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Abstract: This paper discusses an improved method for solving multiple objective optimal
control (MOOC) problems, and efficiently obtaining the set of Pareto optimal solutions. A
general MOOC procedure has been introduced in Logist et al. [2007], to derive optimal generic
temperature profiles for a steady-state tubular plug flow reactor. This procedure is based on
a weighted sum of the different costs, and combines analytical and numerical optimal control
techniques. By varying the weights, the exact Pareto set has been obtained. However, it is known
for the weighted sum approach that a uniform variation of the weights, not necessarily leads to an
even spread on the Pareto front (and thus an accurate representation). In addition, the analytical
derivations in the proposed procedure become intractable for large-scale systems. Therefore, this
paper introduces two modifications: the use of (i) the normal constraint method (Messac and
Mattson [2004]) instead of the weighted sum, and (ii) piecewise linear approximations instead of
the analytical relations. Two examples, i.e., (i) a classic minimum time, minimum control effort
problem, and (ii) a more real-life determination of optimal temperature profiles for tubular
reactors, illustrate the enhanced performance and the general applicability of the procedure.

1. INTRODUCTION

In practical optimisation problems often several and con-
flicting objectives are simultaneously present, e.g., max-
imising the strength of a construction, while minimising
its weight. These multiple objective optimisation (MOO)
problems produce most often a set of optimal solutions
(or the Pareto set) instead of one sole. While research
on scalar MOO problems has attracted much attention
over the years (see, e.g., Marler and Arora [2004] for an
overview), much less effort is spent on multiple objective
optimal control (MOOC) problems (i.e., when an infinite
dimensional optimal control profile has to be found).

Recently, Logist et al. [2007] have proposed a procedure
which allows to derive analytical optimal profiles for an
exothermic tubular reactor under steady-state with con-
flicting conversion and energy objectives. The rationale
behind this procedure is to combine (i) a weighted sum
approach (which converts the multiple objective problem
into a single objective problem) with (ii) an analytical
control parameterisation. By varying the weights, a repre-
sentation of the Pareto frontier is obtained. The procedure
involves four steps. First, the set of all possible optimal
arcs is derived analytically. Second, approximate piecewise
constant optimal controls are computed numerically for a
coarse grid of weights. From these approximate solutions
the optimal arc sequences are each time identified. Based
on the analytical control expressions and the optimal
sequences an analytical control parameterisation is built

each time. Finally, the switching positions between the
different intervals are optimised over a refined weight grid.

However, several points for further improvement have been
noticed. First, a uniform distribution of the weights, does
not necessarily yield an equal distribution on the Pareto
front, and second, the analytical derivations involved,
become intractable for large-scale systems. Therefore, (i)
the weighted sum is replaced as approach to tackle the
multiple objective aspect, and (ii) low-order polynomials
are employed to approximate the analytical relations.

These items are structured in the paper as follows. Sec-
tion 2 mathematically formulates an MOOC problem,
and introduces typical aspects and methods for MOO.
Section 3 details the MOOC procedure by Logist et al.
[2007], and proposes modifications. Section 4 introduces
the two cases: (i) a minimum time minimum control ef-
fort problem, and (ii) the determination of an optimal
temperature profile in a tubular reactor, while Section 5
presents the results. Section 6 finally summarises the main
conclusions.

2. MULTIPLE-OBJECTIVE OPTIMAL CONTROL

2.1 Mathematical formulation

In general a multiple objective optimal control problem is
formulated as follows:

min
u(ξ), ξ∈[0,ξf ], ξf

J = (J1, . . . , Jm)T (1)
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with:

Ji = hi[x(ξf )]
︸ ︷︷ ︸

Terminal cost

+

ξf∫

0

gi[x(ξ), u(ξ)]dξ

︸ ︷︷ ︸

Integral cost

subject to the system equations:

dx

dξ
= f [x(ξ), u(ξ), ξ] (2)

the boundary conditions:

0 = I[x(0)] (3)

0 = S[x(ξf )] (4)

and the path constraints on the states and control:

0≥C1[x(ξ)] (5)

0≥C2[u(ξ)] (6)

Let U be the feasible region, i.e., the set of all admissible
controls u(ξ), which induce admissible state trajectories
x(ξ). A feasible control is said to be inside the feasible
region, when no control or path constraint is active.

