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Abstract: This paper presents a constructive algorithm to design local controllers for feedback
systems that are interconnected via time-varying and asynchronous sampling. These systems
result in many application fields such as remotely-operated systems, interconnected vehicle
control loops, and more generally in component-based control design where synchronous
exchange of information is not feasible. The design is based on the (MASP) MAximum
Sampling time preserving Passivity, and uses discrete-time passivity considerations. The paper
first explores several ways to compute the MASP for linear systems, and then proposes a
numerical algorithm to compute local feedback loops providing a MASP compatible with the
maximum sampling-time upperbound of each sub-system. This results in a exponentially stable
interconnection. The paper also presents a simulation example of this design.
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1. INTRODUCTION

This paper is devoted to the study of passivity properties
of asynchronously non-uniformly sampled systems. The
idea of studying these systems comes from the necessity of
developing theoretical tools for the analysis of networked
and embedded control systems, which usually operate
under variable resources like communication rates and
computational loads. A similar need also comes from the
intention of interconnect block systems via asynchronous
exchange of information. In these circumstances, the sam-
pling time used for each of the subsystems is no longer
a fixed parameter, and it may be adapted on the fly
as a function of the available resources at the moment.
Hopefully, this strategy would achieve a reduction of the
costs (energy and/or computation), although it obviously
depends on the application at hand.

Passivity-based control is a well established method (see
for instance Brogliato et al. [2007]) that has been used
in a variety of applications such as: transmission lines,
(compressible) fluid pipelines, mechanical resonances in
electromechanical systems, distributed elasticity, avionics,
etc. The use of the passivity ideas in the context described
above requires a knowledge of the conditions under which
the passivity of these systems is preserved under variable
sampling time. Although, passivity lost does not always
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imply lost of stability, the adaptation of the passivity
design principles to asynchronous interconnected systems
can be seen as step forward to design controllers for em-
bedded event-driven systems. To some extent the line of re-
search are related to the notion of any-time stability ideas
mentioned in Murray et al. [2003], and to studies on asyn-
chronous event-driven systems like the ones in Rantzer and
Byrnes [2003], Robert [2007], Nilsson and Bernhardsson
[1997], Marti et al. [2002]. The work reported in Hassibi
et al. [1999] has extended the Lyapunov stability theorem
for asynchronous systems with the notion of Lyapunov
function monotonically decreasing in average. In Laila
et al. [2001], the authors study conditions under which
the discretization of a continuous-time nonlinear system
satisfying a certain dissipation inequality, yields a discrete-
time system with similar dissipation properties (in a semi-
global practical sense).

In practice, it can be assumed that the sampling time, T ,
belongs to some interval, T ∈ (0, Tmax], and a controller
should be designed to robustly stabilize the system for
any possible value of the sampling period in that interval.
Examples can be found in tele-operated systems under
variable time-delay transmission where passivity enables
the reliable and safe control of such systems, see Hokayem
and Spong [2006] and references therein. Another example
can be found in CAN buses in the automotive industry
where many feedback subsystems interact in a non syn-
chronous manner.
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In this paper we deal with the following issues. First we
introduce the notion of (MASP) MAximum Sampling time
preserving Passivity for linear systems; given a continuous-
time system with some dissipation properties specified,
the notion of MASP give a maximum sampling time, T ∗

after which passivity is lost. This type of result is similar
to the one in Laila et al. [2001] for nonlinear systems.
Because in this paper we deal with linear systems, it
is then possible to devise a numerical algorithm for the
exact computation of T ∗. Another interesting result along
these lines is Rohrer and Nosrati [1981], where given a
passive sampled RLC circuit, the maximum sampling time
at a given instant preserving passivity has been found
to be proportional to dissipation/stored energy ratio of
the circuit. The conclusion (similar to one obtained here)
is that if a passive circuit without energy dissipation
elements is discretized, it losses passivity whatever the
sampling time is.

