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Abstract: In this paper we propose a closed-loop min-max MPC algorithm based on dynamic
programming, to compute explicit control laws for systems with a linear parameter-varying
state transition matrix. This enables the controller to exploit parameter information to improve
performance compared to a standard robust approach where no uncertainty knowledge is used,
while keeping the benefits of fast online computations. The off-line computational burden is
similar to what is required for computing explicit control laws for uncertain or nominal LTI
systems. The proposed control strategy is applied to the controlled Hénon map to draw a
comparison, in terms of complexity and control performance, with a controller based on a
piecewise affine approximation.

Keywords: Control of constrained systems; Linear parameter-varying systems; Optimal control
theory;

1. INTRODUCTION

Linear Parameter-Varying (LPV) systems are defined as
linear systems, where the system matrices are not constant
but depend on some time-varying parameters, Apkarian
et al. (1995). Contrary to systems with parametric uncer-
tainties, the current values of the parameters are assumed
to be known. The parameters lie in a bounded set, such
that the LPV system describes a family of linear systems.
The variation of the parameters within a bounded set
might be arbitrarily fast or restricted by a certain rate
of variation. The LPV framework constitutes a useful the-
oretical foundation for gain-scheduling which is a common
procedure in many industrial applications. It allows the
embedding of nonlinear systems into a family of linear
systems, and thus to some extend the application of linear
control techniques to nonlinear systems.

During the last years, a lot of research effort has been spent
to investigate Model Predictive Control (MPC) schemes
for discrete-time LPV systems. There exists a vast amount
of literature, and different approaches have been suggested
such as interpolation-based MPC, Pluymers et al. (2005),
scheduling quasi-min-max MPC, Lu and Arkun (1999,
2000), or MPC with a parameter dependent terminal
weighting matrix, Lee and Won (2006). A common trait
among these approaches is the use of a quadratic objective
function, and most of them rely on Linear Matrix Inequal-
ities (LMI) based state-feedback techniques.

Around the millennium, the application of multi-parametric
programming to model predictive control was initialized

and resulted in many publications during the following
years, see e.g. Bemporad and Morari (1999); Pistikopoulos
et al. (2000); Bemporad et al. (2002). In Borrelli (2003)
it is shown how multi-parametric programming can be
used to compute explicit solutions for optimal control of
constrained linear and piecewise affine (PWA) systems. By
computing explicit solutions to the optimal control prob-
lems, the computational effort of MPC can be moved from
online to offline. Instead of solving an optimization prob-
lem at each time instance, the optimal input is obtained
from a look-up table, which significantly reduces the online
computational effort. When piecewise linear cost functions
are employed, the computational complexity of the offline
problem can be lowered by using multi-parametric pro-
gramming in a dynamic programming fashion, Baotić et al.
(2006); Christophersen (2007).

By making use of parametric programming techniques, dif-
ferent min-max MPC schemes were developed for explicit
robust control of linear discrete-time systems with para-
metric uncertainty, i.e., when the parameter is bounded
but unknown, see e.g. Bemporad et al. (2003); Sakizlis
et al. (2004). It makes intuitively sense and was also
shown e.g. in Lu and Arkun (2000) that knowledge of the
current parameter allows for an improvement of control
performance. The contribution of this paper is to enable
this improvement of performance also for explicit model
predictive control. A reformulation of LPV systems to
LPV-A systems, where only the state transition matrix
A is parameter-varying, can be used. For this kind of LPV
systems we will show how explicit parameterized control
laws can be computed and thus to move the computational
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effort offline. Our approach is a closed-loop min-max MPC
strategy, and follows the philosophy in Löfberg (2003),
in the sense that we parameterize the control law in the
uncertainty.

The paper is structured as follows. In Section 2, the
model predictive control problem for the LPV-A system
is stated. The proposed algorithm for the computation
of an explicit solution to this problem is presented in
Section 3, followed by a verification procedure for stability
(Section 4). Afterwards the application of the algorithm
is shown in a numerical example (Section 5), providing
the opportunity for a comparison to optimal control for
piecewise affine (PWA) systems. Finally the conclusions
are drawn.

