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1. INTRODUCTION

This paper presents a decomposition methodology for
deterministic behavioral models. The objective is to obtain
a partial model decoupled from a given subset of inputs
while remaining coupled with respect to another selected
inputs subset. The coupling and decoupling properties of
the partial model allows us to detect occurrence of only
selected unknown inputs or faults and to ignore the rest
of them. This scheme is used to produce structured fault
indicators to detect and isolate occurring failures based
on continuous-time model. The proposed decomposition
methodology is based on a particular algebraic formalism,
named algebra of functions introduced by Shumsky [1991],
Zhirabok and Shumsky [1993] and revisited in Berdjag
et al. [2006]. This algebraic formalism remains valid for
all types of deterministic models. Therefore, classical fault
detection and isolation scheme, described in Patton [1994],
may be extended, and specific models like sequential
machines may be used for fault detection.

The present paper presents an extension of the decompo-
sition algorithm to propose a constrained decomposition
of sequential machines using pair algebra Hartmanis and
Stearns [1966]. Output data is used to loosen decompo-
sition constraints (output injection technique). Output
injection technique is well known and was used to the
decoupling continuous-time models.

Fault detection and isolation using discrete event systems
was addressed by Sampath et al. [1995] and derived papers.
Using output injection improves fault isolation rate. To the
best of our knowledge, it was not employed in the past to
decouple discrete-event models. This particular point is
the major contribution of this paper.

The paper is organized as follows : In section 2, constrained
decomposition problem is formulated using set theory
framework. In section 3, the decomposition constraints and
conditions are detailed. Section 3 contains basic reminders

about partitions and pair algebra operators. In section
4, constrained decomposition of discrete-event models is
presented along with output injection for discrete-event
models. An example is given section 5 to illustrate the
decomposition and the benefits of output injection. Con-
clusions and perspectives on future works close the paper.

2. PROBLEM FORMULATION

As a general principle, it is possible to represent deter-
ministic behavioral models, noted Σ, using the following
quintuple

(X ,U ,Y,F ,H) (1)

where X is the state set, U is input set and Y is the output
set. F and H are functions defined by :

F : X × U −→ X and H : X × U −→ Y (2)

The function F is the state function and the function H
is the output function.

This representation allows to describe continuous-time
and discrete-event deterministic models using the same
formalism. Indeed, if Σ is a continuous-time model, then
the sets X ,U ,Y are infinite sets of dimensions n, l,m
respectively, i.e. X ⊆ Rn, U ⊆ Rl, Y ⊆ Rm, and the state
and output functions are defined by :

F : Rn × Rl −→ Rn and H : Rn × Rl −→ Rm (3)

If the model Σ is a discrete-event model with a finite
number of states, then the sets are X ,U ,Y are finite sets
of cardinalities n′, l′,m′ :

X = {x1, · · · , xn′} , U = {u1, · · · , ul′} , Y = {y1, · · · , ym′}

If the model Σ is excited by multiple inputs, we assume
that Σ contains multiple dynamics. Every single dynamic
is affected by a group of inputs, and remains decoupled
from the rest. These dynamics are represented by partial
models.

Definition 1. Let Σ(X ,U ,Y,F ,H) be a model. The model
Σ∗(X∗,U∗,Y∗,F∗,H∗) is a partial model of Σ, if for a given
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relation ΘU : U → U∗, there is two relations ΘX : X → X∗

and ΘY : Y → Y∗ satisfying

∀u ∈ U , ∀x ∈ X , ∀x∗ ∈ X∗ :

x∗ = ΘX (x) ⇔

{

F∗(x∗,ΘU (u)) = ΘX (F(x, u))
H∗(x∗,ΘU (u)) = ΘY(H(x, u))

(4)

(ΘX ,ΘU ,ΘY) is a homomorphism. The partial model Σ∗

is coupled with respect to inputs u∗ ∈ U∗ and decoupled
from inputs u′ ∈ U if u′ /∈ U∗.