A second aspect studied here concerns the case of sys-
tem locally asynchronous but globally synchronous feed-
back interconnected systems. The notion of globally syn-
chronous comes from the fact that we limit this study to
samples Ti of each i-subsystem that are multiple integers
among them, nevertheless we allows the sampling time of
each individual sub-systems to be time-varying. Finally,
we use these results as a design guidelines for the control
design, and we propose a numerical algorithm to compute
local feedback loops providing a MASP compatible with
the maximum sampling-time upperbound of each sub-
system. These results in a exponentially stable intercon-
nection. The paper also presents a simulation example of
this design.

2. PROBLEM FORMULATION

Consider linear system of the form
{

ẋ (t) = Acx (t) + Bcu (t)
y (t) = Cx (t) + Du (t)

(1)

We assume that the above continuous-time system belong
to a general class of dissipative system, that is, it satisfies
the dissipation inequality Márquez [2003], Brogliato et al.
[2007]

∫ t

0

uT ydt ≥ V (t) − V (0) +

∫ t

0

w (u, y, x) dt ≥ −β (2)

where w (u, y, x) is the dissipation rate, and V (t) ≥ 0 is the
energy storage function, which vanishes at the equilibrium
point. According to the particular form of w (u, y), systems
can be classified as passive, strictly passive, (input, or
output) passive, etc. For instance if the dissipation rate
given by

w (u, y, x) = qyT y + ruT u + ρV (x) (3)

with r, q, ρ > 0, and V (x) is a positive definite scalar
function, the system will be classified as strictly in-
put/output/state passive system. As it will be seen latter,
strict passivity plays an important role here in connection
with the existence of MASP. QSR dissipatedness is a
generalization of the concept of passivity for quadratic
dissipation supply functions of the form:

w (u, y, x) = yT Qy + 2yT Su + uT Ru + ρV (x) =

=
(

yT uT
)
(

Q S
ST R

) (
y
u

)

+ ρV (x) (4)

For linear systems as the one consider here, the storage
function V (x) can be assumed to be quadratic, i.e. V (x) =
xT Px. With regard to the problem considered in this
paper, we assume that the continuous-time system (1)
fulfill the following strict passivity property:

Property 1. There exist matrices P = PT > 0, Q > 0, R >
0, S and a scalar ρ > 0 such that the following inequality
holds:

(
AT

c P + PAc PBc − CT

BT
c P − C −

(
D + DT

)

)

︸ ︷︷ ︸

,W

≤ −M < 0 (5)

with M ,

(
CT QC + ρP CT QD + CT S
DT QC + ST C DT QD + ST D + DT S + R

)

If this hypothesis hold with R = Q = ρ = 0, the system is
passive (not strictly), and the transfer function is positive
real (not strictly).

Note also that this property implies, among other things
that: i) Ac should be strictly stable, and in particular that
ii) (D + DT ) > 0. Indeed the presence of a direct term
D is a necessity for a system to preserve passivity after
discretization. This has already been reported previously
Brogliato et al. [2007].

To simplify further the discussion here we assume that the
matrix at the right hand side of (5), matrix M , is upper
bounded by the matrix −ǫI, which in turn implies that

W ≤ −ǫI < 0, with ǫ , λmin{M} > 0. (6)

the scalar ǫ, describes the level of dissipatedness that
the continuous-time system is assumed to possess. This
quantity will be related to the maximum sampling time
tolerated before lost of passivity of the discrete-time rep-
resentation.

2.1 Dissipation in discrete-time systems

The discrete time representation of the continuous system
presented before is given by

xk+1 = Akxk + Bkuk

yk = Cxk + Duk
(7)

where

Ak = A(Tk) = eAcTk ≃ I + AcTk +
A2

cT
2
k

2!
+

A3
cT

3
k

3!
+ · · ·

(8)

Bk = B(Tk) = A−1
c

(
eAcTk − I

)
Bc =

(
eAcTk − I

)
A−1

c Bc

≃

(

I +
AcTk

2!
+

A2
cT

2
k

3!
+ · · ·

)