2. PROBLEM STATEMENT

The class of systems we consider is LPV-A systems, lin-
ear discrete-time systems with a parameter-varying state
transition matrix, which are defined as

xk+1 = A(θk)xk + Buk . (1)

The variables xk ∈ R
nx , uk ∈ R

nu , and θk ∈ R
nθ denote

the state, the control input, and the time-varying parame-
ter, respectively. Furthermore, the system is constrained,
uk ∈ U and xk ∈ X. The constraint sets U and X are
assumed to be bounded polyhedrons,

u ∈ U = {u : Euu ≤ fu} , (2a)

x ∈ X = {x : Exx ≤ fx} . (2b)

Remark: For ease of notation, we restrict ourselves to
separate constraints on the state and inputs in (2). It
is straightforward to modify the presented algorithm in
this paper to the case of mixed constraints, i.e. Exx +
Euu ≤ fxu.

The parameter θk is measured online and known to the
controller. Future values are however only known to be
constrained to a simplex,

nθ
∑

j=1

θj
k = 1, θk ≥ 0 . (3)

The state transition matrix A(θk) is known to lie in a
polytope with the description

A(θk) =

nθ
∑

j=1

Ajθj
k , (4)

where Aj denotes the jth vertex of the polytope. This
polytopic description is a common assumption in the LPV
framework, see e.g. Apkarian et al. (1995). For the control
problem to make sense 1 , it is assumed that system (1) is
controllable and observable for all admissible θk, Silverman
and Meadows (1967); Balas et al. (2003).

Remark: Note that LPV systems with varying input ma-
trix B(θ) can be reformulated to LPV-A systems by the
∆u-formulation, Barmish (1983); Blanchini et al. (2007),

(

xk+1

uk+1

)

=

[

A(θk) B(θk)
0 I

] (

xk

uk

)

+

[

0
I

]

∆uk . (5)

1 This assumption is not necessary for the actual computations of
the proposed procedure.

The price to pay is an increase of the system dimension
by the number of inputs, and the introduction of an input
delay which counteracts the idea of the input to depend
on the current parameter. But the ∆u-formulation also
exhibits advantages as the possibility to constrain and/or
penalize input variations, and zero steady-state errors
when tracking reference steps. For the rest of the paper
we will assume that the ∆u-formulation was possibly
performed, and the system under consideration is the
LPV-A system (1).

For this class of systems we want to find an explicit state
feedback control law

uk = µ(xk, θk), (6)

which makes use of the information of the current θk. To
compute this control law (6) within a Model Predictive
Control scheme, a cost function is to be minimized. Ac-
cording to standard MPC, our cost function is defined as

J = ‖Pxk+N‖p +

N−1
∑

i=0

‖Qxk+i‖p + ‖Ruk+i‖p , (7)

where p denotes a piecewise linear norm, either the 1-
norm or the ∞-norm. Piecewise linear norms enable a
parametric solution to the stated problem using dynamic
programming. For the minimization of the cost function
(7) we have to consider the current as well as the unknown
future parameter values, as the state trajectories are
parameter-dependent.

3. MAIN RESULTS

A reasonable parametrization of the future control inputs
is

uk =
∑

j

θj
kuj

k . (8)

In order to simplify notation, we introduce the basis
Uk := {u1

k, . . . , unθ

k }. This parametrization makes the
input parameter-dependent and leads to the following
system description

xk+1 =

nθ
∑

j=1

θj
k(Ajxk + Buj

k) . (9)

In a closed-loop min-max MPC approach, one would
assume that the future control uk+1 is calculated optimally
over the horizon N − 1 not until xk+1 and θk+1 are
available. But as the future values of the parameters are
unknown, all possible cases must be regarded in order to
accommodate for the worst-case scenario. This way it is
assured that the actual cost function will be less or equal to
the computed one, no matter how the parameters evolve.
The optimization problem to solve in closed-loop min-max
MPC is thus

uk(xk, θk) = arg min
uk

min
Uk+1

max
θk+1

· · · min
Uk+N−1

max
θk+N−1

J .