U∗ is a subset of U . If the output set Y∗ is not empty, then
Σ∗ provides outputs that are bisimilar with Σ outputs.
Two outputs are considered as bisimilar, if all of their
possible values are taken from the same set, and these
values are consistent if the two models are excited by the
same input sequence. Thus, if Σ∗ and Σ are excited by
the same inputs from U , then their common outputs will
be consistent. Discrepancy appears when the two models
are excited by different inputs. Therefore, discrepancy can
be used to detect unexpected events in input sequence.
Moreover, if the occurring unexpected event belongs to
U − U∗, no output discrepancy is observed, since Σ∗ is
decoupled from U − U∗.

Concretely, decomposition objective is to obtain a decou-
pled partial model which allows detection of selected faults
and ignore the rest of them. The input set U is divided in
three disjoint subsets :

U = Uc ∪ Uρ ∪ Uγ (5)

where Uρ contains inputs to be coupled to, Uγ contains
inputs to be decoupled from and Uc regroups the rest of
inputs. Uρ and Uγ forms unknown inputs set. For example,
on a real modeled system, Uγ is the set failure events
that must be detected, Uρ es the set of perturbations or
failures that must be ignored and Uc is the set of command
events. The decoupled partial model Σ∗ is described by the
quintuple (X∗,U∗,Y∗,F∗,H∗) which satisfies :

• U∗ ⊆ U
• F(X ,U∗) ⊆ X∗

• X∗ ∩ F(X ,Uγ) = ∅
• Y∗ = H(X∗,U)

The following section details the method to obtain Σ∗, i.e.
to determine X∗,Y∗,F∗,H∗.

3. DECOMPOSITION OF GENERIC BEHAVIORAL
MODELS

3.1 Decomposition objective

Consider a partial model Σ∗ obtained by decomposition
of Σ (1). In order to ensure that Σ∗ is decoupled from Uγ

and coupled with respect to Uρ, decomposition procedure
is constrained to coupling with respect to Uγ and decou-
pling from Uρ properties of the state set X∗. Since X∗ is
decoupled, the descriptions

(X∗,U∗,Y∗,F∗,H∗) and (X∗,U ,Y∗,F∗,H∗)

are equivalent for Σ∗.

The functions F∗ and H∗ are restrictions of the functions
F and H on the sets (X∗,U ,Y∗) :

F∗ : X∗ × U → X∗

(x∗, u) 7→ x+
∗ = F(x∗, u) (6)

H∗ : X∗ × U → Y∗

(x∗, u) 7→ y∗ = H(x∗, u) (7)

The partial model Σ∗ is obtained using the decomposition
function ϕ defined by :

ϕ : Ψ → Ψ

Σ 7→ Σ∗

(X ,U ,Y,F ,H) 7→ (X∗,U ,Y∗,F∗,H∗) (8)

where Ψ is the set of all the possible quintuples. The
function ϕ determines all the elements of the quintuple
that describes Σ∗. Fortunately, the knowledge of the subset
X∗, if not empty, is sufficient to determine the other
remaining elements. Let φ be a function that determines
X∗ :

φ : X → X∗ ∈ ΨX

x 7→ x∗ = φ(x) (9)

where ΨX is the set of all the possible subsets generated
by elements of X . Y∗ is determined by the relation Y∗ =
H(X∗). U∗ and U are known. If restrictions of F and H
are possible on X∗ × U , then the decoupled partial model
of Σ is completely defined.

Hence, the existence of the partial model Σ∗ is linked to the
existence of a restriction of the state function F on X∗ ×
U . This condition is called invariance condition. Output
consistency between Σ∗ and Σ is linked to the existence
of a restriction of the output function Y on U∗ ×X∗. This
condition is called output condition.

In the following, the conditions and the constraints are
detailed.

3.2 Decomposition constraints

Decoupling constraint Σ∗ is decoupled for Uγ if and only
if Uγ ∩U∗ = ∅. It means that X∗ do not intersect the state
set coupled with respect to the subset Uγ .