BcTk (9)

and Ac is Hurwitz. Note that these expressions are well-
defined (analytical) if the sampling is regular (in the sense
defined in Araki [1993]) even when Ac is non invertible,
since the inverse of Ac does not appear in the expansion of
Bk Robert [2007]. In addition, this regularity condition is
also needed for preserving controllability and observability
of the discretized system. In particular, the sampling time
should not be multiple of the difference between the imag-
inary part of two eigenvalues, as shown in Araki [1993].
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Finally, remark that exact discretization preserves stabil-
ity for any sampling time, but not necessarily maintain its
original passivity properties (if any).

The dissipation rate and energy storage functions defi-
nitions are similar both for continuous or discrete time
systems. The variation of the storage function cannot be
greater, by definition, than the energy supplied to the
system in a given interval of time. That is:

k−1∑

i=0

Tiu
T
i yi ≥ Vk − V0 +

k−1∑

i=0

Ti̟ (ui, yi, xi) (10)

for some Vk = xT
k Pxk, and some P = PT > 0. Function ̟

may have a similar form than the one for the continuous-
time case. Note that this is a better adapted dissipation
definition for the case of non-uniform sampled systems.

2.2 Passivity relations between the continuous and the
discrete-time case

Let ξ(t) = [x(t)T , u(t)T ]T , and ξk = [xT
k , uT

k ]T . The
dissipation inequality (2) can be written as

V̇ (x) − uT y , ξT (t)Wξ(t) ≤ −ξT (t)Mξ(t) ≤ −ǫ||ξ(t)||2

(11)
where w has been rewritten only as a function of x, and
u, by substitution of y = Cx + Du, i.e.

w (u, y, x) = w (u, x) = ξT (t)Mξ(t)

with the matrix M as defined in Property 1. Note that
(11) can be also rewritten as:

ξT (t)[W + M ]ξ(t) ≤ ξT (t)[W + ǫI]ξ(t) ≤ 0

with W < 0, M > 0, and ǫ > 0 as defined before.
Introducing this in (11) and taking samples at t = tk,
gives:

xT
k+1

P

Tk

xk+1 − xT
k

P

Tk

xk − uT
k yk ≤ −ξT

k Mξk ≤ −ǫ||ξk||
2

Regrouping the terms at the left hand side of the inequality
and combining this with system (7), we get

xT
k+1

P

Tk

xk+1−xT
k

P

Tk

xk −uT
k yk , ξT

k Wd(Tk)ξk ≤ −ξT
k Mξk

(12)
or,

ξT
k [Wd(Tk) + M ]ξk ≤ ξT

k [Wd(Tk) + ǫI]ξk

with,

Wd(Tk) ,






AT
k

P

Tk

Ak −
P

Tk

AT
k

P

Tk

Bk − CT

BT
k

P

Tk

Ak − C BT
k

P

Tk

Bk −
(
D + DT

)






(13)
Note that as long as Wd(Tk) + ǫI ≤ 0, then the discrete-

time dissipation inequality (10) holds with ̟k , ξT
k Mξk.

Summarizing we have the following two cases:

i) ξT (t)[W + ǫI]ξ(t) ≤ 0 for the continuous-time case,
and

ii) ξT
k [Wd(Tk)+ ǫI]ξk ≤ 0, ∀Tk ∈ (0, T ∗] for the discrete-

time case.

The case i) results form the inherent dissipation property
of the continuous-time system, whereas the discrete-time
property ii) need to be verified by finding a sampling time

T ∗. The value, T ∗, is named here MAximum Sampling
time preserving Passivity; MASP. Conditions for the sim-
ple case of passivity (̟k = 0 ⇒ ǫ = 0) are well known and
given by the KYP lemma for discrete time systems, see for
instance Navarro-López [2002], or Navarro-Lopez [2005]. It
states that if there exist P = PT > 0 such that the matrix
Wd(Tk) is negative semidefinite, then, the discrete-time
system (7) is passive. Robust control problems require an
extension of that lemma, like the parametric KYP lemma
in El-Ghaoui and Niculescu [2000].Note that here we will
consider a more general case where ̟k 6= 0. As mentioned
before our objective here is to characterize the larger Tk,
namely T ∗, such that Wd(Tk) + ǫI ≤ 0, ∀Tk ≤ T ∗. The
following section provide such results and next two subse-
quent sections deals with the problem of interconnections,
and control design, respectively.

