
Practical Considerations for Override Compensator

Synthesis and Implementation ⋆

Phil March ∗ Matthew Turner ∗∗

∗ Department of Engineering, University of Leicester, University Road,
Leicester. LE1 7RH, UK (e-mail: pm57@ le.ac.uk).

∗∗ Department of Engineering, University of Leicester, University Road,
Leicester. LE1 7RH, UK (e-mail: mct6@ le.ac.uk).

Abstract: This paper discusses some of the practical considerations involved in the synthesis and
implementation of override compensators for systems which have outputs constrained to lie below
certain thresholds. The paper assesses three different override architectures: the first, a generic override
control scheme from the literature; the second, a sub-class of the first which offers easier tuning and
implementation at the expense of flexibility; and the third, a new modification of the generic scheme
which is more flexible than the second, but of similar complexity. The various schemes are demonstrated
and compared using a simulation case-study of a permanent-magnet-synchronous-motor speed control
system.

1. INTRODUCTION

Override compensators belong to the class of control strategies
which are not used for primary control but are “retro-fitted”
to existing controllers in order to enhance their performance
or capabilities in some way. Perhaps the best known example
of these retro-fitted control elements are the so-called anti-
windup compensators which are added to a control system
to deliver better performance and stability properties when
actuator saturation is thought to be a problem. In a similar way,
override compensators are retro-fitted to controllers which may
be good in enforcing performance requirements on a certain set
of “primary” controlled outputs, but in the process of doing so,
allow a set of “secondary” outputs to stray outside some pre-
specified set of limits. The function of the override compensator
is to ensure that these secondary output limits are violated
as little as possible, while ensuring the goals of the existing
baseline controller are affected as little as possible. A good
introduction to override compensation is provided in Glattfelder
et al. [2004].

There are a number of different override compensation methods
available in the literature ranging from simple ad-hoc meth-
ods born out of early industrial applications, for example in
Glattfelder et al. [2003], to more sophisticated and powerful
modern methods born out of optimal control theory. Many of
the simple ad-hoc methods are intuitive and can essentially be
designed by hand, although their application can be limited to
relatively simple problems. In some of these early procedures,
nonlinear stability is also not considered in the design phase
and, rather, is ascertained purely a postiori. In contrast some
of the modern methods, for instance in Turner et al. [2002a],
encompass a much larger set of override compensator config-
urations and nonlinear stability is catered for directly in the
design algorithms and systematic synthesis routines have been
devised to simplify the design process.

⋆ This work was supported by the Engineering & Physical Sciences Research

Council and TRW Automotive Ltd.

Despite this, these recently introduced modern methods, suffer
from greater complexity than their ad hoc counterparts, which
can make tuning more difficult and impede implementation.
In particular, the method discussed in Turner et al. [2002a]
advocates feeding override signals directly into the controller
state equation, restricting its application to modern controllers
in which the state-space realisation is known. Furthermore this
method contains little guidance on which override signals play
the more important role in constraining the secondary outputs
from exceeding their limits, which may complicate tuning.

The aim of this paper therefore is to address some of the prac-
tical issues associated with the design, tuning and implementa-
tion of override compensators. In particular a new modification
of the architecture proposed in Turner et al. [2002a] is devel-
oped, which is thought to have advantageous properties with
respect to implementation. With the aid of a permanent-magnet-
synchronous-motor (PMSM) simulation case study, it is shown
how the choice of override architecture can considerably influ-
ence the design and performance of the compensator.

2. GENERIC OVERRIDE CONTROL PROBLEM

Κ G

Φ

c

y
~

r

+
−

φ

y

y

Fig. 1. Override compensation generic framework

A generic override control system is depicted in Figure 1. In
this diagram, G(s) represents the plant to be controlled with
y ∈ R

ny representing the set of measured outputs used by
the baseline controller, K(s), and yc ∈ R

q representing the

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 1165 10.3182/20080706-5-KR-1001.3066



set of outputs which we wish to limit. The plant’s state-space
realisation is given by

G(s) ∼

{

ẋp = Apxp + Bpu + Bpdd
y = Cpxp + Dpu + Dpdd

yc = Cpcxp + Dpcu + Dpdcd
(1)

In this realisation, xp ∈ R
np denotes the plant state, d ∈ R

nd ,
the disturbance acting on the plant and u ∈ R

m, the control
signal.

