
Combinatorial Vector Fields for Piecewise

Affine Control Systems
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Abstract: This paper is intended to be a continuation of Habets and van Schuppen [2004]
and Habets et al. [2006], which address the control problem for piecewise-affine systems on an
arbitrary polytope or a family of these. Our work deals with the underlying combinatorics of
the underlying discrete system. Motivated by Forman [1998], on the triangulated state space
we define a combinatorial vector field, which indicates for a given face the future simplex. In
the suggested definition we allow nondeterminacy in form of splitting and merging of solution
trajectories. The combinatorial vector field gives rise to combinatorial counterparts of the flow
lines. The main result is then an algorithm for synthesis of supervisory control.

1. INTRODUCTION

Although much advanced non-linear control theory has
been developed for almost every kind of system, it is
still desirable to make the process of design automatic.
Previous examples of such efforts has been reported in
Tabuada and Pappas [2003], where an approach based on
temporal logics has been suggested. It, however, requires
the system in question to be converted into Brunovsky
canonical form. It furthermore has the shortcoming, that
it only allows for the system trajectory to evolve on the
highest dimension.

This paper deals with combinatorial formulation for
piecewise-affine control systems. It is thought as a carry-
over of Belta et al. [2002], Habets and van Schuppen [2004]
and Habets et al. [2006], which address the control problem
for piecewise-affine systems on an arbitrary polytope that
forces the solution trajectories of the closed loop system
to either leave it or stay in it for ever. This paper merely
considers the underlying discrete system. Interest of the
control community in systems defined on simplicial objects
has been initiated by Sontag [1982, 1981]. Reachability and
controllability on such systems has been studied before
in Asarin et al. [2000], Bemporad et al. [2000]. Whereas
previous methods have been based on the concept of a
transition system, this paper focuses on its higher dimen-
sional generalization, a simplicial complex.

In the paper, on the triangulated state space - a simplicial
complex - we define a combinatorial vector field, a concept
borrowed form algebraic topology, c.f Forman [1998]. The
main motivation for doing this is that combinatorial vector
field allows flow on the simplices of all dimensions. In
particular one can study flow lines of simplices of the max-
imal dimension but also study traces of their faces, which
is particularly important for obstacle avoidance control
problem. The main result of the paper is formulation of
the nondeterministic combinatorial vector field. We devise
a notion of a combinatorial flow map - an explicit function
which takes on a simplex and delivers its possible future

simplices. Useability of the method is shown through an
algorithm for synthesis of a supervisor.

Firstly, we define simplicial complexes in Section 2 and
combinatorial manifolds in Section 3. A simplicial complex
is a triangulation of the manifold in question preserving
the original manifolds topology. We associate a piecewise-
affine control system to each simplex, e.g. a point in 0-
dimension, a line segment in dimension 1, a triangle in
dimension 2, a tetrahedron in dimension 3. This com-
prises a definition of a combinatorial control system in
Section 3. The control action on each simplex makes the
combinatorial flow defined in Section 4 either transversal
or tangential to faces of the simplex in question. Finally,
when all the possible control actions have been found
the supervisory control strategy in Section 5 is capable
of selecting the shortest path through the combinatorial
manifold and guarantees that this path is followed.

We use the following notation: Z is the set of integers, N

is the set of natural numbers, Z+ = {n ∈ Z| n ≥ 0}.

2. SIMPLICIAL COMPLEXES

A simplex is a convex hull of its vertices, they being
independent points in a Euclidean space R

N . A simplicial
complex is a quotient space of collection of simplices
obtained by identifying certain of their faces. The aim
of this section is to make the above statement formal.
More detailed information on simplicial complexes can
be found e.g. in May [1992]. Having in mind particular
application to piecewise-affine control and hybrid systems,
the attention in the following exposition has been limited
to polyhedra, i.e. subsets of R

N which can be expressed as
a locally finite union of simplices.

Definition 1. (Definition IV.1.1 in Bredon [1997]). Let
R

n have standard basis e0, ..., en. Then standard n-
simplex is
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△n ≡

{

x =
n

∑
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λiei

∣
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n
∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}

.

The λi are called barycentric coordinates.