2.2 Multiple objective optimisation: concepts and methods

Contrary to single objective optimisation, typically no
single global solution exists in multiple objective optimisa-
tion. Therefore, it is necessary to determine a set of points
that all fit a predetermined optimality definition, which is
most often the concept of Pareto optimality.

Definition: A control u∗ ∈ U , is Pareto optimal iff
there does not exist another control, u ∈ U , such that
J(u) ≤ J(u∗) and Ji(u) < Ji(u

∗) for at least one cost.

In other words, a control is said to be Pareto optimal if
there exists no other control that improves at least one
objective function without worsening another.

Solution methods for MOO problems are broadly classified
in two categories. A first class transforms the MOO prob-
lem into a single objective optimisation problem. Then,
by varying parameters of the methods involved, often a
representation of the Pareto set is obtained. This class
includes the classic weighted convex sum of the different
objectives, but also encompasses novel methods as normal
boundary intersection (Das and Dennis [1998]), or (nor-
malised) normal constraint (Messac and Mattson [2004]).
These last two use a geometrically intuitive approach to
obtain a uniform spread on the Pareto front when the
parameters are uniformly varied. Hereby, the former in-
troduces additional equality constraints, whereas the latter
only requires additional inequality constraints. The second
class of solution methods, amongst which, e.g., genetic
algorithms, have been found to be able to generate the
Pareto set directly from the multiple objective formulation
(Konak et al. [2006]). For more details on MOO methods
the reader is referred to a survey by Marler and Arora
[2004].

3. SOLUTION STRATEGY

This section presents the original procedure by Logist
et al. [2007] to compute the Pareto set, and proposes two
modifications.

3.1 Original solution strategy

The original procedure is based on a weighted sum ap-
proach and involves four successive steps.

In step 1, analytical expressions for all possible optimal
control arcs are calculated using analytical techniques
from, e.g., Kirk [1970] and Srinivasan et al. [2003]. The
derivation of possible optimal controls inside the feasible
region is performed by eliminating the costates from the
necessary conditions for optimality. This elimination can
be done explicitly, for a control affine Hamiltonian by using
Pontryagin’s minimum principle (Pontryagin et al. [1962],
Kirk [1970]), or implicitly, by a determinant procedure
(Srinivasan et al. [2003]) for non-affine Hamiltonians. Con-
trol arcs which keep a constraint active, as well as the
corresponding tangency conditions, are found by differenti-
ating the active constraint with respect to the independent
variable, and substituting the system equations until the
control appears explicitly.

In step 2, approximate optimal control profiles are deter-
mined numerically for a coarse grid of weights. Hereto,
a numerical optimal control approach with a piecewise
constant control parameterisation is adopted. Here, the
software package MUSCOD-II (Leineweber et al. [2003])
is used, which implements a direct multiple shooting ap-
proach (Bock and Plitt [1984]).

In step 3, the optimal arc sequences present in the
numerically obtained optimal control profiles are identified
by visual inspection. This human intervention is, however,
not a restriction as an automated identification procedure
(Schlegel and Marquardt [2006]) can also be used.

Finally, in step 4, the control parameterisation is re-
fined based on the identified optimal sequence using the
analytical expressions. These analytical parameterisations
with the switching positions between the different arcs
as degrees of freedom, are then optimised on a refined
grid, assuming the optimal arc sequence does not change.
When neighbouring analytical parameterisations are dif-
ferent (i.e., a different optimal sequence of arcs), both
sequence types have to be optimised over the refined grid,
and the one yielding the lowest cost value has to be
selected. Also here MUSCOD-II is employed as software
environment.