(10)
Here we propose a dynamic programming procedure to
solve (10) by iterating backwards in time. For more details
on dynamic programming, see Bertsekas (1995). We start
at the prediction horizon N with the initial cost function

J∗

N (xk+N ) = ‖Pxk+N‖p . (11)
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Then at each iteration we use (9) to replace xk+i+1 in
J∗

i+1. As θk+i is unknown at time instance k, we consider
the worst case, which leads to

J∗

i (xk+i) = min
Uk+i

max
θk+i

Ji(xk+i, θk+i, Uk+i) (12)

with

Ji(xk+i, θk+i, Uk+i) = ‖Qxk+i‖p+‖Ruk+i‖p+J∗

i+1(xk+i+1) .
(13)

In order to determine the worst case, we just have to check
the vertices, since Ji is a convex function of θk+i. This leads
to the following optimization problem

J∗

i (xk+i) = min
Uk+i

t (14a)

s.t. for all 1 ≤ j ≤ nθ

‖Qxk+i‖p+‖Ruj
k+i‖p +J∗

i+1(A
jxk+i+Buj

k+i) ≤ t , (14b)

xk+i ∈ X , uj
k+i ∈ U . (14c)

Basically, the unknown future parameters are dealt with
by performing an epigraph reformulation, i.e., a constraint
is introduced for each vertex of the parameter simplex.
Hence the objective will end up in a constraint, what
limits us to objectives which are representable by piece-
wise affine functions, since we have no efficient meth-
ods for multi-parametric programming for problems with
quadratic constraints. By using piecewise linear norms
instead of quadratic norms, the cost functions J∗

i are piece-
wise linear functions of the state xk+i and the input uk+i,
such that in every iteration the optimization problem (14)
can be formulated as a multi-parametric linear program
(mp-LP) and solved parametrically with respect to xk+i.
In contrary to the closed-loop min-max MPC approach for
uncertain systems, the future inputs are parameterized as
uk+i =

∑

j θj
k+iu

j
k+i, i.e., the future inputs are functions

of the future parameters.

Using the terminology of the robust optimization commu-
nity, in every step of the proposed dynamic programming
procedure, we are solving the Affinely Adjustable Robust
Counterpart (AARC) of an uncertain linear program in
a parametric fashion. By restricting the input matrix B
to be constant, this AARC is of fixed recourse, ensuring
computational tractability, see e.g. Ben-Tal et al. (2004).

The last step of the iteration differs from the previous
steps. As the parameter θk is measured and known, this
information can, and should, be taken into account instead
of considering the worst case. Hence, we are looking for a
multi-parametric solution, with respect to xk and θk, of
the following optimization problem

J∗(xk, θk) = min
uk

‖Ruk‖p + J∗

1 (xk, θk) . (15)

Unfortunately, (15) is a bilinear function in xk and θk

(according to (9)), and bilinear constraints appear in the
minimization problem, which prevents a standard multi-
parametric solution strategy. One way around this is to
parameterize the parametric problem not in the measured
state xk, but in the uncontrolled successor state, which is

zk = (

nθ
∑

j=1

θj
kAj)xk . (16)

Instead of using (9) to substitute xk+1 in (15), we substi-
tute by

xk+1 = zk + Buk , (17)

to obtain a piecewise affine function in zk and uk. The final
step problem can now be solved using a standard multi-
parametric linear program, thus leading to an explicit
control law. Online, all we have to do is to compute the un-
controlled successor state, which is completely determined
by the measured state and parameter, and evaluate the
look-up table to obtain the optimal control input uk.