X∗ ∩ Xγ = ∅ (10)

X∗ and Xγ are given by

X∗ = F(X ,U∗) and Xγ = F(X ,Uγ) (11)

Coupling constraint Σ∗ is coupled with respect to Uρ if
Uρ ∩ U∗ 6= ∅. It means that X∗ intersects the state subset
coupled with respect to the subset Uρ.

X∗ ∩ Xρ 6= ∅ (12)

Xρ is given by Xρ = F(X ,Uρ)

3.3 Decomposition conditions

Invariance condition Let F∗ be the restriction of F such
as

F∗ : X∗ × U → X∗

(x∗, u) 7→ x+
∗ = F(x∗, u) (13)

Since Σ∗ replicates a part of Σ, the response of the two
systems must be equivalent for the same inputs

∀u ∈ U , ∀x ∈ X : x∗ = φ(x) ⇔ F∗(x∗, u) = φ (F(x, u))
(14)

Which implies

F∗(φ(x), u) = φ (F(x, u)) (15)
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If this relation is satisfied then the decomposition function
φ is invariant under F . By extending the relation (15) to
the whole state set, we obtain the invariance condition

F(φ(X ),U) ⊆ φ(X ) (16)

Output condition If there is a link between outputs of
Σ∗ and outputs of Σ for all the states x∗ ∈ X∗ and x ∈ X ,
then it is possible to check discrepancy between outputs
of Σ∗ and Σ and the output condition is fulfilled. This
condition make sense only if the invariance condition is
already fulfilled.

If all the outputs of the two models are bisimilar then
following relation is satisfied

∀x ∈ X , ∀u ∈ U , ∃ζ, ξ : ξ(H∗(φ(x), u)) = ζ(H(x, u))
(17)

where ζ, ξ are some functions. If the function H∗ is a
restriction of H, the relation (17) is always true. This is the
perfect case. Practically, only one single consistent output
is required to check consistency of Σ and Σ∗. Relation (17)
becomes

∃ ζ, ξ : ξ(H∗(X∗,U)) ∩ ζ(H(X ,U)) 6= ∅ (18)

Given that H∗ is a restriction of H, relation (18) can be
simplified, giving the final form of output condition :

H(φ(X ),U)) ∩H(X ,U) 6= ∅ ⇔ Y∗ 6= ∅ (19)

3.4 Set delimiters and extension to the finite set case

In order to implement the decomposition conditions and
constraints, set delimiters are defined. In the case of
infinite sets, set delimiters are defined using functions
Shumsky [1991]. In the case of finite sets, set delimiters
are defined using partitions Hartmanis and Stearns [1966].

The set of all delimiters with the corresponding operations
forms a mathematical structure called algebra. If definition
sets of a model are finite, pair algebra is involved Hartma-
nis and Stearns [1966]. The infinite set case is addressed
using algebra of functions Shumsky [1991], Zhirabok and
Shumsky [1993]. Recently, algebra of functions were used
in several topics of model-based monitoring Berdjag et al.
[2006]. Unfortunately, pair algebra was not addressed re-
cently.

In the next sections, partitions and pair algebra Hartmanis
and Stearns [1966] are presented.

4. PARTITIONS AND PAIR ALGEBRA

Some notions on partitions are given, and definitions for
the main algebraic operators of pair algebra are detailed.

4.1 Mathematical background

Partition Consider some finite set S. A partition π on
S is a collection of disjoint subsets of S whose set union is
S. These subsets are called blocks and noted Bα where α
is an element of S.

π = {Bα} such that

{

Bα ∩ Bβ = ∅ for α 6= β
⋃

{Bα} = S
(20)

Consider a block B from π, and two elements s and t from
S. If s and t are contained in the same block B of π, then
we note s ≡ t(π).

