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Abstract: We introduce a modified learning updating mechanism into the evolutionary
Prisoner’s Dilemma on Newman-Watts (NW) networks. During the evolutionary process, each
individual updates its strategy according to individual deterministic switch in combination with
a feedback between its score aspiration and actual score. And individual’s score is a linear
combination of individual’s total payoff and local contribution to its neighbors. We study
the cooperation level of the system under this learning feedback mechanism, and find that
the cooperation level increases as the relative weight of the local contribution to the score
increases. In addition, we focus on the influences of learning rate and intensity of deterministic
switch in the strategy updating rule on cooperation. Simulations show that for much low
intensity of deterministic switch, cooperation is independent of learning rate to a large extent,
and full cooperation can be reached when relative weight is not less than 0.5. Otherwise,
cooperation depends on the value of learning rate. Besides, the cooperation level is not sensitive
to topological parameters of NW networks. To explain these simulation results, we provide
corresponding analytical results of mean-field approximation, and find that simulation results
are in good agreement with analytical ones. Our work may shed some light on the maintenance
of cooperative behavior in social systems with individual learning feedback.

1. INTRODUCTION

According to the fundamental principles of Darwinian se-
lection, evolution is based on a fierce competition between
individuals and should therefore reward only selfish be-
havior. Yet, cooperative (altruistic) behavior is widespread
in natural and social systems (Dugatkin [1997]). How to
understand the emergence of cooperation is a fundamen-
tal problem. Fortunately, evolutionary game theory has
provided a powerful framework to investigate cooperative
behavior in systems consisting of competitive individu-
als (Smith [1982], Hofbauer et al. [1998]). As a common
paradigm, the Prisoner’s Dilemma game (PDG) has re-
ceived much attention to study the evolution of coopera-
tion in the literature. In the classical version of PDG, two
individuals adopt simultaneously one of the two available
strategies, cooperate (C) or defect (D); for mutual coop-
eration both receive R, and only P for mutual defection,
while a cooperator receives S when confronted to a defec-
tor, which in turn receives T , such that T > R > P > S
and T +S < 2R. Under these conditions it is best to defect
for rational individuals in a single round of the PDG, re-
gardless of the opponent strategy. However, mutual coop-
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eration leads to a higher payoff than mutual defection, but
cooperation is irrational. Therefore, the dilemma is caused
by the selfishness of individuals. To promote and maintain
cooperation, other suitable extensions to the traditional
PDG need to be explored accordingly.

During the last decades, based on PDG different mecha-
nisms which favor the emergence of cooperation are sum-
marized in some reviews (Doebeli et al. [2005], Nowak
[2006], G. Szabó et al. [2007]). The following mecha-
nisms, e.g., kin selection (Hamiltion [1964]), direct (Axel-
rod [1984]) and indirect (Nowak et al. [2005]) reciprocity,
network (spatial) reciprocity (Nowak et al. [1992], Ohtsuki
et al. [2006]), group selection (Traulsen et al. [2006]),
chaotic variations to the payoffs (Perc [2006]), inhomo-
geneous activity of teaching (Szolnoki et al. [2007]), tag-
based models (Riolo et al. [2001]), are found to support the
emergence of cooperative behavior in biological and eco-
logical systems as well as within human societies (Nowak
et al. [2004]). Indeed, the spatial or graph model should
be more meaningful in realistic systems because most
interactions among individuals are spatially localized. In
the evolutionary games with network structure, each indi-
vidual occupying a node of the network can follow one of
the pure strategies (C or D), and collect payoffs by playing
the game with its immediate neighbors.

On the other hand, to describe the system to be more
realistic, learning theory has application in game theory
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to study the evolution of cooperation (Fudenberg et al.
[1998], Posch et al. [1999], Borgers et al. [2000]). In learn-
ing, the individual’s outcome aspirations are used to evalu-
ate whether the individual satisfies its current behavior. If
the outcome induced by the individual’s behavior exceeds
aspirations, the probability increases that the behavior will
be repeated rather than searching for a superior alterna-
tive. Whereas if the outcome falls below aspirations, the
probability decreases that the behavior will be repeated.
Based on these above principles in learning theory, Macy
et al. [2002] proposed a simple learning model for two-
person games, and studied the learning dynamics of coop-
eration in repeated games. In addition, Individual learning
agents have been introduced into networked evolutionary
games to study the evolution of cooperation. Recently,
Gulyás [2007] investigated the adaptation of cooperating
strategies in an iterated PDG with individually learning
agents on Watts-Strogatz networks. Szolnoki et al. [2007]
studied evolutionary PDG with quenched teaching and
learning activity of players on a two-dimensional lattice.

