, such that, for all n ≥ nas,

ropt
0 ≥

[
(n + 1)

ωB

π
+ 1
]
σ2

oγ.

Proof. See Appendix A. �
Remark 1. The solution of (3) for ωB = 0 does not give
a non-singular matrix Tn. However, if we add a small
perturbation, say ε > 0, to r0, we obtain a non-singular
Tn. Thus, ropt

0 = σ2
oγ is the infimum value of r0, but it is

not actually attainable, in the sense that the right hand
side of (4) is not defined for det Tn = 0, even though the
variance of G(ejω , θ̂N,n) is meaningful in this case. In fact,
in engineering terms, it is possible to generate the solution
of this case by using a constant signal, which will give a
consistent estimator of the steady state gain of the system.
�
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30

n

Fig. 1. The optimal cost (ropt
0 ) from (5) versus model

order n (solid); lower bound given by Theorem 2
(−�−); asymptotic lower bound for ropt

0 , c.f. Theorem 3
(dashed); the white noise solution ropt

whitenoise (−�−).

To summarize, the results of Propositions 1 and 2 are
consistent with the fact that all bounds derived for ropt

0
are asymptotically affine in n, ωB and γ. An upper bound
for ropt

0 was derived in Theorem 1. The lower bound
presented in Theorem 3 can be seen as a refinement of
the result in Theorem 2 in the case where ωB is allowed
to vary. Furthermore, Theorem 3 establishes the findings
of Observation 1 in a rigorous fashion.

4. NUMERICAL ILLUSTRATION

Let σ2
o = 1, ωB = 0.15π and γ = 1. In Figure 1, the

optimal solution ropt
0 is plotted together with the bounds

presented in Section 3. It is seen from the figure that the
asymptotic lower bound given in Theorem 3 is a tighter
bound (i.e. closer to ropt

0 ) than the simple bound given in
Theorem 2.

5. CONCLUSIONS

In this paper we have studied the minimum amount of
input power, ropt

0 , needed to estimate an FIR model with
prescribed precision γ over the frequency range [−ωB, ωB],
as a function of the model order n. It is assumed that n is
large enough to capture the true system. Several properties
of ropt

0 are derived. It is shown that if n is large enough,
ropt
0 is proportional to n, ωB and γ. A loose upper bound

for ropt
0 is given by a white noise input spectrum. The

main contribution of this paper is that we provide a tighter
asymptotic lower bound for ropt

0 . This bound quantifies the
cost of extracting more information about the system and
overmodelling. In simple terms, it can be concluded that,
asymptotically in n,

ropt
0 ∝ nωBσ2

oγ.

Hence, the results of this paper illustrate that the amount
of information we ask to be extracted from the system
determines how sensitive the cost of the identification
experiment is with respect to the system (and model) com-
plexity. This in turns means that the cost of identification
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can be kept low for complex systems if features of little or
no interest are not excited.

Appendix A. PROOF OF THEOREM 3

By pre- and post-multiplying (6) by Λ∗
n(ejβ) and Λn(ejβ),

respectively, where β ∈ [0, π], it must hold that

Λ∗
n(ejβ)TnΛn(ejβ) ≥ σ2

oγ|Λ∗
n(ejβ)Λn(ejω)|2,

|ω| ≤ ωB, β ∈ [0, π]. (A.1)
Now,

|Λ∗
n(ejβ)Λn(ejω)|2 =

∣∣∣ n∑
k=0

ej(β−ω)k
∣∣∣2 =

sin2(n+1
2 [β − ω])

sin2(1
2 [β − ω])

and

Λ∗
n(ejβ)TnΛn(ejβ) =

n∑
m=−n

(n + 1 − |m|)rke−jβm.

This implies that (A.1) is equivalent to
n∑

m=−n

(
1 − |m|

n + 1

)
rke−jβm ≥ σ2

oγ
1

n + 1
sin2(n+1

2 [β − ω])
sin2(1

2 [β − ω])
,

|ω| ≤ ωB, β ∈ [0, π]. (A.2)
The right hand side of (A.2) is the Fejér kernel Fn and, by
Lemma 6, the left hand side of (A.2) is the convolution of
Fn and Φu. Thus, (A.2) is equivalent to

1
2π

[Φu ∗ Fn](β) ≥ σ2
oγFn(ω − β), |ω| ≤ ωB, β ∈ [0, π].