Definition 2. (Definition IV.1.2 in Bredon [1997]). Given
n ≤ N independent points v0, ..., vn ∈ R

N , [v0, ..., vn] is an
affine map △n → R

N defined by
∑

i

λiei 7→
∑

i

λivi.

We shall call [v0, ..., vn] an affine n-simplex or just a
simplex.

The image of [v0, ..., vn] is the convex span of the points vi.
We shall often identify an (affine) simplex with its image

Image[v0, ..., vn] =

{

n
∑

i=0

λivi

∣

∣

∣

∣

∣

n
∑

i=0

λi = 1, 0 ≤ λi ≤ 1

}

.

The notation of putting a hat over one element of a
group of similar symbols means that that one is omit-
ted. Thus [v0, ..., v̂i, ..., vn] denotes the (n − 1)-simplex
[v0, ..., vi−1, vi+1, ..., vn].

Definition 3. (Definition IV.1.5 in Bredon [1997]).
The map [e0, ..., êi, ..., en] : △n−1 → △n is called the face
map and it is denoted by Fn

i .

We have that Fn
i (ej) = ej for j < i, and Fn

i (ej) = ej+1

for j ≥ i. Thus it is seen that for i < j

Fn+1
j ◦ Fn

i = [e0, ..., êi, ..., êj , ..., en] = Fn+1
i ◦ Fn

j−1. (1)

If σ : △n → R
N is an n-simplex, then the ith face of σ is

the (n − 1)-simplex

σi = σ ◦ Fn
i : △n−1 → R

N .

In other words Fn
i induces the map dn

i taking the simplex
σ to σi. The following relation is a direct consequence of
(1)

dn−1
i ◦ dn

j = dn−1
j−1 ◦ dn

i for i < j. (2)

We introduce a relation on the set of simplices: γ ≺ σ if
γ is a face of σ. We say that γ is a maximal face of σ if
γ ≺ σ and dim γ + 1 = dim σ.

Definition 4. (Definition 2.1. in Lickorish [1999]). A (fi-
nite) simplicial complex K is a finite collection of sim-
plices, contained linearly in some R

N , such that

(1) σ ∈ K and γ ≺ σ implies that γ ∈ K;
(2) σ ∈ K and τ ∈ K implies that σ ∩ τ is a face of σ

and τ .

We denote the set of all n-simplices in a simplicial complex
K by Kn,

Kn ≡ {σ ∈ K| σ is an n-simplex}.

Notice that the data determining a simplicial complex is
combinatorial, with no topology involved. Alternatively we
may use the following purely combinatorial definition of a
simplicial complex, c.f. May [1992].

Definition 5. (Definition 1.1, May [1992]). An abstract
simplicial complex (or △-set) K is a family of sets
{Kn| n ∈ Z+} with face maps dn

i : Kn → Kn−1 (0 ≤
i ≤ n) satisfying Eq. (2).

In particular a directed graph is a △-set consisting of a pair
of sets {K0, K1} with two face maps d0 ≡ d1

0, d1 ≡ d1
1 :

K1 → K0. This definition is equivalent to the standard
definition of the transition system (V, E), where V is
the set of vertices and E ⊂ V × V is the set of edges.
The transition system (V, E) defines the directed graph
{V, E} with di = πi, where π0 is the projection on the
first and π1 on the second factor. Conversely, the directed
graph {K0, K1} with two face maps di : K1 → K0,
i = 0, 1 defines the transition system (K0, E) with E =
{(d0e, d1e)| e ∈ K1}.

Definition 6. (Definition IV.1.5 in Bredon [1997]).
The n-chain group Cn(K) of the simplicial complex K
is the free abelian group generated by n-simplices

Cn(K) =
⊕

σ∈Kn

Z,

which is equivalent to Z[σ1] × Z[σ2] × . . . where σi ∈ Kn.
Thus an n-chain is a formal sum

c =
∑

σ∈Kn

nσσ

of n-simplices σ with integer coefficients nσ.

Each map dn
i : Kn → Kn−1 can be extended to Cn(K) so

as to be a homomorphism dn
i : Cn → Cn−1 by

dn
i (

∑

σ

nσσ) =
∑

σ

nσdn
i σ =

∑

σ

nσσi.

Definition 7. If σ : △n → R
N is an n-simplex, then

the boundary map is a homomorphism ∂n : Cn(K) →
Cn−1(K) defined by

∂n =

n
∑

i=0

(−1)idn
i .