Operations on partitions Let S be a set and let π1 and
π2 be two partitions on S. s and t are two elements from
S. The following operation and relationship are possible
on partitions :

• π1.π2 is the partition on S such that :

s ≡ t(π1.π2) iff s ≡ t(π1) and s ≡ t(π2)

• π1 + π2 is the partition on S such that :

s ≡ t(π1 + π2) iff there is a sequence in S

s = s0, s1, . . . , sn = t

for which either

si ≡ si+1(π1) or si ≡ si+1(π2) , 0 ≤ i ≤ n − 1

• π1 ≤ π2 if and only if π1.π2 = π1 and π1 + π2 = π2.
π2 is said larger than or equal to π1.

• π1
∼= π2 if and only if π1 ≤ π2 and π2 ≤ π1. Partitions

π1 and π2 are equivalent.

The set of all the possible partitions on S is ordered by the
order relation ≤. The smallest partition is noted O and the
greatest partition is noted I. For example, let S = {1, 2, 3}.
The smallest partition is given by O = {{1}, {2}, {3}} and
the greatest is given by I = {{1, 2, 3}}

4.2 Substitution property and pair algebra

Let S, I two sets and δ a function defined by

δ : S × I −→ S

Let π be a partition on S. The partition π is said to have
the substitution property with respect to the function δ if
and only if

s ≡ t(π) ⇒ δ(s, a) ≡ δ(t, a)∀a ∈ I (21)

If π has the substitution property then the function δπ,
defined by δπ : π × I −→ π such as

δπ(Bπ, i) = B′
π ⇔ δπ(Bπ, i) ⊆ B′

π

with i ∈ I , is the image of δ by π. δπ is a restriction of δ
on π.

The partition pair is an extension of the substitution
property to two partitions. A partition pair (π, π′) is an
ordered pair of partitions on S such as

s ≡ t(π) ⇒ δ(s, a) ≡ δ(t, a)(π′) (22)

The partition pair is anti-symmetric. If (π, π′) and (π′, π)
are partition pairs then π ∼= π′. By the way, if π has the
substitution property then π satisfies the relation (22), and
(π, π) is a partition pair.

The partition pair concept is useful to describe the mini-
mal and the maximal operators m and M .

Definition 2. Let π be a partition on S. m(π) is the
minimal partition that forms a partition pair on the left
with π, i.e. (m(π), π) is a partition pair and if (π′, π) is
a partition pair then m(π) ≤ π′. The result m(π) is also
given by the following relation

m(π) =
∏

{πi|(π, πi) is a partition pair } (23)

Definition 3. Let π be a partition on S. M(π) is the
maximal partition that forms a partition pair on the right
with π, i.e. (π,M(π)) is a partition pair and if (π′, π) is
a partition pair then m(π) ≤ π′. The result M(π) is also
given by the following relation

M(π) =
∑

{πi|(πi, π) is a partition pair } (24)
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Consider know some set of partitions L ordered by the
ordering relation ≤, and a function δ. The subset ∆ ⊆ L×
L of all the partitions pairs with respect to δ, with the
partition operations ”.” and ”+” forms an algebra called
pair algebra. If the pair (π1, π2) is a partition pair, then
we note (π1, π2) ∈ ∆δ.

5. DECOMPOSITION OF SEQUENTIAL MACHINES

In this section, a constrained decomposition methodology
is proposed for sequential machines, which are a common
type of deterministic discrete-event models. Sequential
machines are noted (S, I,O, δ, λ) to make distinction with
the general case. S,I,O are respectively the state set, the
input set and the output set of the model. δ is the state
function and λ is the output function.

The decomposition problem is formulated as follows :
Consider a sequential machine Σ(S, I,O, δ, λ) whose input
set is given by

I = Ic ∪ Iγ ∪ Iρ

A partial sequential machine Σ∗ decoupled from Iγ and
coupled with respect to Iρ is searched. The machine Σ∗ is
defined by the quintuple (S∗, I∗, O∗, δ∗, λ∗) with

• S∗ = π , where π is a partition of S.
• I∗ = πI , πI is a partition of I or of I × O .
• O∗ = πO , where πO is a partition of O.
• δ∗ : π × I∗ → π is a restriction of δ.
• λ∗ : π × I∗ → πO is a restriction of λ

5.1 Decomposition constraints

In order to express coupling and decoupling constrains
using partitions, a neutral element i0 is added to I.