3. PASSIVITY OF NON-UNIFORM SAMPLED
OPEN-LOOP LINEAR SYSTEMS

In this section we present some results concerning non-
uniform sampled open-loop systems. We first seek to
demonstrate that, under the dissipation hypothesis of the
continuous-time system, there always exists a MASP, and
that it can be easily computed numerically. We then
present some approximations for the computation of T ∗

in closed form.

Theorem 2. Maximum sampling time preserving
passivity. Assume that the plant (1) is dissipative in
the sense of (6) for some ε > 0, that is, it satisfies the
dissipative inequality W ≤ −εI. Then there exist T ∗ > 0
given as

T ∗ , inf
0<Tk<TM

{det(Wd(Tk) + ǫI) ≡ 0} (14)

with

TM ,
det(D + DT )

det(CP−1
c CT )

such that the exact discrete-time system (7) is passive
(Wd(Tk) ≤ 0), for all Tk ∈ (0, T ∗].

Remark TM is always defined if the dynamical system is
a minimal realization system such that C is full rank.

Proof We first show that there exist a computable upper

bound on T ∗ ≤ TM , with TM ,
det(D+DT )

det(CP
−1
c CT )

. Secondly,

it is trivial to see that by definition limTk→0+{Wd(Tk)} =
W ≤ −ǫI, and that Wd(Tk) is continuous in Tk. Hence,
if a TM > 0 do exist, then by continuity Wd(Tk) should
become non negative definite for some finite T ∗ < TM .

To complete the first statement (the other two are trivial),
note that inequality (13) may be rewritten as

Wd(Tk) =−

(
Pc/Tk CT

C D + DT

)

︸ ︷︷ ︸

C

+ (15)

+ ( A(Tk) B(Tk) )
T Pc

Tk

( A(Tk) B(Tk) )

︸ ︷︷ ︸

A

with A = AT ≥ 0 and C = CT . A sufficient condition for
losing passivity, that is (−C + A + ǫI) > 0, is that Tk be
large enough to make C < 0.
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Since the continuous time system is strictly input/state
passive, D + DT > 0, Pc > 0. Schur complement and
the properties of the determinants (see Corollary 18.1.7. of
Harville [1997]) are sequentially applied to conclude that

C ≤ 0 =⇒ D + DT − TkCP−1
c CT ≤ 0 =⇒

=⇒ det
(
D + DT

)
≤ Tk det

(
CP−1

c CT
)

(16)

Thus any Tk > TM , with

TM ,
det

(
D + DT

)

det
(
CP−1

c CT
) (17)

does not result in a negative definite Wd(Tk). Note that
the value of TM depends indirectly on the plant dynamics
Ac and Bc, through its energy storage function matrix Pc.

2 T
2

T
1

1x
u

1

x    u
2

+

-

+ +

Fig. 1. Feedback passive discrete time system

4. PASSIVITY OF ASYNCHRONOUSLY
INTERCONNECTED SYSTEMS

In this section, we consider the case of two (open-loop)
passive continuous-time systems, Σi, interconnected in
feedback, and asynchronously sampled as shown in Fig-
ure 1. We assume that the input of system Σ1 comes from
a zero order hold (ZOH) with sampling time T1,k, whereas
its output is sampled and hold with a period equal to T2,k.
Both T1,k and T2,k are allowed to be different and are
time-varying (non-uniform sampling). As a consequence
the interconnected system is asynchronous. In this pa-
per we limited to the case where T2,k = nkT1,k, where
nk ∈ {1, 2, . . . , nmax}.