In particular the boundary of σ is ∂nσ =
∑n

i=0(−1)iσi.
Notice that ∂n ◦ ∂n+1 = 0. An example of how to find the
boundary map of a simplex, as depicted in Figure 1, using
Definition 7, is as follows:

∂[a, b, c] = [â, b, c]− [a, b̂, c] + [a, b, ĉ] = [b, c]− [a, c] + [a, b].

Notice the notion of direction: [a, b] = −[b, a].

a c

b

Fig. 1. Example of boundary map calculation.

3. PIECEWISE-AFFINE CONTROL SYSTEM ON
COMBINATORIAL MANIFOLDS

In this section we formulate the notion of a combinatorial
manifold M - a simplicial complex of particularly regular
structure. We associate to each simplex of maximal dimen-
sion in M a piecewise affine control system.

Let σ be an n-simplex. We say that a control vector field
ζ : Im(σ) × R

m → R
n is piecewise-affine n-control system

if ξ is defined by the piecewise-affine map

ζ(x, u) = Ax + Bu + a,
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where A is an n by n matrix, B is an n by m matrix and
a is an n-vector.

Let K be a simplicial complex. We define some basic
combinatorial operations on K. The star of a simplex β
consists of all simplices that have β as a face

St β = {σ ∈ K| β � σ}.

Star is not a complex in general, since condition 2. of
Definition 4 may not be satisfied. We can make star into
a complex by adding all its missing faces - the closed star.
Thus the closed star St β is the smallest complex that
contains St β. The link of β consists of all the simplices in
St β that are disjoint from τ

Lk β = {τ ∈ St β| Image(τ) ∩ Image(β) = ∅}.

Definition 8. (Definition 2.2 in Lickorish [1999]). A com-
binatorial n-ball is a simplicial complex Bn piece-
wise linearly homeomorphic to △n. A combinatorial n-
sphere is a simplicial complex Sn piecewise linearly home-
omorphic to ∂△n+1. A combinatorial n-manifold is a
simplicial complex M such that, for every vertex v of M ,
Lk v is a combinatorial (n − 1)-ball or a combinatorial
(n − 1)-sphere.

Definition 9. An combinatorial n-control system is
a pair (M, ξ), where M = {M0, ..., Mn} is a combinatorial
n-manifold, and ξ = {ξσ| σ ∈ Mn} is a family of piecewise
affine n-control systems.

Let (M, ξ) be a combinatorial n-control system. A control
objective for (M, ξ) is decomposed in Habets and van
Schuppen [2004] and Habets et al. [2006] into two control
problems posed for each n-simplex σ (in fact in Habets
and van Schuppen [2004] the authors treat more general
problem of control synthesis on a polytope):

Problem 1. (Problem 4.1 in Habets et al. [2006]). Let σ ∈
Mn. Given a subset S of maximal faces of σ find a control
law

kσ : Im(σ) → R
m, kσ(x) = Fσx + gσ, (3)

where Fσ is an m by n matrix and gσ is an n-vector,
such that it guarantees that all flow lines of the closed-loop
system

ẋ = (A + BF )x + (a + Bg), (4)

starting at a p ∈ Im(σ) leaves the simplex σ in finite time
by crossing one of the faces in S.

Problem 2. (Problem 4.2 in Habets et al. [2006]). For a
given σ ∈ Mn find a control law (3) such that for any
p ∈ Im(σ) the flow line φp(t) of the closed-loop system (4)
satisfies φp(t) ∈ Im(σ) for any t ≥ 0.

We say that the control law (3) blocks a maximal face
γ of a simplex σ if the vector field ξc

σ of the closed loop
system on σ - defined by the right hand side of equation
(4) - satisfies the equality

〈ξc
σ(x), nγ〉 ≤ 0 (5)

for any x ∈ Im(γ), where nγ is the outward normal
vector to τ and 〈·, ·〉 is the standard scalar product on
R

n. Inequality (5) indicates that γ is an exit face.

Problems 1 and 2 are solved in Habets et al. [2006] by
blocking maximal faces that are complementary to the set
S. We observe that if S′ ⊂ S and the control law kσ blocks
all the faces in S then it also blocks the faces in S′; thus
the more blocking faces the more restrictive control it is.