The linear baseline controller is assumed to have been designed
for some primary performance objectives and is also assumed
to have been designed such that the standard linear closed loop
in Figure 1 (when Φ ≡ 0) is internally stable. The controller’s
state-space realisation is given by

K(s) ∼

{

ẋc = Acxc + Bcrr + Bcy + φ1

u = Ccxc + Dcrr + Dcy + φ2
(2)

where x ∈ R
nc is the controller state and r ∈ R

nr is the
reference. The signal φ = [φ′

1 φ′

2]
′ is produced by the override

controller, Φ(s). As in Glattfelder et al. [2003] and Turner et al.
[2002a], it is assumed that this signal remains zero unless the
constrained output vector yc violates one of its limits. Violation
of output constraints is detected by comparing yc to its saturated
version, sat(yc), as shown in Figure 1; if there is a difference
the resulting signal ỹ = Dz(yc) := yc − sat(yc) will be non-
zero. When ỹ 6= 0, this then elicits a reaction from Φ(s),
hopefully to drive the signal ỹ to zero again swiftly. Note that
the presence of the saturation (or deadzone) makes the problem
nonlinear and care must be taken in making statements about
stability and performance.

Remark 1. Note that to activate Φ(s), a limit must have been
exceeded i.e. at least one element of ỹ must be non-zero. This
implies that the override scheme is mainly useful for “soft”
output limits in which limits can be exceeded slightly for
small periods of time. As Φ(s) is linear it is not possible to
ensure yc remains below its threshold for all time, in general.
However, this difficulty can be circumvented by choosing an
artificial threshold to be a little lower than the true threshold,
allowing the override controller to be activated before the
real threshold is reached. Alternatively, for high performance
applications, one might select a nonlinear override control
scheme as advocated in Herrmann et al. [2007].

The design philosophy behind override control, then, is firstly to
design a baseline controller for which the unconstrained system
satisfies the primary performance objectives, and then augment
the system with an override compensator to assist the system in
respecting certain output constraints. This can be summarised
as

Goal 1. To design Φ(s) such that

(1) The system in Figure 1 is globally asymptotically stable.
(2) If ỹ(t) = 0 ∀t ≥ 0, then φ(t) = 0 ∀t ≥ 0.
(3) ‖ỹ‖2 < γ‖[r′ d′]′‖2

Roughly speaking any Φ(s) which achieves the objectives of
Goal 1 will ensure the overall closed loop system is stable, af-
fected by the override controller only when constrained output
limits are violated, and that the L2 gain between the constrained
outputs and their saturated counterparts will be small.

Typical steps of an override compensator design process are as
follows:

(1) Design a controller which satisfies the primary perfor-
mance objectives

(2) Select additional plant outputs to constrain, and build
saturation models

(3) Choose an appropriate override architecture
(4) Synthesise an initial compensator design
(5) Tune the design with the aid of simulation testing
(6) Implement the design in hardware for practical testing

Note that in the steps above, design and implementation are
essentially treated as entirely separate processes. In addition,
initial testing is often carried out in continuous time, leaving
the practicalities of discretisation to be considered only at
the stage of implementation. The ability to treat design and
implementation separately is desirable but this property is not
provided by all compensator architectures as will be revealed in
the next section.

3. OVERRIDE CONTROL ARCHITECTURES

3.1 Architecture 1

c

G

Φ

Κ

y
~

y

y

+

φ

φ
1

2

r

Fig. 2. Override Architecture 1

The first override design architecture under consideration is
that depicted in Figure 1 which is the most general linear
override control architecture. It can be equivalently represented
as shown in Figure 2. Note that the override compensator
is given the ability to manipulate the state equation of the
controller and the controller output directly, as in (2), giving it
maximal freedom in ensuring output limits are violated as little
as possible.

This architecture is discussed extensively in Turner et al.
[2002a] and algorithms are given there which enable a com-
pensator Φ(s) to be synthesised such that the following L2 gain
bound holds

∥

∥

∥

∥

∥

[

W
1/2
1 ỹ

W
1/2
2 φ

]∥

∥

∥

∥

∥

2

< γ

∥

∥

∥

∥

[

r
d

]
∥

∥

∥

∥

2

(3)

In the above inequality, W1>0 and W2>0 are positive definite
weighting matrices chosen by the designer to trade-off the
importance of various signals in the optimisation process: W1 is
used to shift weight between particular constrained outputs and
W2 is used to limit override control activity in given channels.