The algorithm finishes with a piecewise affine control law,
not defined over a set of current states xk, but of feasible
uncontrolled successor states zk,

Zf = {z : Ezz ≤ fz} . (18)

However, it might be interesting to compute a region which
tells us which actual initial states are feasible, moreover,
which initial states are admissible, i.e., for all parameter
values the uncontrolled successor state is feasible. This
way we guarantee that a solution exists for all initial
states of the admissible state set, independent from the
parameter value. For a fixed state xk, the set of all possible
uncontrolled successor states (16) is a polytope, where Aj

determines the jth vertex. From convexity reasons it is
sufficient to check if all vertices of this polytope lie in the
polytope (18), such that the set of admissible initial states
can be determined by

x ∈ Xf = {x :







EzA
1

...
EzA

nθ






x ≤







fz

...
fz






} . (19)

4. STABILITY

Note that the proposed procedure does not guarantee
stability a-priori, what is a classical issue of finite hori-
zon MPC. However, there are known variations of the
model predictive control scheme which can be employed,
for example dual mode MPC or the (overly conservative)
terminal equality constraint. For an overview of these
methods see the prominent survey paper Mayne et al.
(2000). A procedure more appropriate for min-max MPC
was proposed recently in Lazar et al. (2007). Since the
mentioned variations generally result in a decreased fea-
sible space and/or loss of performance, we favor an a-
posteriori analysis by means of a set-theoretic reachability
analysis, see e.g. Blanchini (1994, 1995).

The reachability analysis is performed in the space of the
uncontrolled successor state, where the LPV-A system (1)
under the PWA control law uk = µ(zk) corresponds to the
uncertain closed-loop system

zk+1 = A(θk+1){zk + Bµ(zk)} . (20)

For the reachability analysis, a positive invariant target
set P

(0) containing the reference values is employed. When
regulating to the origin, the region containing the origin
can be used as target set, if the invariance (and stability)
of this region can be checked e.g. by using the cost function
as Lyapunov function. Note that all other reference values
in the state space correspond to a set of reference values
in z-space, such that instead of stability only ultimate
boundedness to a target set can be certified. Important
is the property of invariance of the target set:

zk ∈ P
(0) ⇒ zk+1 ∈ P

(0) ∀ θk+1 . (21)
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In order to compute the set of stable initial states, we
iterate backwards in time:

P
(r) := {zk ∈ Zf : zk+1 ∈ P

(r−1) ∀ θk+1} . (22)

The iteration terminates when P
(r) = P

(r−1). All uncon-
trolled successor states z ∈ P

(r) are controlled to the
target set P

(0) by construction. The algorithms needed
to establish (21) and (22) for the system (20) boil down
to polytopic manipulations and can be adapted from the
algorithms given in the references mentioned above.

5. NUMERICAL EXAMPLE

This section consists of a numerical example, demonstrat-
ing the application of the proposed algorithm and com-
paring it to MPC for piecewise affine systems. We will
examine the application of the proposed procedure by com-
puting explicit control laws for the Hénon map. An LPV
model and a PWA model is derived to investigate when a
parameter-varying model could be of use. The Hénon map
is a nonlinear second-order system and a popular example
for chaotic systems, Hénon (1976). It is defined as

x
[1]
k+1 = −a(x

[1]
k )2 + x

[2]
k + 1 ,

x
[2]
k+1 = bx

[1]
k ,

(23)

where the superscript in brackets indicates the element of
the state vector. When the coefficients are a = 1.4, b =
0.3, the system has an unstable fixed point at

x̄ = (−1/4 +

√
609

28
) [1 0.3]

T ≈ [0.63 0.19]
T

.

Already small deviations from this fixed point lead to
chaotic behavior, and the system moves along a so-called
chaotic attractor. A chaotic attractor has the property
that during an infinite amount of time, the system is
getting arbitrary close to every point on the attractor.

In order to control the Hénon map, we introduce an input
to obtain the controlled Hénon map,

x
[1]
k+1 = −a(x

[1]
k )2 + x

[2]
k + 1 + u ,

x
[2]
k+1 = bx

[1]
k + cu ,

(24)

The input coefficient in the controlled Hénon map (24) is
set to c = 0.1. A linear controller can stabilize this system
to the fixed point from a surrounding domain of attrac-
tion, Vincent (1997). For points outside the domain of
attraction, linear control can make the system completely
unstable.