The focus in this work is on the combinatorial part of the
control synthesis problem, i.e. on a supervisor that selects
blocking faces of a combinatorial n-control system such
that every trajectory of the closed loop system starting
in an n-simplex σs reaches the target n-simplex σt in
finite time. For a treatment of the necessary and sufficient
conditions for guaranteeing control to a certain facet of
a simplex for the PWA system the reader is referred to
Habets et al. [2006] and the references therein.

4. COMBINATORIAL VECTOR FIELDS

In this section we introduce the central notion of this
paper - a combinatorial vector field. The notion has been
developed by R. Forman in Forman [1998] for studying
topological invariants of CW complexes. The attention
in this paper is restricted to geometrical properties of
a combinatorial vector field. We extend the notion of a
combinatorial vector field to encompass non-determinism
in Definition 12. It is treated as a generator of flow. The
notion of combinatorial flow lines is used in Section 5 for
synthesis of supervisory control.

Definition 10. (Definition 1.2, Forman [1998]). Let K be
a simplicial complex. A combinatorial vector field V on
K is a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies

(1) Vn ◦ Vn−1 = 0, that is if σ ∈ Image(Vn−1) then
Vn(σ) = 0.

(2) For each σ ∈ Kn, the number of elements of the pre-
image

V −1
n (σ) ≡ {α ∈ Kn−1| Vn(α) = σ}

is 0 or 1.

Alternatively a combinatorial vector field is a set V̄ of pais
of simplices 〈α, σ〉, where α is a maximal face of σ, and for
which no simplex is in more than one pair. It is helpful to
picture a combinatorial vector field on K by arrows, where
the tail is at α and the arrow at σ, see Figure 2.

v
1

e
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v
21

e

e
5e

3
e
4

e
6

e
7

3
v

v
4

v
5

A
1

A
2

A
3

Fig. 2. A combinatorial vector field. The vertex v3 is a rest
point.

Intuitively condition 1. of Definition 10 means that the
system is of the first order; geometrically it implies that
the future simplices do not increase the dimension, see the
definition of the flow map below. Condition 2. excludes
merging the future cells. It is illustrated in Figure 3 that
splitting of flow is allowed whereas merging is excluded. In
Definition 12 of a nondeterministic combinatorial vector
field we shall allow both situations.

Since no simplex is in more than one pair in V̄ , every cell
σ of the simplicial complex K satisfies precisely one of the
following conditions:
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(b) Merging

Fig. 3. Illustration of Definition 10. Merging on the right
hand side is excluded in whereas splinting on the left
hand side is allowed.

(1) σ is the tail of exactly one arrow;
(2) σ is the head of exactly one arrow;
(3) σ is neither the tail not the head of any arrow.

A simplex that satisfies condition 3. is called a rest point.

Definition 11. (Definition 1.3 of Forman [1998]). Let V
be a combinatorial vector field on K. We say that σ ∈ Kn

is a rest point of V of index n if

(1) Vn+1(σ) = 0 and
(2) σ /∈ Image(Vn).

Figure 4 illustrates a rest point of minimal index 0 - a sink
and the maximal index n - a source.
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Fig. 4. (a) v7 is a rest point of index 0; (b) A1 is a rest
point of index n.

Section 3 indicates that discrete behavior of a piecewise
affine control system involves nondeterminacy induced by
blocking more than one maximal faces of a simplex. It
seems therefore natural to unleash condition 2 of Defini-
tion 10.

Definition 12. Let K be a simplicial complex. A non-
deterministic combinatorial vector field V on K is
a family {Vn| n ∈ N} of maps

Vn : Kn−1 → Kn ∪ {0}

that satisfies Vn ◦ Vn−1 = 0.

In the remaining of this section we shall develop a notion
of flow of a nondeterministic combinatorial vector field,
that is a map Cn(K) → Cn(K) which takes an n-simplex
to its future n-chain (a linear combination of the simplices
in very next future).

Remark 1. The linear combination of simplices indicates
nondeterminism in the future evolution. Thus for example
τ 7→ σ + β means that the future of τ is σ or β. In fact,
the semantics adopted in this paper is such that any flow
τ 7→ aσ + bγ for a, b ∈ Z \ {0} indicates that the future of
τ is σ or β.