Note that in this case, φ ∈ R
nc+m, making W1 ∈ R

q×q
+ and

W2 ∈ R
(nc+m)×(nc+m)
+ . Typically both W1 and W2 are chosen

as diagonal matrices, requiring q + nc + m design parameters
to be chosen.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1166



3.2 Architecture 2

c

Κ

Φ

G

y
~

r
y

y

φ

+

_

Fig. 3. Override Architecture 2

Figure 3 depicts the second override architecture in which the
override controller has restricted freedom in how it can influ-
ence the controller, K(s). It is now restricted to being allowed
to “back-off” the reference. Although this architecture sacri-
fices flexibility when compared to Architecture 1, it is often
favoured in practice due to its simplicity in both implementation
and in tuning. Architectures 1 and 2 are related by noting that,
effectively φ2 ≡ 0 in Architecture 2, making the two φ’s related
by

[

φ1

φ2

]

arch1

=

[

Bcr 0
Dcr 0

] [

φ1

φ2

]

arch2

(4)

in (2). In this case φ ∈ R
nr and hence the weighting matrix

W1 ∈ R
nr×nr

+ will often be of a lower dimension than that
in Architecture 1. Note that the advantage of this architecture
compared to Architecture 1 is that no knowledge of the state-
space realisation of K(s) is required. Providing the transfer
function of K(s) is known, Φ(s) can be designed using any
realisation because the override signal is not injected into the
state equation. This architecture may also be preferred because
the override control contribution is clearly visible from how
much the reference is “backed off”.

3.3 Architecture 3

c

G

Φ

Κ

y

y
~

y

φ

φ
1

2

r +
+

Fig. 4. Modified Override Architecture

We now propose a third compensation architecture in which the
override compensator is given authority to modify the reference
signal and the controller output (Fig. 4). This is a special case
of of Architecture 1, viz. (5), and could perhaps be described as
a middle ground between Architectures 1 & 2. It offers simpler
tuning and implementation than Architecture 1, particularly for
application to high order controllers, whilst providing increased
flexibility in the design compared to Architecture 2. The archi-
tecture can be seen to be a special case of Architecture 1 by
making the substitution

[

φ1

φ2

]

arch1

=

[

Bcr 0
Dcr I

] [

φ1

φ2

]

arch3

(5)

In this case, φ ∈ R
nr+m and thus less freedom is apparent

when compared to the original architecture (assuming nr <
nc), but obviously significantly more is available compared to
Architecture 2. Note once again, that as the override signals are
injected at the input and output of the controller, respectively, it
is possible to use this architecture without injecting signals into
the controller state equation, making it similarly attractive, in
terms of implementation, to Architecture 2.

3.4 Static and dynamic variants

As in many control applications, it is always desirable to keep
the number of states in a controller to a minimum if possible. In
override control, the first LMI-algorithm provided in Turner et
al. [2002a] allows the construction of a static override controller
i.e. Φ is simply a static matrix. In practice however, this may not
be desirable due to

i) Noise on the constrained outputs, yc(t), causing spurious
activation of the override controller Φ.

ii) Inadequate frequency shaping. Stability may be provided,
but performance could still be poor.

Therefore, it is often preferable, particularly in practice, to
include filters in the override controller. Typically these take
the form of ‘output’ filters, for filtering out noise present on
the constrained plant outputs, and ‘input’ filters, to shape the
frequency content of the override signal, φ. The dynamics of
the output filter are absorbed into the linear plant model, G,
and hence do not alter the structure of the design problem.
The dynamics of the input filter form part of the compensator

according to Φ(s) = Φ̃(s)kφ where Φ̃(s), our input filter,
is a transfer function matrix chosen by the designer and kφ

is a matrix gain to be synthesised. Although the structure of
the problem is different for static and dynamic compensation,
the same performance cost function is optimised, albeit in a
different realisation.

Note that these filters can be included in every architecture
discussed here in essentially the same manner. Frequently, both
input and output filters can be chosen as diagonal transfer
function matrices of appropriate dimensions. By ensuring the
DC gain of the filter is unity, only the bandwidths and filter
type need to be chosen. First order low pass filters are usually a
good choice.

3.5 Tuning Parameter comparison

In choosing an architecture for override control, a number of
factors are relevant. Of these, tuning parameters are particularly
important as they influence the design flexibility and complex-
ity. Table 1 shows a comparison of tuning parameters for the
dynamic compensators, assuming input and output filters are
chosen as transfer functions of the form

F (s) = diag

(

a1

s + a1
,

a2

s + a2
, . . .

)

(6)

and the weights W1 and W2 are chosen to be diagonal.