In the following, two methods are used to compute explicit
control laws for the controlled Hénon map: One is to model
the Hénon map by an LPV model and apply the method
described above. As an alternative approach the Hénon
map is approximated by a PWA model and the associated
optimal control law is computed.

LPV model of the Hénon map

If we want to compute an explicit controller with the
proposed method, we have to bring the Hénon map to the
form (1). Due to the affine term in (24), this is not directly
possible. However, the proposed algorithm easily extends
to systems with affine terms in the state prediction. The
Hénon map can thus be written as

xk+1 =

[

−ax
[1]
k 1

b 0

]

xk +

[

1
c

]

uk +

[

1
0

]

. (25)

For the definition of a suitable parameter θk, which varies

in [0, 1], we have to declare an interval of admissible x
[1]
k ,

which turns out to be a trade-off. On the one hand we
want the state transition matrix A(θk) to vary as little
as possible to mitigate the introduced conservatism of
the approach, on the other hand we want to make the
domain as large as possible. As the chaotic attractor lies
in [−1.5, 1.5], this interval was chosen and leads to the
description

xk+1 =

[

3aθk − 1.5a 1
b 0

]

xk +

[

1
c

]

uk +

[

1
0

]

, (26)

θk = (1.5 − x
[1]
k )/3 . (27)

Note that the first entry of the state transition matrix
can take values in the interval [−2.1, 2.1]. The parameter
causes such a severe change of dynamics, that a robust
min-max MPC scheme, assuming uncertain parameter θk,
failed to stabilize (26) to x̄.

PWA model of the Hénon map

It is also possible to obtain a piecewise affine approxi-
mation of (24) and compute the optimal control for this
system. Piecewise affine (PWA) systems are defined as

xk+1 = Ajxk + Bjuk + F j ,
yk = Cjxk + Djuk,

[

xk

uk

]

∈ D
j , (28)

where the state-input space is partitioned into polyhedral
regions, and each region D

j is associated with different sys-
tem equations. The computation of optimal control laws
for PWA systems with multi-parametric programming and
dynamic programming is well known and can be found
e.g. in Borrelli (2003); Christophersen (2007). For this ap-
proach, the quadratic term in (24) has to be approximated
by a piecewise affine function. The quadratic term as well
as a possible piecewise affine approximation with 5 affine
terms is shown in Fig. 1. The used approximation is

−a(x[1])2 ≈























2.5ax[1] + 25a
16 , x[1] < −0.94,

1.26ax[1] + 0.4a, −0.94 ≤ x[1] < −0.32,
0, −0.32 ≤ x[1] < 0.32,

−1.26ax[1] + 0.4a, 0.32 ≤ x[1] < 0.94,
−2.5ax[1] + 25a

16 , 0.94 ≤ x[1] .
(29)

With this approximation a piecewise affine model of the
Hénon map can be derived, consisting of five regions
with different dynamics. The approximation would become
more accurate by using more affine terms. However, with a
more complex PWA model, the complexity of the explicit
controller rapidly grows, and the computations become
intractable already for very short prediction horizons.

Comparison of optimal control laws

For both models of the nonlinear system the optimal con-
trol laws were computed that minimize the cost function
(7). In both cases, the weight matrices Q = I2, R = 0.1 and
a prediction horizon of N = 4 was chosen. The terminal
cost P was selected to be equal to Q, and the 1-norm
was used in the cost. Instead of penalizing the weighted
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x[1]

−
a
(x

[1
] )

2

-1.5 -1 -0.5 0 0.5 1 1.5
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Fig. 1. PWA approximation of the quadratic term of the
Hénon map.

model type controller regions computation time 3

PWA 344 181 secs
LPV 93 24 secs

Table 1. Comparison of optimal control laws.

1-norm of the state, the difference to the fixed point x̄
was penalized, which trivially can be incorporated in both
algorithms.