For simplicial complexes we may use the following defi-
nition of a combinatorial scalar product 〈·, ·〉 : Kn ×
Kn → {0, 1}, defined by

〈σ, α〉 =

{

1 if σ = α
0 otherwise

We extend it to the bilinear product 〈·, ·〉 : Cn(K) ×
Cn(K) → Z. In particular

〈

∑

j

njσj , σk

〉

= nk.

Define θn : Cn(K) → Cn−1(K) by

θn(σ) =

n
∑

i=0

(−1)i 〈Vn ◦ dn
i (σ), σ〉 dn

i σ.

The map θ takes σ ∈ Kn to a linear combination of the
simplices in V −1

n (σ), see Figure 5.
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Fig. 5. θ2(A2) = e4 − e5.

Discrete dynamics of a combinatorial control systems is
encapsulated in the following definition of the flow.

Definition 13. A flow (of a nondeterministic combina-
torial vector field) is the map Φn : Cn(K) → Cn(K) given
by

Φn = (∂n+1 − θn+1) ◦ Vn+1 + Vn ◦ (∂n − θn).

Example 1. Consider the nondeterministic combinato-
rial vector field defined in Figure 6.

Firstly, we compute flow starting at e0:

Φ1(e0) = (∂2 − θ2)V2(e0) + V1(∂1e0 − θ1e0)

= (∂2 − θ2)0 + V1(v0 − v1 − v0) = −e4.

The result is the 1-simplex e4, which corresponds to our
expectation, as seen from Figure 6.

Another flow of interest is the one initiated at e1:
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Fig. 6. An example of a simplicial complex with its
associated vector field.

Φ(e1) = (∂2 − θ2)V2 + V1(∂1 − θ1)

= (∂2 − θ2)A3 + V1(v1 − v2)

= e1 − e6 + e5 − e1 + e6 − e2 = e5 − e2.

Again it is seen that the resulting flow gives the foreseen
adjacent edge, e1, along with a possible side flow to e2.

Lastly, we calculate the flow from the 2-simplex A4:

Φ2(A4) = (∂3 − θ3)V3 + V2(∂2 − θ2)

= (∂3 − θ3)0 + V2(e7 − e10 + e6 − e7) = A3.

Again the flow from A4 to A3 is found as expected.

The flow Φn generates an n-flow line. An n-simplex
σ ∈ Kn belongs to the n-flow line with the initial n-simplex
τ if there is k ∈ Z+ such that 〈σ, Φk

n(τ)〉 6= 0. It will be
seen below that the flow lines of dimension n and n−1 are
the only important for control synthesis for combinatorial
control systems. It is worth noticing that a flow line born
in an n-simplex σ - a source - does not die in a sink, since
it is a vertex (0-simplex). It dies in fact in an n-simplex
belonging to star of a sink.

Once the combinatorial vector field is in place it is pos-
sible to define the equivalence of flow lines, which in the
combinatorial setting will be called a V -path.

Definition 14. (Forman [1998]). A V -path of index k is
a sequence of length r,

γ : σ
(k)
0 , τ

(k+1)
0 , σ

(k)
1 , τ

(k+1)
1 , ..., τ

(k+1)
r−1 , σ(k)

r , (6)

with σk ∈ Kk, such that for all i ∈ {0, 1, ..., r − 1}

(1) τi = V (σi)
(2) σi 6= σi+1 = Φ(σi)

If σ0 = σr the V -path is called closed. Two closed V -paths,
γ, γ̃, are equivalent if γ̃ can be produced by selecting
another starting point of γ.

A V -path is calculated by taking an initial simplex, σ0,
and propagating its flow, i.e.:

σ0 → V (σ0) → Φ(σ0) → V ◦ Φ(σ0) → Φ ◦ Φ(σ0) . . . (7)

Moreover, since nondeterminism is allowed in this defini-
tion of flow the V -path is allowed to split into more paths,
thus resulting in a tree of reachable locations compared to
just a single track in the deterministic case.

5. SUPERVISORY CONTROL

Having the definition of simplicial complexes, combinato-
rial vector fields and combinatorial flow it is now possible
to combine all of them in a supervisory control algorithm,
which forces the trajectory of the closed-loop system to a
target simplex.