(A.3)
This expression can be further simplified by taking the
supremum over ω ∈ [−ωB, ωB], and using Lemma 7. This
implies that (A.3) is equivalent to

1
2π

[Φu ∗ Fn](β) ≥
{

(n + 1)σ2
oγ, if β ∈ [0, ωB]

σ2
oγ sup

β−ωB<x<β
Fn(x), if β ∈ (ωB, π].

(A.4)
Notice that, by Tonelli’s Theorem [Bartle, 1966, page 118],
the periodicity of Φu, and Lemma 8,

1
2π

∫ π

−π

[Φu ∗ Fn](β)dβ =
∫ π

−π

Φu(β)dβ.

Thus, if we integrate both sides of (A.4) using

F̃n(y) := sup
y<x<β

Fn(x) − Fn(y) ≥ 0, y ∈ (0, π − ωB],

and divide by 2π, we obtain

1
2π

∫ π

−π

Φu(β)dβ ≥ (n + 1)
ωBσ2

oγ

π
+

σ2
oγ

π

∫ π−ωB

0

Fn(β)dβ

+
σ2

oγ

π

∫ π−ωB

0

F̃n(β)dβ. (A.5)

Let N ∈ N be such that, for every n ≥ N ,

ε :=
σ2

oγ

π

∫ π−ωB

0

F̃n(β)dβ > 0. (A.6)

The existence of such an N comes from the fact that
supy<x Fn(x) = Fn(y) does not hold for every y ∈
(0, π] (since Fn is not monotonically decreasing), and by
Lemma 9,

lim
n→∞

[∫ π−ωB

0

F̃n(β)dβ −
∫ π

0

F̃n(β)dβ

]
= 0.

Moreover, by Lemma 9, there is an N ′ ≥ N such that, for
every n ≥ N ′, ∫ π

π−ωB

Fn(β)dβ <
επ

σ2
oγ

.

Therefore by Lemmas 8 and 5 we have
σ2

oγ

π

∫ π−ωB

0

Fn(β)dβ (A.7)

=
σ2

oγ

π

∫ π

0

Fn(β)dβ − σ2
oγ

π

∫ π

π−ωB

Fn(β)dβ > σ2
oγ − ε.

Thus, by rewriting (A.5) and (A.7), and using (A.6), we
obtain the lower bound

1
2π

∫ π

−π

Φu(β)dβ ≥ (n + 1)
ωBσ2

oγ

π
+ σ2

oγ, n ≥ N.

This means that, for n sufficiently large, the optimal cost
satisfies the asymptotic lower bound

ropt
0 ≥

[
(n + 1)

ωB

π
+ 1
]
σ2

oγ. (A.8)

Appendix B. PROPERTIES OF THE FEJÉR KERNEL

The Fejér kernel Fn is defined as

Fn(x) :=
1

n + 1
sin2(n+1

2 x)
sin2(1

2x)
, x ∈ R.

Properties of the Fejér kernel, necessary to establish the
proof of Theorem 3, are given below.
Lemma 4.

Fn(x) =
1

n + 1

n∑
k=0

k∑
l=−k

ejlx.

Proof.

1

n + 1

n∑
k=0

k∑
l=−k

ejlx =
1

n + 1

n∑
k=0

e−jkx − ej(k+1)x

1 − ejx

=
1

n + 1

n∑
k=0

ej(k+1/2)x − e−j(k+1/2)x

ejx/2 − e−jx/2

=
1

n + 1

n∑
k=0

sin([k + 1/2]x)

sin(x/2)

=
1

n + 1

1

sin(x/2)
Im

{
n∑

k=0

ej(k+1/2)x

}

=
1

n + 1

1

sin(x/2)
Im

{
ejx/2 1 − ej(n+1)x

1 − ejx

}

=
1

n + 1

1

sin(x/2)
Im

{
1 − cos([n + 1]x) − j sin([n + 1]x)

−2j sin(x/2)

}
=

1

n + 1

1

sin2(x/2)

1 − cos([n + 1]x)

2

=
1

n + 1

sin2(n+1
2

x)

sin2(x/2)

= Fn(x).