Note that Table 1 only gives typical values and, of course, the
order and structure of the filters can be arbitrary.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1167



OR Size of Size of Compensator Tuning

Arch. W1 W2 order parameters

1 q nc + m nc + m + q 2(nc + m + q)

2 q nr nr + q 2(nr + q)

3 q nr + m nr + m + q 2(nr + m + q)

Table 1. Compensator states and tuning parameters

3.6 Application to multivariable systems

All three architectures can be applied to multivariable control
systems but the merits of each differ. Architecture 1 has maxi-
mum versatility since it is able to manipulate each control input
independently. Thus, the compensator need only modify the
control inputs necessary to bring the saturating channel out of
saturation. This should assist in minimising the effect of the
override compensation on nominal control performance.

With Architecture 2, the compensator makes use of the de-
coupling already present in the controller. If this decoupling
is compatible with the override objective, this can be a very
computationally efficient way to tackle a multivariable override
problem. However, if the decoupling of the controller causes
the compensator to influence more channels than required for
bringing the system out of saturation, this approach could
unnecessarily degrade performance. This problem is expected
particularly in systems with more control inputs than reference
inputs since two or more channels must be influenced by one
reference signal.

Architecture 3 works in primarily the same manner as Architec-
ture 2 in that the compensator makes use of the existing decou-
pling present in the nominal controller. However, the extra flex-
ibility in being able to modify the control inputs directly adds a
degree of freedom to modify the decoupling. This could assist
performance for systems where the decoupling of the nominal
controller is not compatible with override compensation.

3.7 Implementation Considerations

For practical application of an override control system, the
state-space realisation used for implementing the controller and
compensator can become an important consideration. This is
particularly true when fixed point arithmetic is used since the
speed and accuracy of computation can be adversely affected
by a poorly optimised controller realisation. With fixed point
arithmetic, scaling factors are applied to each constant, signal
and state, dictating the allowable range of each signal and state,
and also the resolution of the fixed point number representation.
Thus, altering the controller realisation by the application of
state similarity transformations can enable the designer to find
the optimum balance between resolution and range.

Override compensator designs according to Architecture 1 are
dependent upon the controller realisation. This means that if the
controller realisation is changed at the stage of implementation,
the override compensator will need to be re-designed. This
may then require the state-space realisation of the compensator
and the associated scalings to be optimised. Architectures 2
and 3 are independent of the controller realisation used. Thus,
provided that an override compensator of architecture 2 or
3 provides adequate performance, their use can significantly
reduce the complexity of implementation on a fixed point
processor.

4. CASE STUDY: APPLICATION TO CURRENT
LIMITATION IN A PMSM SPEED CONTROL SYSTEM

We consider the application of override compensation to limit
the current in the Permanent Magnet Synchronous Motor
(PMSM) speed control system of March et al. [2007] and
March et al. [2008]. This control system adopts a Field-
Oriented Control (FOC) strategy in which voltages and currents
are described using two axis vector notation where the two axes,
d and q, are orthogonal. For a background on PMSM control
please consult Krishnan [2001] and Novotny et al. [2000].

For the purpose of override compensator design we consider
the controller, K, to be a linear SISO state space model which
generates the signal, iq dmd, which is the q-axis current de-
mand. This is used by a current controller as a reference for
current regulation. The plant, G, is considered to be the nonlin-
ear closed loop system consisting of the PMSM model, current
controller and phase advance controller. The plant is linearised
to give a linear model, G(s), according to the state-space de-
scription of Section 2 with input iq dmd and outputs y = wm

and yc = [id iq]
′. We consider an experimental second order

controller, K(s), which is essentially a low-pass filtered PI
design. Plant and controller matrices are given in the appendix.

The signal that we wish to constrain is the magnitude of the
current flowing in the motor. This translates to constraining the
euclidean norm of the plant states id and iq, which are d and
q-axis components of the current vector, to the limit, Imax, that
is we require

∥

∥

∥

∥

[

id
iq

]
∥

∥

∥

∥

=
√

i2d + i2q ≤ Imax (7)

Since this constraint is a nonlinear function of the states it is
incompatible with the synthesis procedures discussed earlier
which require an element-wise representation of the saturation
function. However, by defining the time-varying current limit
on iq as

īq(id) =

{
√

I2
max − i2d |id| ≤ Imax

0 |id| > Imax

(8)

Then instead of using a fixed limit saturation function in the
override control scheme, it follows that use of the above time-
varying limit in the saturation function can be used instead:
satīq(id)(yc). This scalar limit can then be used to construct the
override compensated closed loop system of Figure 5.