3.2 Modifications

As the weighted sum exhibits some intrinsic drawbacks, it
is replaced by the normal constraint method. This method
is preferred over normal boundary intersection as it adds
inequality instead of equality constraints. In the normal
constraint method, also a series of optimisations has to
be performed for a grid of parameters in order to obtain
the Pareto set. Note that this modification only alters the
computational steps, i.e., step 2 and 4.
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As the analytical calculations become tedious for large-scale
systems, this step can be omitted. The different arc types
are still identified based on a piecewise constant control
approximation, but a limited number of low-dimensional
polynomials is now employed instead of the analytical
relations. Although this representation induces approxi-
mation errors since the control is not exact any more, the
deviations in cost with respect to the exact values are often
small.

4. CASE STUDIES

4.1 Minimum time - minimum control effort problem

To illustrate the general applicability of the procedure, the
problem of transferring a car from an initial position to a
specified target in minimum time, and with a minimum
control effort is considered. For instance, the following
dynamic model may approximate the driving of the car,

dx1

dt
= x2 (7)

dx2

dt
= u (8)

where the position x1 [m], and the velocity x2 [m/s] are
the states, and the control u is the acceleration [m/s2],
which is in practice controlled by pushing the accelerator,
or hitting the brakes. Note that in this case the time t [s]
is the independent variable in the ODEs.

The aim is to drive 400 m, starting and ending at rest:

x1(t = 0) = 0 m and x1(t = tf ) = 400 m (9)

x2(t = 0) = 0 m/s and x2(t = tf ) = 0 m/s (10)

while minimising on the one hand, the control effort
for accelerating (which can by interpreted as the fuel
consumption):

J1 =

tf∫

0

max(0, u)dt, (11)

and on the other hand the (scaled) travelling time:

J2 =
tf
K

=

tf∫

0

1

K
dt (12)

with K = 20. These are obviously conflicting objectives
since a small travelling time requires a high speed, and,
hence, also a large consumption of fuel for reaching this
velocity. Since infinitely fast accelerating and decelerating
is impossible, the control is bounded between:

−5 m/s
2
≤ u(t) ≤ 5 m/s

2
. (13)

Additional constraints, are a speed, and a time limit:

x2(t)≤ 40 m/s (14)

tf ≤ 100 s. (15)

Table 1. Process parameters.

Cin = 0.02 mole · L−1 Tmin = 280 K
E = 47092.5 J · mole−1 Tmax = 400 K
k0 = 106 s−1 Tw,min = 280 K
K = 250000 Tw,min = 400 K
L = 1 m v = 0.1 m · s−1

R = 8.3145 J · mole−1
· K−1 β = 0.2 s−1

Tin = 340 K δ = 0.25

4.2 Tubular reactor problem

The investigated reactor is a jacketed tubular plug flow
reactor with a fixed length L [m], which operates under
steady-state conditions. Inside the reactor an exothermic
irreversible first-order reaction takes place:

dx1

dz
=

α

v
(1 − x1)e

γx2
1+x2 (16)

dx2

dz
=

αδ

v
(1 − x1)e

γx2
1+x2 +

β

v
(u − x2) (17)

with x1 = (Cin −C)/Cin, the dimensionless concentration
C [mole · L−1] [-], x2 = (T −Tin)/Tin [-], the dimensionless
reactor temperature T [K], and u = (Tw −Tin)/Tin [-], the
dimensionless jacket temperature Tw [K]. The constants
α, β, γ, and δ are defined as follows:

α = k0e
−E

RTin , β =
4h

ρCpd
, γ =

E

RTin

, δ = −
∆H

ρCp

Cin

Tin

,

The exact parameter values are provided in Table 1. As
the jacket temperature Tw is in practice often used to
control the reactor, this variable is selected as the control
u(z). Note that the spatial coordinate z [m] is now the
independent variable. The aim is to derive a jacket fluid
temperature profile that minimises the reactant concen-
tration at the outlet (i.e., maximises conversion):

J1 = Cin(1 − x1(L)) (18)

while minimising the terminal heat loss:

J2 =
T 2

inx2
2(L)

K
. (19)

These are conflicting goals since high temperatures favour
conversion. To avoid hazardous situations explicit bounds
are added on the reactor and the jacket temperature.

x2,min ≤ x2(z)≤ x2,max (20)

umin ≤ u(z) ≤ umax (21)

5. RESULTS

First, the analytical results are discussed. Then, the effect
of using the normal constraint method instead of the
weighted sum is illustrated. Afterwards, the influence of
employing low-order polynomials instead of the analytical
relations is presented.