Algorithm 1. Algorithm for going from a continuous
system to control on a simplicial complex.

(1) Triangulate manifold. Firstly the manifold in question
is triangulated. This can be done in a number of ways
and with larger or smaller discretisation.

(2) Barycentric linearization. In order to obtain a piece-
wise affine system in each simplex the dynamics in
each simplex is linearized around its barycenter.

(3) Calculate controllability. Calculate all possible exit
faces of the given simplex. This results in a maximum
combinatorial vector field.

(4) Find shortest path. Once the combinatorial vector
field is in place it is possible to calculate all possible
V -paths and thereby finding the shortest.

(5) Block undesired branchings. In order to force the
system to take the shortest V -path all branchings not
on the path will be blocked.

Remark 2. Computational wise the greatest challenge
with this algorithm is to do a good job in the first step.
This goes both for bringing the dimension of the system
down before commencing the dividing, and selecting an
appropriate number of simplices. This is easily seen since
given the first step yields n-simplices, then the complexity
of step 2 and 3 are O(n), step 4 is O(dn)(albeit in practice
often much lower) and the final step 5 is also O(n).

This algorithm is obviously not optimal, since it calculates
all possible ways to traverse the simplicial complex before
returning the shortest one. Thus practically the first point
in the algorithm will be performed first. Following this
the next 3 points will be performed iteratively. This is
done by taking the initial n-simplex, linearize it around
its barycenter and calculate all the possible n-simplices
reachable from this simplex. This is then repeated for
the resulting simplices of the previous operation until the
target simplex is reached. In order to avoid loops, any
simplices, which previously have been visited are omitted
from the new set of simplices to be checked. This operation
can be seen as a tree search algorithm, and in order to find
the shortest path a breadth-first search algorithm will be
preferable compared to a depth-first algorithm.

Once the traversing reaches the target simplex the algo-
rithm is terminated, and the shortest possible V -path from
the initial to the target simplex, γop, is found.

The supervisory control task is now to make sure that
γop is followed, which is ensured by blocking undesired
exit faces of simplices with more than one exit face. This
is practically achieved by altering the flow lines in the
continuous world through control, as described in Section
3.

Remark 3. It is often desirable to address the problem
of avoiding forbidden or unsafe sets. The advantage of
the formalism developed in this paper is that there is no
combinatorial vector field thus no flow defined on the
forbidden simplices. Therefore branches of the search tree
hitting such simplices will automatically be abandoned.

The performance of the supervisory control algorithm will
be illustrated in the following example.

Example 2. Consider a combinatorial vector field as de-
picted in Figure 7. For the sake of simplicity it is assumed
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that the first 3 steps of Algorithm 1 has been successfully
performed.
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Fig. 7. An example of a simplicial complex with its
associated vector field.

The initial 1-simplex is e1, and the target simplex is e32.
The first step is to calculate the V -path for the simplicial
complex starting at σ0 = e1 and propagate it according
to the strategy described in step 4 of the algorithm, until
reaching the target simplex σt = e32. The V -path tree is
shown below. 1

γ : e1 // A2
//

((

e3 // A1
// e6 // A5

//

..

e9 // A4

e10 // A6

e4 // A3
// e7 // A7

// e12 // A8

A4
// e14 // A9

// e18 // A10
// e24 // A15

// e28

A6
// e15 // A11

// e19 // A10
// e24 // A15

// e28

A8
// e16 // A13

//

..

e21 // A12
// e25 // A17

// e30

e22 // A14
// e26 // A18

// e32

It is seen that the V -path on the bottom is the minimal
path, γop. It is also clearly seen that there are two 2-
simplices, A2 and A13, which allow for changing to another
path, thus in order to control the system to follow γop the
two 1-simplices e3 and e21 must be blocked.

6. CONCLUSIONS

We have treated combinatorics associated to control of a
dynamical system defined on a particularly nice simplicial

1 Note that the tree has been split in two due to space constraints.

complex - a combinatorial manifold. We have introduced
a notion of a nondeterministic combinatorial vector field,
which determines the future behavior of the discrete sys-
tem. The combinatorial vector field gives rise to a flow line
that is a path of possible evolutions including all possible
mergings and splittings. This information has been used
in the algorithm for supervisor synthesis suggested in this
paper.
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