In this present work, to describe the realistic systems,
we also introduce learning theory as well as graph theory
into the evolutionary PDG, and focus on the evolution of
cooperation in evolutionary PDG with individually learn-
ing agents on Newman-Watts (NW) networks (Newman
et al. [1999]), which are close to realistic social networks.
To our knowledge, an alternative way to escape from the
dilemma is to consider more sophisticated individuals. For
instance, individuals should feel strongly about immediate
benefit that affects them directly, but they should also
take into account the affairs of others (Pacheco et al.
[2006], Nowak [2006]), and different possible measures of
success for individuals should be used to assess their per-
formance in games (Fort et al. [2005]). Actually, in realistic
systems individuals do not always consider maximizing
their immediate benefit as first goal, they also take into
account their social responsibility, i.e. contributions to the
group individuals belong to. That is to say, in order to
go beyond the dilemma, individuals are endowed with
heuristic thinking ability: evidently they could not always
consider taking advantage of others’ help, but sometimes
they should help others as donors. This may correspond to
the phenomenon in society that, some people would like
to give voluntary donations, and do community service.
Thus, our starting point is realizing that, in this paper, for
long-term interactions with neighbors, individuals not only
wish to increase their current total payoffs coming from
PDG with their neighbors, but also consider the “local
contribution” to their neighbors. We will show that this is
an effective way to promote and maintain cooperation at
favorable levels. To pursue as much generality as possible
without sacrificing the simplicity, this local contribution
of a given individual denotes the sum of all the payoffs
its neighbors collect against it. Besides, the total payoffs
and local contribution form the score through a linear
combination. Accordingly, the score aspiration can also be
described formally. Individuals are allowed to modify their
strategies according to the actual scores and score aspira-
tions. Interestingly, we find that the introduction of the
local contribution under the learning feedback mechanism
promotes cooperation. We also present theoretical analy-
sis of mean-field approximation, and find that analytical
results are in good agreement with numerical simulations.

The remainder of the paper is organized as follows. In the
next section, the game model is introduced in detail. In
Section 3, simulation results and corresponding theoretical
analysis are provided, and finally some important conclu-
sions are made in Section 4.

2. NETWORKED PRISONER’S DILEMMA WITH
INDIVIDUAL LEARNING FEEDBACK

We consider the evolutionary PDG with players located on
the NW networks, which is a typical small-world model.
In the NW network, a parameter p controls the fraction of
edges randomly added to the regular ring graph (Newman
et al. [1999]). In evolutionary game on graphs, each player
who occupies one site of the graph can only follow two
simple strategies: C and D, and interacts only with its
neighbors in each round. Let us represent the individuals’
strategies with two-component vector, taking the value s =
(1, 0)T for C-strategist and s = (0, 1)T for D-strategist. For
one certain individual x, the total payoff Px is collected
from its neighbors, and the local contribution Tx is the sum
of all the payoffs its neighbors collect against it, therefore,
they can be respectively written as

Px =
∑

y∈Ωx

sT
x Asy (1)

and
Tx =

∑

y∈Ωx

sT
y Asx, (2)

where the two sums both run over all the neighboring sites
of x (this set is indicated by Ωx), and A is payoff matrix

A =
[

R S
T P

]
. (3)

The best-studied set of payoff values are T = 5, R = 3,
P = 1, S = 0 (Axelrod et al. [1981], Axelrod [1984]), which
is also adopted in this study. The score Ux of a certain
individual x is a weighed mean of the total payoff Px and
the local contribution Tx. Formally,

Ux = (1− h)Px + hTx, (4)

where 0 ≤ h ≤ 1 is a parameter characterizing the relative
weight between Tx and Px in the score Ux. With h = 0,
individuals only consider current total payoffs coming from
PDG with their neighbors, that is, the local contribution
is ignored. With h = 1, individuals only consider the local
contribution to the neighbors, that is, the current total
payoff is ignored. In learning, considering both its own
payoff from the neighbors and the local contribution to the
neighbors, each individual expects itself and its neighbors
to all play C strategy in steady state, and thus has a score
aspiration Uxa. Formally,

Uxa = (1− h)kxR + hkxR = kxR, (5)

where kx is the neighbor number of individual x. The
aspiration level provides the benchmark which is used
to evaluate whether the individual satisfies its current
strategy.