Following the previous section analysis, we are interested
in characterizing how each of the MASP and the passivity
properties of each subsystem are related for this intercon-
nected setup. These results will be used in the subsequent
section where control design will be presented.

Lemma 1. Assume that exist, T ∗
1 , T ∗

2 , verifying Ti,k ≤
T ∗

i , such that each sub-system Σi fulfill its respective
dissipation inequality (10), with ̟l = ξT

l Mlξl ≤ ǫl||ξl||
2,

for l = 1, 2. Then the feedback interconnection of the two
systems gives an exponentially stable closed-loop system.

Proof Sampling times are assumed to be multiple integer
T2,k = nkT1,k. To simplify notation we use T1,k = Tk, and
T2,k = nTk. As by hypothesis we also assume that each
subsystem Σi is dissipative in the sense of the equation
(10), and hence its discretized version satisfy the following
inequalities for the first sub-system (Σ1 : −uk 7→ yk) :

−
k−1∑

i=0

Tiy
T
i ui ≥ V1,k − V1,0 +

k−1∑

i=0

Ti̟1(yi,−ui, x1,i) (18)

and for the second sub-system (Σ2 : ynk 7→ unk) :
k−1∑

i=0

niTiy
T
niuni ≥ V2,nk − V2,0 +

k−1∑

i=0

niTi̟2(yni, uni, x2,ni)

(19)

As by hypothesis the second system is under sampled
(ni ≥ 1), then inequality (19), also holds for samples
smaller than nkTk, and in particular for Tk. Hence it also
applies that, for Σ

′

2 : yk 7→ uk :
k−1∑

i=0

Tiy
T
i ui ≥ V2,k − V2,0 +

k−1∑

i=0

Ti̟2(yi, ui, x2,i) (20)

Adding (18) and (20), gives

0 =
k−1∑

i=0

Tiy
T
i ui −

k−1∑

i=0

Tiy
T
i ui ≥ V1,k − V1,0 + V2,k − V2,0 +

+
k−1∑

i=0

Ti̟1(yi,−ui, x1,k) +
k−1∑

i=0

Ti̟2(yi, ui, x2,i) (21)

Define Vk , V1,k + V2,k. We have

Vk − V0 ≤ −

k−1∑

i=0

Ti̟1(yi,−ui, x1,i) −

k−1∑

i=0

Ti̟2(yi, ui, x2,i)

≤−T̄

k−1∑

i=0

[̟1(yi,−ui, x1,i) + ̟2(yi, ui, x2,i)] < 0 (22)

where T̄ = mink≥0{Tk}. From this equation we get

Vk+1 − Vk ≤−T̄ [̟1(yk,−uk, x1,k) + ̟2(yk, uk, x2,k)]

≤ T̄ [ǫ1 + ǫ2] ||ξk||
2 < 0

This results from the fact that ̟l = ξT
l Mlξl ≤ ǫl||ξl||

2,
for l = 1, 2, with ξT

k = [ξT
1,k, ξT

2,k]. Hence Vk is a Lyapunov
function of the closed loop interconnection, which is expo-
nentially stable since the system is strictly state passive.

K1

H1(s)

F1

1

y1v1 u1

x1

T1,k

K2

H2(s)

F2

y2 v2u2

x2

T2,k

Kn

Hn(s)

Fn

yn vnun

xn

Tn,k

- -
-

-

-

+

+

+

2

n

Fig. 2. Feedback interconnections

5. CONTROL DESIGN

The control scenario considered in this section is shown in
Figure 2. This scenario consider a set of feedback intercon-
nected systems exchanging information in asynchronously
manner with different, and possible time-varying, sampling
periods Ti,k. These scenarios can be found in several appli-
cations. For instance, remotely-operated systems based on
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passivity arguments is a natural domain for application of
these ideas. Other potential field is in vehicle control where
many control subsystems (ABS, ESP, TCS, ECU, etc.)
are feedback interconnected and exchange information
via the CAN bus. More generally, applications based in
component-oriented design without having the possibility
to operate synchronously, are also a home-land for this
type of design.