�
Lemma 5. Fn(x) ≥ 0 and Fn(−x) = Fn(x).

Proof. Follows directly from the definition. �
Lemma 6. If g : Z → R has Fourier transform G, then

n∑
m=−n

[
1 − |m|

n + 1

]
gme−jωm =

1
2π

[G ∗ Fn](ω), ω ∈ [−π, π].
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Proof.

n∑
m=−n

[
1 − |m|

n + 1

]
gme−jωm

=
1

n + 1

n∑
m=−n

(n + 1 − |m|)gme−jωm

=
1

n + 1

n∑
k=0

n∑
l=0

gk−le
−jω(k−l)

=
1

n + 1

n∑
k=0

k∑
p=−k

gpe
−jωp

=
1

n + 1

n∑
k=0

k∑
p=−k

1
2π

∫ π

−π

G(β)ejβpdβe−jωp

=
1
2π

∫ π

−π

G(β)
1

n + 1

n∑
k=0

k∑
p=−k

ej(β−ω)pdβ

=
1
2π

∫ π

−π

G(β)Fn(β − ω)dβ

=
1
2π

[G ∗ Fn],

where we have used Lemmas 4 and 5. �
Lemma 7. Fn(x) ≤ Fn(0) = n + 1 for all x ∈ [−π, π].

Proof.

Fn(0) = lim
n→∞

1
n + 1

sin2(n+1
2 x)

sin2(x
2 )

= n + 1.

On the other hand, by Lemma 4, for all x ∈ [−π, π] we
have that

|Fn(x)| =
1

n + 1

n∑
k=0

k∑
l=−k

ejlx

=
1

n + 1

n∑
k=0

n∑
p=0

ej(k−p)x

=
1

n + 1

∣∣∣∣∣
n∑

p=0

ejkx

∣∣∣∣∣
2

≤ 1
n + 1

(
n∑

p=0

|ejkx|
)2

= 1.

�
Lemma 8.

1
2π

∫ π

−π

Fn(x)dx = 1.

Proof. By Lemma 4,

1
2π

∫ π

−π

Fn(x)dx =
1
2π

∫ π

−π

[
1

n + 1

n∑
k=0

k∑
l=−k

ejlx

]
dx

=
1

n + 1

n∑
k=0

k∑
l=−k

1
2π

∫ π

−π

ejlxdx

=
1

n + 1

n∑
k=0

k∑
l=−k

δl

=
1

n + 1
(n + 1)

= 1.
�

Lemma 9. For every δ > 0,

lim
n→∞

∫ π

δ

Fn(x)dx = 0.

Proof. For δ ≤ x ≤ π, we have

Fn(x) =
1

n + 1
sin2(n+1

2 x)
sin2(x

2 )
≤ 1

n + 1
1

sin2( δ
2 )

.

Thus

0 ≤
∫ π

δ

Fn(x)dx ≤ 1
n + 1

π − δ

sin2( δ
2 )

→ 0

as n → ∞. �

Appendix C. TECHNICAL LEMMA

Lemma 10. Let ωB ∈ (0, π]. Then, if {rk}n
k=0 is a solution

to the input design problem (6), it satisfies Tn > 0.

Proof. Pick n+1 different numbers {ωk}n
k=0 from [0, ωB].

Then, from (6), the solution {rk}n
k=0 satisfies

Tn − σ2
oγΛn(ejω1)Λ∗

n(ejω1) ≥ 0, for i = 0, . . . , n.
(C.1)

By summing (C.1) over i = 0, . . . , n, and dividing by n+1,
we obtain

Tn − σ2
oγ

(n + 1)
UU∗ ≥ 0, (C.2)

where

U := [ Λn(ejω0 ) · · · Λn(ejωn) ] =

⎡
⎢⎢⎣

1 · · · 1
e−jω0 . . . e−jωn

...
...

e−jnω0 . . . e−jnωn

⎤
⎥⎥⎦ .

Notice that U∗ is a Vandermonde matrix [Horn and
Johnson, 1990, page 29], whose determinant is

det(U∗) =
∏

0≤i<k≤n

(ejωk − ejωl) �= 0.

Thus, UU∗ > 0, hence by (C.2) we conclude that Tn > 0.
�
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