∀s ∈ S : δ(s, i0) = s (25)

Hence, Σ is decoupled from the element i0 by definition.
Consider now a block of the partition πI that contains
i0. The corresponding partial model of Σ will be also
decoupled from all the elements of this block.

Let Iγ = {a1, a2, . . .} and Iρ = {b1, b2, . . .}.

Decoupling constraint Consider the following partition

πγ = {{i0, a1, a2, . . .}, {i1}, . . . , {il}, {b1}, {b2}, . . .} (26)

where ij , with j = 1, . . . , l, are elements of Ic. The
partition πγ decouples Iγ . Using the operator m, the
corresponding state set partition is determined.

π0
∗ = mδ(πγ) (27)

π0
∗ is the state set partition that is decoupled from Iγ . If

the machine Σ∗ is decoupled from Iγ then its state set is
a partition of π0

∗, i.e.

π0
∗ ≤ π∗ (28)

Coupling constraint Consider the partition πρ that de-
couples Iρ

πρ = {{i0, b1, b2, . . .}, {i1}, · · · , {il}, {a1}, {a2}, . . .} (29)

and the corresponding state set partition

π̄0
∗ = mδ(πρ) (30)

We saw previously that if the machine Σ∗ is decoupled
from Iρ then its state set is a partition of π̄0

∗. Accordingly,
if Σ∗ is coupled to Iρ then

π̄0
∗ � π∗ (31)

5.2 Decomposition conditions

Invariance condition Consider the sequential machine
Σ and a partition π which has the substitution property
with respect to δ. It means that the restriction of δ on
π exists and the quintuple (π, I, πO, δ∗, λ∗) describes a
partial model of Σ, for some partition πO and function
λ∗.

It means that if π has the substitution property, i.e.
(π, π) ∈ ∆δ, then the discrete-event model described by
(π, I, πO, δ∗, λ∗) is a partial model of Σ.

From the definitions 2 and 3, if (π, π) ∈ ∆δ, then the
following relations are satisfied

π ≤ Mδ(π) and π ≥ mδ(π) (32)

Given that for the sequential machine case, the relation
π ≤ M(π) implies π ≥ m(π) and vice versa. Thus, either
relation of (32) describes the invariance condition.

5.3 Output condition

Consider a partition π of the state set S. By analogy with
the invariance condition, if π has the substitution property,
then there is a restriction of λ on S∗ = π, I∗ = I and a
partition πO of O defined by

λπ :S∗ × I∗ −→ πO

(s∗, i∗) 7→ λ(s∗, i∗)

Let πλ = Mλ(O) be a partition induced by the output
function λ and the output set O on the state set. If π ≥ πλ

is verified, (π, π) is a partition pair, all outputs of Σ and
outputs of the partial model determined by π are bisimilar,
which obviously is the best case.
Practically, to fulfill the output condition, it is sufficient to
have one single bisimilar output. It means that partitions
π and π′ must share the same block and π′ + π 6= I. The
output condition is given by

π + Mλ(O) 6= I (33)

5.4 Output injection for discrete-event models

In some cases, the constraints of the decomposition are too
strong resulting in unsatisfied decomposition conditions. A
special technique called output injection may be used to
relax the invariance condition. Output injection is a well
known technique for continuous-time model decoupling.
The main idea is to replace the information loss caused
due to the decreased state set S∗ by extending the input
set of Σ∗ with selected outputs of Σ.

Consider the invariance condition, i.e. (π, π) ∈ ∆δ. An
injection of the outputs O is equivalent to rectifying
the state set partition π with a partition πinj which is
determined according to the injected outputs such that

π0
∗.Mλ(πinj) = O (34)

The extended invariance condition becomes

(π.πinj , π) ∈ ∆δ (35)

The relation (35) is satisfied if the following statements
are true.