As in many of these applications, we can not expect
that each of the open-loop systems, Hi(s), already possed
the desired dissipation properties, we may assume that
the designer have the possibility to design local feedback
loops, (i.e. matrices Ki, and Fi in Fig. 2), with the
objective to impart the desired dissipation properties to
the resulting discrete-time system. In particular, it is
suited that after closing the local feedback loops, each
controlled subsystem results with a MASP consistent with
the domain of variation of each sampler. As a result,
the systems can be feedback interconnected with another
system yielding stable behaviour under this asynchronous
sampling interconnection.

Assumptions 3. With regard to Figure 2, we consider the
following assumptions (to simplify notation we do not
explicitly notate the subsystem index, i, unless needed):

i) Each system is locally feedback controlled by control
structure shown in Fig. 2.

ii) Each controlled feedback system results in
{

ẋ (t) = (Ac − BcK)x (t) + Bcv (t)
y (t) = Cx (t) + (D + F )v (t)

(23)

with (Ac, Bc) stabilizable pair.
iii) The input signals of each controlled subsystem, v(t)

are sampled and hold with a sampling time Tk which
is assumed to vary between two known bounds; Tk ∈[
Tm, TM

]
.

Conversely to the problem studied in the previous section
where the dissipative properties of each subsystem where
given, here the problem is to design each of the matrices
K, and F such as the resulting discrete system with the
time basis Tk, has a MASP T ∗ > TM .

Design control algorithm. Assume that a minimal re-
alization of the plant is given. The algorithm seeks to
produce a local state feedback (K) and feedforward (F )
such that the MASP is greater than TM . This algorithm
is heuristic and it works by increasing the level of dissipat-
edness of the local feedback system in each step by a factor
of ∆, where ∆ is a small positive number. The algorithm
follows the next steps:

(1) Initialize ǫ = ∆.
(2) Compute K, F such that the system is passive with

a minimum level of dissipativity 1 ǫ by solving the
following LMI
(

XAT
c + AcX − ZBT

c − BcZ, Bc − XCT

BT
c − CX, −D′ − D′T

)

≤ −ǫI

(24)
where D′ = D + F and the unknowns are X =
P−1, Z = P−1K and F . This inequality results

1 Note that ǫ here does not follow the definition (6) It is only used
as a mean to quantify the amount of dissipativity imparted by the
design control gain

form the change of coordinates (z = Px), and the
new factorization in terms of (z, v) of the expression

V̇ (P−1z) − vT y.
The feedback gain is obtained from the relation

K = ZP . If the problem is non feasible, the chosen
value of ∆ was too high or either the problem has not
any solution.

(3) Compute the MASP T ∗ of the system. The exact
solution is determined by the first zero crossing of
det [Wd (T )].

(4) If T ∗ ≥ TM , the problem has been solved. If not, then
increase ǫ = ǫ + ∆, and back to the step 2.

Now if this algorithm is successfully applied to each sub-
system (T ∗

i ≥ TM
i ), and if the sampling times are multiple

integer among them, then in virtue to the Lemma (1),
the interconnection of several sub-systems as indicated in
Fig. 2 will result in a exponentially stable closed-loop.

5.1 Example.

Consider the system shown in Figure 2, with the open-loop
system H1(s) = 1

S
being a simple integrator. For simplicity

of the presentation we assume that the system H2(s) has
been already stabilized resulting in a closed-loop system
Σ2(s) given by

Σ2(s) =
−0.0376s2 + 0.0896s − 0.0533

s4 + 2.9737s3 + 2.8217s2 + 0.9142s + 0.0908
+ 1

(25)
We assume that the sampling times are different for each
block: T1 = 1 sec. and T2 = 2 sec.