4.1 Performance comparisons

Figures 6, 7 and 8 show the override performance of the three
compensator architectures applied to the linear control system

Φ

Κ G
q_dmd

d

m

c q= iy

=y ω

i

i

y
~

+

φ

φ
1

2

r

Fig. 5. Override case study block diagram

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1168



0 1 2 3 4 5 6 7 8
0

0.5

1

S
p

e
e

d

 

 

0 1 2 3 4 5 6 7 8

0

1

2

C
u

rr
e

n
t

 

 

0 1 2 3 4 5 6 7 8

−6

−4

−2

0

2

Time [normalised]

O
R

 A
c
ti
o

n

 

 

y_lin

y

yc_lin

yc

yc_max

phi_1(1)

phi_1(2)

phi_2

Fig. 6. Linear simulation with OR Architecture 1

0 1 2 3 4 5 6 7 8
0

0.5

1

S
p

e
e

d

 

 

0 1 2 3 4 5 6 7 8

0

1

2

C
u

rr
e

n
t

 

 

0 1 2 3 4 5 6 7 8

0

0.2

0.4

Time [normalised]

O
R

 A
c
ti
o

n

 

 

y_lin

y

yc_lin

yc

yc_max

phi

Fig. 7. Linear simulation with OR Architecture 2

model. For consistency in comparison, all input filters were
chosen to be first order low-pass with a bandwidth of 1kHz,
and the output filters were chosen to be first order low-pass
with a bandwidth of 2.5kHz. The weighting matrix W1 was
chosen to be unity, and the elements of W2 were chosen to
be in the order of 1e−6. However, to exploit the potential of
the different architectures, some flexibility was required in W2.
Therefore, for Architecture 1, W2 = 1e−6, but for Architecture
2, W2 = diag(1e − 6, 1e − 6, 1e − 4), and for Architecture 3,
W2 = diag(1e − 6, 1e − 6).

Architecture 2 achieves a significant reduction in the violation
of the output limit compared to the nominal controller, although
the limit is still exceeded by approximately 60%. Three states
are required, two for the output (noise) filter and one for feed-

0 1 2 3 4 5 6 7 8
0

0.5

1

S
p

e
e

d

 

 

0 1 2 3 4 5 6 7 8

0

1

2

C
u

rr
e

n
t

 

 

0 1 2 3 4 5 6 7 8
−0.4

−0.2

0

Time [normalised]

O
R

 A
c
ti
o

n

 

 

y_lin

y

yc_lin

yc

yc_max

phi_1

phi_2

Fig. 8. Linear simulation with OR Architecture 3

back to the reference demand. Architecture 3 has the additional
flexibility of modifying the control signal directly with the
effect that a reduced L2 gain bound, γ, is achieved (Table
2). Feedback directly to the control signal requires one extra
state but allows the compensator to respond faster, reducing the
severity of output violation to 37%. Architecture 1 requires the
most states since it has authority to modify all controller states
and outputs but this allows a significantly lower L2 gain bound
to be achieved, resulting in much tighter control of the con-
strained output. Output violation in this simulation is reduced
to 22%.

OR Arch. L2 gain, γ Max. o/p violation (%) States

no OR n/a 138 0

1 13.72 22 5

2 27.35 60 3

3 26.78 37 4

Table 2. Performance measure comparison

Clearly, Architecture 1 provides the best performance but re-
quires more states so the computational demands for imple-
mentation are increased. In addition, since the compensator
is required to modify the controller states directly, coding is
more complex. A further complication is that a practical con-
troller implementation may require the controller realisation to
be changed. With a first order controller it is simple to scale
the override signal so the compensator will work as intended
with the new state-space realisation. However, for higher order
controllers this is non-trivial and a redesign of the override
compensator would be required.

Architecture 2 combines the simplest tuning with the simplest
implementation. Such designs often perform well and and do
not require access to signals within the controller, making im-
plementation simple. The number of states required for imple-
mentation does not rise if a higher order controller is used, and a
change to the controller realisation has no effect on the function
of the compensator.

Architecture 3 adds an extra level of flexibility in tuning over
Architecture 2 which may improve performance. Implemen-

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1169



tation is quite simple, requiring only one additional state per
control signal and access to these signals. Again, the function
of the override compensator is independent of the controller
realisation.