Under the mechanism win-stay-lose-shift in two strategy
games, the individual will keep its original strategies if
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Fig. 1. Schematic graph of individual strategy update
procedure.

the average payoff of recent rounds is above the aspiration
level. Otherwise, it will switch to the opposite strategy.
Such switch is deterministic (Nowak et al. [1993], Posch
et al. [1999]). And in (Alonso et al. [2006]), individuals
adopt the opposite strategy with a deterministic probabil-
ity which is independent of payoff differences. However, in
(Macy et al. [2002]) based on learning models, individu-
als update their strategies with a probability depending
on the difference between the actual payoffs and payoff
aspirations. Herein, We consider that individuals update
their strategies based on deterministic models, as well as
learning models, and Fig. 1 shows the procedure of individ-
ual strategy update. During the evolutionary process, each
individual updates its strategy as follows: if Ux ≥ Uxa, in-
dividual x keeps its original strategy. Otherwise, individual
x adopts the opposite strategy with a probability as

W = (1− δ)l
Uxa − Ux

Uxa
+ δ, (6)

where l is the learning rate (0 < l < 1), and δ measures the
intensity of deterministic switch, that is, the deterministic
probability of adopting the opposite strategy. δ = 1 de-
notes completely deterministic switch, in this case the up-
dating rule is analogous to win-stay-lose-shift mechanism,
individuals thus decide to switch to the opposite strategy
if they only know Ux < Uxa. δ = 0 denotes that this
switch depends entirely on feedback between actual score
and score aspiration. In fact, the probability of adopting
the opposite strategy should depend strongly on the dif-
ference between actual score and score aspiration, since
individuals can accordingly update their strategies with
a probability based on their full information, in order to
avoid more mistakes in strategy updating process. There-
fore, the intensity δ should satisfy the following condition:
0 < δ ¿ 1, and we reserve the deterministic probability to
show that individuals are inclined to adopt the opposite
strategy when they are not satisfied. The rationale for
this rule is that when the score exceeds the aspiration
level, the individual satisfies and keeps its original state.
Otherwise, the individual adopts the opposite strategy
with a probability W , and W characterizes the exact
extent of discontent with its current state, and controls
the individual to adopt the opposite strategy in order to
reach the aspiration level.

Fig. 2. (Color online) The density of cooperators as a
function of h for different learning rates in the case
of (a) δ = 0.001 and (b) δ = 0.1. Simulations are
carried out on NW networks with p = 0.5.

3. SIMULATIONS AND ANALYSIS

Simulations are carried out for a population of N = 2000
players occupying the nodes of NW networks. Initially, the
two strategies of C and D are randomly distributed among
the players with the equal probability 0.5. The above
model is simulated with synchronous updating (Hauert
et al. [2004]). The key quantity for characterizing the
cooperative behavior of the system is the cooperator
density ρc, which is defined as the fraction of cooperators
in the whole population. In all simulations, ρc is obtained
by averaging over last 1000 generations of the transient
time of 11000 generations, and we have confirmed that
averaging over larger periods or using different transient
times did not qualitatively change the simulation results.
Moreover, each date point results from an average over 100
realizations, corresponding to 10 different realizations of a
given type of network model with 10 runs of independent
initial strategy configurations for each realization.

Fig. 2 shows the simulation results of ρc as a function of
h for different values of learning rate l. The intensity of
deterministic switch δ is set to 0.001 in Fig. 2(a) and 0.1
in Fig. 2(b), respectively. It is found that the density of
cooperators monotonously increases with the increasing
of h regardless of the values of l and δ. In addition,
corresponding to a fixed value of h, there are no differences
between the results of ρc for different values of learning
rate l in Fig. 2(a), that is, ρc is independent of the values
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of l. Whereas in Fig. 2(b), ρc is dependent of the values of l.
One can find that when h < 0.3, the cooperator density for
small learning rate is a little greater than for high learning
rate. While for h > 0.3, the cooperator density becomes
much more favorable as learning rate increases.