The Multi-parametric Toolbox (MPT) and YALMIP were
used to compute the explicit control laws, Kvasnica et al.
(2004); Löfberg (2008). 2 The complexity of the resulting
control laws can be seen in Table 1. The explicit control
law for the LPV model was computed faster 3 and resulted
in less regions than the explicit control law for the PWA
model. This is due to transitions between the regions of
the PWA model, which have to be handled in a com-
binatorial fashion. The most time in the PWA case was
spent to remove redundant regions from overlapping par-
titions. This phenomenon of overlapping partitions does
not appear in the LPV case. Moreover, the cost function

x[1]
x[2]

J
1
0
(x

)

-1

0

1

-1
0

1

0

1

2

3

Fig. 2. Actual 10-steps-cost of LPV, PWA and optimal
nonlinear control.

2 A complete implementation of the example can be found at
http://control.ee.ethz.ch/∼joloef/wiki/pmwiki.php?n=Examples.Examples
3 All computations were performed on a 3GHz Pentium 4.

time k

x
k

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

Fig. 3. State evolution from x0 = [1,−1]T under LPV (—),
PWA (– ·) and optimal nonlinear (· · · ) control.

and feasible state set of the controller for the LPV model
are convex, which allows a faster evaluation of the lookup
table online, Borrelli (2003). The ultimate boundedness
of the controlled Hénon map under explicit LPV-MPC to
a target region in z-space has been verified for the box
[−1.5, 1.5]2 following the reachability analysis in Section 4.

Both control laws were tested in simulations by controlling
the system from 400 initial points x0, uniformly distrib-
uted over the box [−1.5, 1.5]2, to the fix-point x̄. Since
the approximation with a PWA model leads to a nonzero
steady-state input ūPWA, this was substracted from the
control signal of the PWA controller during simulations.
The actual simulated costs accumulated over 10-steps can
be seen in Fig. 2. The truly optimal solution, based on
solving the optimal control problem for the nonlinear
system model, is also shown. The solution was computed
using the global branch-and-bound based solver available
in YALMIP. The differences are hardly visible, relative to
the optimal control, the LPV control exhibits an average
cost increase of 2.3 % and the PWA control of 3.9 %.

For a closer look, the state evolution of the system under
LPV-, PWA- and optimal control, starting from x0 =
[1,−1]T , is shown in Fig. 3. Indeed, the PWA control has
a small steady-state error due to modeling errors. These
errors would vanish, if the region including the fixed point
would be a tangent in the fixed point. However, this is
only possible for the regulation to certain points, but not
for tracking of reference values.

6. CONCLUSIONS

In this paper, a method was proposed to compute ex-
plicit control laws for LPV-A systems, linear time-discrete
systems with a parameter-varying state transition matrix.
LPV-A systems are a subclass of LPV systems, but the in-
herent restriction is not as severe as it might seem, because
a ∆u-formulation can be employed to shift parameter vari-
ations from the input matrix to the state transition matrix.
For these LPV-A systems a parametrization of the input
was used in a dynamic programming approach similar to
min-max MPC for uncertain systems. Our approach fits
between two different approaches to approximately solve
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optimal control problems, which are the robust and the
PWA approach.

A drawback of explicit control laws is that the number of
controller regions grows exponentially with the prediction
horizon and the states. As the suggested approach is based
on multi-parametric programming, it participates in this
drawback, and is thus only tractable for systems of a
limited size. However, the final step tends to reduce the
number of regions and the resulting number of regions is
typically smaller than the number of regions one would
obtain when solving the robust min-max MPC problem
(assuming no knowledge of the uncertainty).

Our procedure enables an alternative to constrained opti-
mal control of piecewise affine systems, when PWA models
are approximating nonlinear systems. As an example, op-
timal control laws were computed for an LPV model and
a PWA model of the nonlinear Hénon map. The resulting
explicit control laws were compared by means of control
performance and complexity. Though conservatism is in-
troduced in the LPV approach by considering the worst
case for future parameter values, no approximation errors
are introduced as in the approximation by a PWA model
and the cumbersome incorporation of region transitions in
the prediction is omitted.
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