5.1 Analytical results

As mentioned, the first step consists of analytically de-
riving the set of optimal arcs. For brevity the symbolic
calculations have been omitted, and only the results are
provided (see Table 2 for an overview).
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Table 2. Analytical relations for the different case studies.

Control Car problem Tubular reactor

At control bounds umin(z) -5 m/s2 (Tw,min − Tin)/Tin

umax(z) 5 m/s2 (Tw,max − Tin)/Tin

At state bounds upath(z) 0 m/s2 x2 −

αδ
β

(1 − x1)e
γx2
1+x2

@ x2,max = 40 m/s @ x2,min = (Tmin − Tin)/Tin or @ x2,max = (Tmax − Tin)/Tin

Inside feasible region uinside(z) 0 m/s2 impossible

For the car problem, the set contains the following four
elements: umin, umax, upath = 0 m/s2, and uinside =
0 m/s2. Here, the first two are the upper and lower limit
on the acceleration. The third one, i.e., nor breaking, nor
accelerating, is required to maintain a constant velocity in
order to stay on the upper speed limit. By chance this is
also the relation for a control inside the feasible region.

The possible arcs for the tubular reactor have been derived
in Logist et al. [2008], and involve: (i) the upper and lower
limit of the jacket fluid temperature (umin and umax), (ii)
and a nonlinear relation upath to keep the reactor at its
lower or upper temperature limit (x2,min or x2,max). For
this case, an arc inside the feasible region is impossible.

5.2 Normal constraint vs. weighted sum

For both (bi-objective) problems, the convex weighted
sum results in a single scalar cost J = (1 − A)J1 + AJ2

which involves a trade-off parameter A. By varying A from
zero to one, the Pareto set can be obtained. The normal
constraint method, however, introduces parameters to
move in the utopia hyperplane (i.e., the plane that connects
all individual minima in the cost space). In the current
situation only one parameter W ∈ [0, 1] is required to move
along the utopia line. Thus, varying W between zero and
one leads here to a representation of the Pareto front.

In both approaches a uniform grid of 11 points is employed
for the parameter A or W in order to construct an
approximation of the Pareto set.

The resulting Pareto frontiers for the car problem are
depicted in Fig. 1. Clearly, the normal constraint method
yields a more uniform spread, and, hence, a more accurate
representation. The corresponding optimal control profiles
are displayed in Fig. 2, while the state trajectories based on
the normal constraint method can be found in Fig. 3. Note
that for visibility reasons the time axis has been scaled by
the final time tf . As can be seen, both methods yield an
optimal control sequence of umax-upath-umin for high A-
or W -values. This situation corresponds to accelerating
as fast as possible until the speed limit x2,max is reached.
Then, this speed has to be maintained for a while, whereas
towards the end, the brake is hit as hard as possible
in order to arrive at rest at the destination. For higher
values, however, an arc inside the feasible region uinside

replaces the path constrained arc upath. In these cases, an
intermediate velocity x2,intermediate is maintained after an
initial acceleration, in order to limit the fuel consumption.
It is also clear from Fig. 2 that the control profiles obtained
from the normal constraint method yield a more gradual
evolution between the two extremes.
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Fig. 1. Car problem: Pareto set generated by weighted sum
(top) and normal constraint (bottom).
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Fig. 2. Car problem: control profiles obtained with:
weighted sum (top) and normal constraint (bottom).
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Fig. 3. Car problem: state profiles obtained with normal
constraint: distance (top) and velocity (bottom).

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7805



Similar conclusions apply to the plug flow reactor case (see
Fig. 4). A uniform grid of weights A results in a highly
skew distribution on the Pareto front, whereas the normal
constraint yields an accurate approximation. Figs. 5 and 6
display the optimal control profiles for both methods, and
the state profiles corresponding to the normal constraint
results, respectively. Clearly, the optimal jacket fluid tem-
perature profiles consist of a sequence umax-umin-upath-
umin, where the last min interval shrinks (and eventually
vanishes) for decreasing A- or W -values. The explanation
is that heating the reactor as fast as possible, and main-
taining the upper reactor temperature limit, stimulates
conversion, whereas cooling the reactor towards the outlet
reduces the terminal heat loss. Also here, the control pro-
files generated by the normal constraint method, exhibit
a more gradual evolution between the two extreme cases.