In what follows, we carry out theoretical analysis to un-
derstand the features shown in Fig. 2. Herein, we can
use mean-field method because NW networks prevent the
emerge of large degree nodes and can help the extension
of the mean-field techniques for small-world structures.
Considering the payoff matrix in (3) and assuming coop-
erators and defectors are distributed uniformly among the
networks, the average scores of cooperators and defectors
are given as

UC = (1− h)[Rkρc + Sk(1− ρc)]
+h[Rkρc + Tk(1− ρc)],

UD = (1− h)[Tkρc + Pk(1− ρc)]
+h[Skρc + Pk(1− ρc)],

(7)

and the score aspiration of the population is
Ua = (1− h)kR + hkR = kR, (8)

where k is the average degree of NW networks. Subse-
quently, the transition rates can be written as

WC→D = l(1− δ)
Ua − UC

Ua
+ δ,

WD→C = l(1− δ)
Ua − UD

Ua
+ δ,

and the dynamical equation of the cooperator density
becomes (G. Szabó et al. [2007])

ρ̇c = (1− ρc) ·WD→C − ρc ·WC→D,

with T = 5, R = 3, P = 1, and S = 0, this yields

ρ̇c =
l

3
(1− δ)(1− ρc)(2− 7ρc + 10ρch)

+(1− 2ρc)δ. (9)
For δ ¿ 1, deterministic switch in strategy update process
can be ignored, (9) simplifies as

ρ̇c =
l

3
(1− ρc)(2− 7ρc + 10ρch). (10)

Considering (10), if h < 0.5, cooperators and defectors
coexist in stable equilibrium, and the only stable equilib-
rium is ρc = 2/(7 − 10h). Otherwise, cooperators domi-
nate defectors under this update rule, and the only stable
equilibrium is ρc = 1. Therefore, it indicates that ρc

monotonously increases as h increases, and it shows that
the stable equilibrium is independent of learning rate l
from (10). Besides, in the case of learning rate l = 0,
the dynamical equation of the cooperator density sim-
plifies as ρ̇c = 0. Thus, the stationary solution satisfies
ρc = ρ0 = 0.5, where ρ0 denotes the initial density of
cooperators, and in this paper ρ0 is set to 0.5 in all the
simulations. The comparison between simulation results
and theoretical analysis of ρc is shown in Fig. 3. We can
find that analytical results are in very good agreement with
simulation ones in Fig. 3(a), and there are little differences
between analytical and simulation results in Fig. 3(b).
Furthermore, we would like to stress that, under small
values of δ, the steady state ending up with full coop-
eration could be reached with h = 0.5. That is to say, in

Fig. 3. (Color online) The density of cooperators as a
function of h for simulation (closed squares) and
analytical (closed circles) results with learning rate (a)
l = 1.0 and (b) l = 0.0. The data points are computed
for δ = 0.001 on NW networks with p = 0.5.

Fig. 4. (Color online) The density of cooperators as a
function of h for different values of δ. Open symbols
are the simulation results, and closed symbols are the
corresponding analytical results for δ = 0.001. We
make p = 0.5 for NW networks and l = 0.5.

order for the emergence of cooperation, individuals do not
necessarily consider others’ income more than themselves.
It is very interesting and fascinating. Of course, if they
tend to take into account more contributions than incomes
(i.e. h > 0.5), full cooperation would be easier to sustain.
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Table 1. Simulation results of ρc for different values of h with l = 0.0 (row 2), and for different
values of l with h = 0.3 (row 4), respectively.

h 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρc 0.4997 0.5 0.5001 0.4999 0.5001 0.4999 0.4997 0.500 0.5003 0.5002 0.5000

l 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ρc 0.4999 0.4988 0.4973 0.4958 0.4950 0.4941 0.4940 0.4942 0.4952 0.4965 0.49810

Fig. 5. (Color online) The density of cooperators as a
function of h for different values of p on NW networks.
(a) l = 0.6 and δ = 0.001, (b) l = 0.6 and δ = 0.1.

On the other hand, when δ does not satisfy the condition
δ ¿ 1, deterministic switch in strategy update process
can not be ignored. It is difficult to obtain the equilibrium
points in (9). Nevertheless, especially for l = 0, (9)
simplifies as ρ̇c = (1 − 2ρc)δ, ρc = 0.5 is the only stable
equilibrium (Alonso et al. [2006]). And interestingly, for
h = 0.3, (9) simplifies as

ρ̇c = (1− 2ρc)[
2l

3
(1− δ)(1− ρc) + δ].