The problem is to design k1 and f1, such that the closed
loop system remains stable. This can be done using the
numerical algorithm proposed before, but as the example
is simple enough the controller parameters can be designed
in closed form, as a function of the approximated value
of T ∗. Numerical computations indicates that the MASP
associated to Σ2(s) is larger than T ∗

2 > T2 = 2. The
problems now simplifies to the computation of the gains
k1 and f1 such that the closed loop system Σ1 results in
a strictly passive operator with T ∗ ≥ min{1, 2} = 1. This
MASP is computed for a determined value of Pc.

The system Σ1 (s) = 1
s+k1

+f1 has a state space realization
given by: Ac = −k1, Bc = 1, C = 1 and D = f1.

Note that the solution is not unique, and various solutions
involving high-gain may be possible. In order to obtain
moderate gains, some computations need to be done.
Firstly, an energy storage function can be defined, i.e.
considering k1, f1 > 0, we have

W =

(
−2k1p p − 1
p − 1 −2f1

)

≤ 0 (26)

and one may choose p = 1. It is straightforward to compute

W1 =






2k2
1 −

3

2
k1

−
3

2
k1 1




 (27)

and the first order approximation of T ∗ is

T ∗ =
−1

tr (W−1W1)
=

2f1

2k1f1 + 1
(28)

Finally, the controller gains can be found solving this
expression for f1 with T ∗ = 1. This gives the formula
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f1 = 0.5/(1− k1) > 0 and the valid range for the feedback
gain is in an interval 0 < k1 < 1. One possible choice is
k1 = 1/2, and f1 = 1. This controller may satisfy the true
MASP condition since the first order approximation of the
MASP is conservative. Nevertheless, the exact value of T ∗

can here be computed to ensure the correctness of this
result, making Wd(T ) = 0:

6e2(− 1
2
T )T +4−8e−

1
2
T −2T +4e2(− 1

2
T )−4e−

1
2
T T +T 2 = 0

The true value of MASP is, as expected,T ∗ ≃ 1.86 > 1.

To illustrate the result, two simulations have been per-
formed with k1 = 1/2 fixed. They are shown in Figure 3.
The left one is obtained with f1 = 1 and the result is
stable. As discussed, lower values of f1 do not guarantee
stability. For example, f1 = 0.4 produces an unstable
closed loop system, as it is depicted in the right side of
the figure.
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Fig. 3. Trajectories y1(k),−y2(k) of the simulated exam-
ple. Reference is r = 1. Figure at left show a case
where f1 = 1 leading to a stable behaviour. The
right figure shows the unstable case when f1 does not
satisfy the MASP condition, i.e. f1 = 0.4.

As a matter of fact, another simulations with sampling
times T1 = T2/2 = 3 have been repeated. The system
with f1 = 1 is stable whereas f1 = 2 results in instability.
Indeed, f1 = 1.64 produces an oscillating system. A further
investigation shows that the corresponding MASP for last
value of f1 is T ∗ ≃ T1 = 3.

6. CONCLUSIONS

In this paper we have presented a constructive algorithm
to design local controllers for feedback systems that are
interconnected via time-varying and asynchronous sam-
pling. The study was based on dissipation inequalities
that results on the notions of (MASP) MAximum Sam-
pling time preserving Passivity. This results is consistent
with other works reported in the literature; Laila et al.
[2001],and Rohrer and Nosrati [1981]. We have proposed
a numerical method to compute the MASP for linear
systems, and we did propose a numerical algorithm to com-
pute local feedback loops providing a MASP compatible
with the maximum sampling-time upper bound of each
sub-system. The results was that if we interconnect feed-
back continuous-time systems having a suitable dissipation
properties via asynchronous sampling, there exists up-
per bounds on these sampling-time preserving dissipation,
such that the resulting inter-connection is stable. This
is somewhat expected from the known results concerning
passive continuous-time system interconnections. Finally,
we propose a way to solve the ”inverse” problem to the one
mentioned above. That is, how to design local continuous-
time feedback such that, given a maximum upper bound on

the sampling time, the resulting MASP of each subsystem
is consistent with this bound. Some simulation results were
carried out to validate and to illustrate this design.
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