In summary, the normal constraint method outperforms
the classic weighted sum approach. Although, the pre-
sented cases only involve two objectives, the procedures
are extendable to more objectives. However, this will lead
to more parameters to be varied and, hence, larger com-
putation times.
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Fig. 4. Plug flow reactor: Pareto set generated by weighted
sum (top) and normal constraint (bottom).
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Fig. 5. Plug flow reactor: control profiles obtained with:
weighted sum (top) and normal constraint (bottom).
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Fig. 6. Plug flow reactor: state profiles obtained with
normal constraint: concentration (top) and reactor
temperature (bottom).

5.3 Polynomial approximations vs. analytical relations

In this section the approximation error is studied when
polynomials are employed in step 4 of the original proce-
dure instead of the exact analytical relations. Since only in
the plug flow reactor exhibits a nonlinear arc, i.e., upath,
this case is concentrated on.

Several approximations are proposed and their parameters
are determined by minimising the total weighted sum
for A = 0.5. PWL1 is a single linear function, while
PWL2 consists of two continuous piecewise linear parts.
The original analytical parameterisation (AP) has three
degrees of freedom (i.e., the switching positions), whereas
PWL1 and PWL2 add, respectively, one and two slopes as
parameters to be optimised. For reasons of comparison,
also PWC5U and PWC5ZU are selected. The former
consists of a uniform piecewise constant approximation
with five control interval of fixed length (i.e., five degrees
of freedom). The latter allows also an optimisation of the
interval lengths (i.e., nine degrees of freedom).

Fig. 7 displays the analytical solution and the resulting
optimised profiles for the different approximations. Fig. 8
depicts the corresponding concentration and reactor tem-
perature profiles. Here, it is observed that PWL2 approx-
imates AP fairly well. PWL1 on the other, experiences
more problems since it possesses one degree of freedom
less, and apparently squeezes the little min control part.
Although both PWC5U and PWL2 have an equal number
of degrees of freedom, PWC5U does not succeed in pro-
viding an accurate approximation. Allowing free interval
lengths (PWC5ZU), however, introduces more flexibility
and results in a more accurate representation. The same
trend is observed, when the total cost values are displayed
for a range of trade-off values (Fig. 9). The AP yields
the lowest cost, but the increase for PWL2 and PWC5ZU
is limited. PWL1 and PWC5U on the other hand, cause
significant cost increases. Thus, employing a few piecewise
linear parts instead of analytical relations often only in-
duces small increases in the cost. Consequently, the analyt-
ical derivations of step 1 can be omitted, which enables the
applicability of the proposed procedure to larger systems.
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Fig. 7. Plug flow reactor: optimised control approxima-
tions.
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Fig. 8. Plug flow reactor: concentration (profiles) and
temperature profiles (bottom).
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Fig. 9. Plug flow reactor: total cost for different optimised
approximations.

6. CONCLUSIONS

This paper has proposed two improvements to the general
strategy for solving multiple objective optimal control
(MOOC) problems, introduced by Logist et al. [2007].

First, the weighted sum approach has been replaced by the
normal constraint method, which enables an even spread
along the Pareto set by uniformly varying the method’s
parameters. This modification allows a more efficient com-
putation. Second, the symbolic derivations required to ob-

tain analytical expressions for the set of optimal arcs may
be omitted, since low-dimensional polynomials may pro-
vide an accurate approximation of the analytical control,
and induce only a small increase in cost when optimised.
Hence, large systems for which the symbolic calculations
are intractable, can now be treated.

The two adaptations have been illustrated for a classic
minimum time minimum control effort problem and a
more real-life tubular reactor case study. Consequently,
the strategy has been shown to be flexible, general, and
not restricted to a particular MOOC problem.
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