M(π) ≥ (π.πinj) and π ≥ m(π.πinj) (36)
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If the relations (36) are satisfied, then the decomposition
partition π determines a partial sequential machine with
an extended input set :

Σ∗(π, I × πinj , πO, δ∗, λ∗)

from some partition πO and function λ∗.

5.5 Decomposition algorithm

Partial model determination problem is solved as a con-
strained optimization problem. The principle is to deter-
mine an initial set of partitions satisfying the decoupling
constraint, and to determine S∗ and π using an iterative
loop, based on a scheme proposed in Shumsky [1991].
When the extended invariance condition is fulfilled, the
loop ends and the output condition and coupling con-
straint are checked. Finally, the quintuple describing Σ∗

is determined (algorithm 5.5).

Algorithm 1. Decomposition algorithm for discrete-event models

Require: Σ(S, I,O, δ, λ) {Complete system}
Require: πγ , πρ { Decomposition constraints}

π0
∗ = mδ(πγ) { Decoupled state set partition }

π̄0
∗ = mδ(πρ) { Coupled state set partition }

πλ = Mλ(O) { State set partition induced by O }
Determine πinj such that π0

∗.Mλ(πinj) = O
ξ0 = π0

∗ , i = 1 {Initialization of the iterative loop}
while ξi ≇ ξi−1 do

ξi+1 = m(ξi.πinj) + ξi

Increment i
end while
π = ξi

if π = I then
return Decoupling impossible

else
if π + πλ = I then

Output condition not satisfied by π
else

Output condition satisfied by π
end if
if π ≥ π̄0

∗ then
Coupling constraint not satisfied by π

else
Coupling constraint satisfied by π

end if
return Σ∗(S∗ = π, I∗ = (Ic × πinj , O∗ = πO, δ∗, λ∗)

end if

6. ILLUSTRATION

Consider a sequential machine Σ described by the table
1. Σ is a five state model, with two known inputs, two

a b f g o

1 2 4 5 1 O

2 2 4 2 2 O

3 3 5 3 3 Q

4 3 4 4 3 Q

5 3 1 5 5 N

Table 1. Transition table of the model Σ

unknown inputs f and g and three outputs {O,Q,N}. g

represents the fault we want to detect and occurrence of
the event f must be ignored. Therefore, Σ is going to be
decomposed in order to obtain the partial model decoupled
from Iγ = {f} and coupled to Iρ = {g}.

The input set partition decoupled from Iγ is given by

πγ = {{i0, f}, {a}, {b}, {g}}

The corresponding state set partition is given by

π0
∗ = mδ(πγ) = {{1, 5}, {2}, {3}, {4}}

The greatest partition π which fulfills the invariance con-
dition is obtained by iteration :

ξ0 = π0
∗

ξ1 = ξ0 + m(ξ0) = {{1, 4, 5}, {2, 3}} ≇ ξ0

ξ2 = ξ1 + m(ξ1) = {{1, 2, 3, 4, 5}} ≇ ξ1

ξ3 = ξ2 + m(ξ2) = {{1, 2, 3, 4, 5}} ∼= ξ2

Since ξ3 ∼= ξ2 then π = {{1, 2, 3, 4, 5}} = I. In this
case, the decomposition is impossible with the decoupling
constraints from πγ .

A solution may be obtained using output injection. There
is three outputs generated by Σ : {O,Q,N}. We don’t
need to inject all the outputs. The outputs to be injected
are a partition πinj of O = {O,Q,N} such that

π0
∗.Mλ(πinj) = O

Two partitions of outputs are possible : {{O,Q}, {N}}
and {{O}, {Q,N}}. We choose the first one πinj =
{{O,Q}, {N}}. Choosing the second partition will lead to
a similar result. The decomposition algorithm is resumed
at the π determination step. The greatest partition π
which fulfills the invariance condition with output injec-
tion is obtained by the following iteration :

ξ0 = π0
∗

ξ1 = ξ0 + m(ξ0.πinj) = {{1, 5}, {2}, {3}, {4}} ∼= ξ0

Since ξ1 ∼= ξ0 then π = ξ1. The decomposition with a
decoupling constraint is possible using π .