In this situation, the only stable equilibrium ρc = 0.5 is in-
dependent of learning rate l. Table 1 shows the simulation
results of ρc for these two situations. We can find that the
numerical data all approximate to 0.5, thereby, numerical
results are well consistent with theoretical predictions.
From these numerical and analytical results, we know that
the mean-field approximation can be adopted to study the
evolutionary games on NW networks under this learning
updating rule. Concretely, the higher the value of h is, the
more favorable cooperation becomes. It is because , under
this learning update rule, when the relative weight h of
the local contribution to the score is high, to reach the

aspiration level, most of individuals would adopt strategy
C to make the local contribution to neighbors greater.
Otherwise, most of individuals would adopt strategy D
to collect much more payoffs from their neighbors. For low
δ ( δ ¿ 1) in strategy update process, the system would
eventually reach a steady state with a definite value ρc

for the fraction of cooperators, and learning rate l would
not influence the long run behavior of the system. For
other values of δ, when the learning rate l is small, in this
case cooperators and defectors tend to be distributed with
equal percentage among the players regardless of the value
of h. On the other hand, when h > 0.3, individuals tend
to adopt C strategy with high learning rate. Otherwise,
individuals tend to adopt D strategy with high learning
rate. Therefore, combining these two factors, cooperation
increases as the learning rate increases for h > 0.3; whereas
cooperation for high learning rate is not more favorable
than for small learning rate when h < 0.3.

The cooperator density with l = 0.5 for different values of
intensity of deterministic switch is shown in Fig. 4. We can
find that, the density of cooperators for high δ increases
much more smoothly than for low δ as h increases. When
h < 0.3, the cooperator density for low δ is a little greater
than for high δ. While for h > 0.3, the cooperator density is
much more favorable as δ decreases. In fact, when δ is high,
the ratio of the deterministic probability to the strategy
updating probability tends to be high, hence cooperators
and defectors will be distributed with equal percentage
among the population (Alonso et al. [2006]). On the other
hand, when the ratio of the local contribution to the score
is high, individuals tend to adopt C strategy. Therefore,
we can understand the simulation results for different
values of δ by combining these two factors. Moreover,
the analytical results for δ = 0.001 correctly predicts the
trends for δ = 0.1, that is, the changes of cooperation for
h. However, it is unable to estimate exactly the cooperator
density for high δ.

Fig. 5 shows the simulation results of ρc as a function of
h for different values of probability p on NW networks. It
is found that no matter what the value of δ is, there are
no differences between cooperation for different values of
p, namely, for different values of average degree. Indeed,
we can find that the cooperation level is independent of
average degree from (9). Moreover, we have confirmed that
these simulation results remain valid for different network
size N on NW networks. Therefore, it indicates that under
this learning updating rule, the cooperation level is not
sensitive to the topological parameters. It is shown that co-
operation based on this learning feedback mechanism with
local contribution is robust, and this mechanism which is
analogous to win-stay-lose-shift (Nowak et al. [1993]), can
also correct mistakes and exploit unconditional coopera-
tors.
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4. CONCLUSION

We have studied the cooperative behavior of the evolution-
ary PDG under a modified learning updating mechanism
on NW networks. Taking into account individual learning
in the networked evolutionary PDG, we have defined the
score aspiration and actual score for individuals. The score
of a given individual is a linear combination of its total
payoff and local contribution, which denotes the sum of
all the payoffs the neighbors collect against it during the
interaction. During the evolutionary process, each individ-
ual updates its strategy by comparing its actual score with
score aspiration. It is shown that cooperation is promoted
when the relative weight h of the local contribution to the
score is high. Additionally, when δ in the strategy updating
rule is low (δ ¿ 1), it is found that the cooperation level is
independent of learning rate, and full cooperation can be
reached when h is not less than 0.5. Otherwise, cooperation
increases as learning rate l increases when h > 0.3, whereas
cooperation for small learning rate is a little greater than
for high learning rate when h < 0.3. We have also carried
out theoretical analysis of ρc using mean-field method, and
found that analytical results are well consistent with nu-
merical simulations. Besides, the density of cooperators is
qualitatively unchanged for different values of probability
p on NW networks.

To conclude, we have illustrated the validity and efficiency
of our proposed model in solving the dilemma. With the
addition of a simple learning feedback in individual strat-
egy updating process, this model is an extension to the
strategy updating rules adopted in (Nowak et al. [1993],
Alonso et al. [2006]). The introduced feedback between
actual score and score aspiration enables individuals to
update their strategies more accurately, and our method
might be a plausible stride to explore the role of simple
feedback in evolutionary games. The results of this model
may shed new light on understanding the cooperative
behaviors in society.
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