5. CONCLUSION

This paper has presented some of the practical issues regarding
the implementation of override compensators designed using
the formulae of Turner et al. [2002a]. In addition, guidelines
have been given on the choice of architecture, and a modified
architecture has been proposed which can provide an appealing
compromise between performance and simplicity of design and
implementation for systems with controllers of order greater
than one.

The generic architecture, Architecture 1, has maximum flexi-
bility over the structure of the compensator and so promises the
lowest L2 gain performance level. However, the order of the
compensator can be high and the tuning can be more complex.
In addition, because the compensator directly alters the con-
troller states, if a change in the controller realisation is desirable
at the implementation stage, a redesign of the compensator is
required.

Architecture 2 has the benefit of simplest synthesis and requires
the least number of states for implementation. In addition,
the function of the design is independent of the controller
realisation used, and so the implementation stage in the process
of design and verification can be tackled separately to those of
synthesis and tuning. However, the L2 gain performance bound
achieved can be limited due to the compensators inability to
manipulate the controller states individually and its inability to
directly alter the controller output.

Architecture 3 functions very similarly to Architecture 2 but
with the additional flexibility of being able to directly alter the
control signal. This can help to improve performance without
significantly increasing the complexity of implementation or
tuning. The function of this type of compensator is also inde-
pendent of the controller realisation used.

REFERENCES

A.H. Glattfelder and W. Schaufelberger. A path form anti-
windup to override control. 6th IFAC Symposium on Nonlin-
ear Control Systems (NOLCOS 2004), Vol. 3, pp. 1379-84.

A.H. Glattfelder and W. Schaufelberger. Control systems with
input and output constraints. Springer, 2003.

G. Herrmann, M.C. Turner and I. Postlethwaite. A robust
override scheme enforcing strict output constraints for a class
of strictly proper systems. Automatica, to appear, 2007.

R. Krishnan. Electric motor drives, modelling, analysis &
control. Prentice Hall, 2001.

A. Aceves Lopez and J. Aguilar Martin. Using multivariable
nonlinear stability theory for override control systems. Pro-
ceedings of the European Control Conference, 1999.

P. March and M.C. Turner. Anti-windup compensator de-
signs for permanent magnet synchronous motor speed reg-
ulation. International Electric Machines and Drives Confer-
ence, 2007.

P. March and M.C. Turner. Anti-windup compensator designs
for permanent magnet synchronous motor speed regulation.
IEEE Transactions on Industrial Applications, submitted for
journal publication, 2008.

D.W. Novotny, and T.A. Lipo. Vector control and dynamics of
AC drives. Oxford Science Publications, 2000.

M.C. Turner and I. Postlethwaite. Output violation compensa-
tion for systems with output constraints. IEEE Transactions
on Automatic Control, Vol. 47(9), pp.1540-1546, 2002.

M.C. Turner and I. Postlethwaite. Output violation compen-
sation for systems with output constraints. University of
Leicester Technical Report 02-02, March 2002.

Appendix A. LINEAR PLANT AND CONTROLLER
MATRICES

The linear plant model is parameterised by the following
matrices.

Ap =











−2.844 1.263 −0.009809 −0.158 0.05071
8.07 −136.9 118.2 261.2 −33.44
3.53 −145 −117 −35.66 175.9
7.564 −278.5 −487 −1312 −329.8
−3.429 116.1 213.1 1255 −1362











Bpd =











1.543
−2.204
−0.9575
−2.052
0.9302











Bp =











−0.001138
−0.008051
0.004471
0.03089
−0.03901











Cp = [−1.542 0.3585 0.03594 0.0286 −0.002264 ]

Cpc =

[

−0.0008787 −0.3851 −0.5068 1.028 0.8355
0.05575 −2.14 0.8116 1.776 −0.4106

]

Dpd = Dp = 0 Dpdc = Dpd = [ 0 0 ]
′

The experimental second order controller state-space
model is parameterised by the following matrices.

Ac =

[

0 0
0 −200

]

Bcr = −Bc =

[

2.56
−9.769

]

Cc = [ 5.219 −9.769 ]

Dcr = −Dc = 0

Appendix B. AMENDED STATE SPACE MATRICES
FOR COMPENSATOR SYNTHESIS ACCORDING TO

ARCHITECTURE 3

B̄ =

[

0 Bp∆̃
Bcr Bc∆Dp

]

D̄y = [ 0 ∆Dp ]

D̄ =
[

0 Dpc∆̃
]

L ∈ R(nr+m)×q

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1170