The verification step consists in the test of the output
condition and the coupling to Iρ = {g}.

State set partition induced by the output is obtained by

πλ = {{1, 2}, {3, 4}, {5}}

The output condition is fulfilled by π since

π + πλ = {{1, 2, 5}, {3, 4}} 6= I

To test the coupling constraint, the partition πρ which
decouples Iρ is calculated :

πρ = {{i0, g}, {a}, {b}, {f}}

The corresponding state set partition is given by

π̄0
∗ = mδ(πρ) = {{1}, {2}, {3, 4}, {5}}

Coupling constraint is fulfilled because

π̄0
∗ � π

Finally, partial sequential machine Σg is determined using
the decomposition partition π. The input set of the partial
machine is given by

I ′ ={aO = {a, {O,Q}}, bO = {b, {O,Q}}, . . .

. . . , aN = {a, {N}}, bN = {b, {N}}}
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The state set is given by

S′ = {1′ = {1, 5}, 2′ = {2}, 3′ = {3}, 4′ = {4}}

and the output set is

O′ = {{O,Q}, {N}}

The state function δ′ and the output function λ′ are shown
through the transition table 2. Output value O′ of Σ∗ dis

aO aN bO bN g o’

1’ 2’ 3’ 4’ 1’ 1’ O’

2’ 2’ 2’ 4’ 4’ 2’ O’

3’ 3’ 3’ 1’ 1’ 3’ Q’

4’ 3’ 3’ 4’ 4’ 3’ Q’

Table 2. Transition table of Σg

equivalent to both output values O or N for Σ and output
value Q′ is equivalent to Q. For example, if the current
output of Σ is O or Q and the output of Σ∗ is O′ then
outputs are consistent.

6.1 Simulations

Simulation results are provided here. The model Σ is
excited by two sequences of known and unknown inputs,
the first one contains several occurrences unknown input
f and the second one contains occurrences of the unknown
input g. Sequences composed of known inputs (a, b) of seq1

and seq2 combined with outputs from Σ are injected into
the decoupled partial model Σ∗. Outputs are compared
and a discrepancy indicator sequence is computed. The
analysis of the discrepancy indicator sequence permits to
detect the event g.

Input sequence containing f The first injected sequence
is given by

seq1 = [a, b, a, b, b, f, a, b, a, b, b, f ]

Outputs of Σ and Σ∗ are shown figure 1.
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Fig. 1. Simulations for the first sequence

An unknown input f appears at the 6th iteration (Figure
3.a). Outputs of Σ and Σ∗ remain coherent after f occurs,
so the discrepancy indicator (Figure 3.b) remains nil.

Input sequence containing g The second injected se-
quence is given by

seq2 = [a, b, g, a, b, b, a, b, g, a, b, b]

Outputs of Σ and Σ∗ are shown figure 2. The unknown
input g appears at the 3rd and the 9th iterations (Figure
4.a). Outputs of Σ and Σ∗ remain consistent until the first
occurrence of event g after what they become inconsis-
tent. The discrepancy can be seen through the indicator
(Figure4.b).
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Fig. 2. Simulations for the second sequence

7. CONCLUSION

In this paper, constrained decomposition of sequential
machines is addressed. An algebraic formulation of the
problem and of the solution is presented, based on pre-
vious work on continuous-time model decoupling Berdjag
et al. [2006]. It is important to notice that the algebraic
formalism used to implement the decomposition remain
the same in the case of continuous-time models Berdjag
et al. [2006].

While the plain decomposition of sequential machines
cannot be considered as a contribution, the introduction of
a decoupling constraint is new to the best our knowledge.
The resulting decoupled partial model can be used to
detect unexpected events in a process using a discrete-
event model. Another contribution is the use of the output
injection technique to extend invariance condition in the
decomposition methodology.

Future works of authors addresses the decomposition of
mixed dynamic models known as hybrid models.
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