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Abstract:

Impact of a bad power quality on customers has motivated the development of a classification
strategies to identify sags (short duration voltage falls in the power system) and assist the
location of its origin. The paper proposes a new method to classify voltage sags registered in
distribution substations based on the combination of statistical and reasoning methods. The
goal is to associate a sag waveform with its origin (Medium Voltage -MV- or High Voltage
-HV-) in the network. Multiway Principal Component Analysis (MPCA) is used as dimension
reduction strategy whereas Case Based Reasoning (CBR) is applied in this projection space to
retrieve events previously registered and diagnosed. Capability of the proposed method has been
demonstrated with data gathered in five different substations of the power system in Catalonia

(Spain).

1. INTRODUCTION

Nowadays, the electricity dependence of industries, com-
merce and services has provoked the regulation of power
quality. The objective is to reduce damages or misbehav-
iors to consumer devices and/or processes. From gener-
ators to customers, the voltage waveform can suffer al-
terations that affect quality. Origin of such alterations
can be associated to multiple agents involving the normal
operation of the network (firing protections, switching
taps and lines,etc.), external agents (animals, vegetation,
weather,etc.) or due to the operation of specific loads (mo-
tors, capacitor banks,etc.). This alteration of the sinusoidal
wave is usually transmitted to the electrical system [2] and
the responsibility of possible damages caused to customers
is usually assigned to the utilities. In order to delimitate its
responsibility an at same time improve system knowledge
and management, the utilities are monitoring the networks
and promote the development of intelligent strategies to
improve the capabilities of such a monitoring systems. Sag
coordination charts are used with this proposal to classify
registered sags in several categories according to its depth
and duration. In a similar way power quality surveys are
created with data from multiple monitors gathered during
long periods of time (one or plus years) to evaluate the
quality of power systems. Other strategies try to improve
power quality monitoring by focusing on the accurate
analysis of disturbances. Wavelet decomposition [8, 11, 15]
or attribute based description of disturbances [12] has been
used with this aim.

Principal Component Analysis (PCA) and, more recently,
its extension Multiway PCA (MPCA) have been used for
fault diagnosis and monitoring of complex processes in
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the industry by exploiting existing historical data [16].
Dimensionality reduction by preserving the variability of
original data is in the core of such a techniques. Similarly,
Case Based Reasoning (CBR) has been demonstrated to
be an efficient technique for problem solving based on the
reuse of previous experiences. A new problem is matched
against a set of cases stored in the case base and the
most similar ones are retrieved and reused, after a revision
stage, to solve the former [1]. Both techniques, MPCA
and CBR, have been combined to determine the origin of
sags registered in distribution substations. Cases have been
defined in the projection space resulting from applying
MPCA models to rms current and voltage waveforms of
registered sags.

The article is organized in VI main sections. In section II
a complete description of the problem to be solved and
specific goals are presented. A brief review of the MPCA
and CBR concepts is given in section III. Section IV is
devoted to present the proposed methodology involving
MPCA and CBR. Finally, Section V and VI present the
main results and conclusions respectively.

2. PROBLEM OVERVIEW AND OBJECTIVES

Several types of disturbances are known to cause problems
in the performance of electric equipment. Swells, sags,
harmonic distortions and momentary interruptions are
the most common. Among them, voltage sags are the
most significant according to their severity, number of
occurrences per year and effects on customers. A sag is a
reduction in the voltage, usually below 90% of the nominal
voltage level, lasting from a few cycles up to a few seconds
affecting one, two or three phases. The evolution of RMS
value of sag is represented in Fig.1.

Their origin can be either in the transmission or the dis-
tribution system and they propagate through the network
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Fig. 1. Voltage Sag: evolution of rms voltage and current

to customers. Typical causes are short circuits, lightning
during storms, defective wiring, grounding problems or
the connection of large loads. Based on the sag duration
and its magnitude, several works have been performed to
characterize and classify sags.

The objective in this work is to evaluate sags waveform
and decide whether a voltage sag has occurred in the
Medium Voltage (MV) system or in the High Voltage (HV)
system of the electrical network. A combination of MPCA
and CBR has been used with this purpose working on
data gathered in real substations by using power quality
monitors.

3. THEORETICAL BACKGROUND

In this section, we present a summary of both MPCA and
CBR which have been used for developing the proposed
hybrid method in this paper.

3.1 Principal Component Analysis (PCA)

The most extended tool for data compression and infor-
mation extraction is the Principal Component Analysis
(PCA). It finds combinations of variables or factors de-
scribing major trends in a data set [3]. That is, PCA is con-
cerned with explaining the variance-covariance structure
through a few linear combinations of the original variables.
Its general objectives are data reduction and interpretation
[5]. Multivariate data can be organized in variables and
samples or observations per variable (X). The covariance
matrix, S, of X determines a set of orthogonal vectors,
called loading vectors:
1

_ T
§=——X'X (1)

which are calculated by solving the stationary points of

the optimization problem [14]:
maz vTXT Xv
v#0

This can be computed via the singular value decompo-
sition for obtaining a diagonal matrix XeR™>*™ which

2)

vTy

contains the nonnegative real eigenvalues of decreasing
magnitude. Selecting the columns of the loading matrix
PeR™*™ to correspond to the loading vectors associated
with the first a singular values, the projections of the
observations in X onto the lower dimensional space are
contained in the score matrix:

T=XPT (3)

and the projection of T' back onto the m-dimensional
observation space:

X =1PT (4)

The difference between X and X is the residual matrix £
[14]. Thus, the first principal component is defined as the
linear combination t; = Xp; which has maximum variance
subject to | p; |= 1. The second principal component is
the linear combination defined by t5 = Xpo which has the
next greatest variance subject to | po |= 1 and subject
to the condition that it is uncorrelated with (orthogonal
to) the first principal component (¢1). Up to N princi-
pal components are similarly defined [6]. The principal
components represent the selection of a new coordinate
system obtained by rotating the original variables and
projecting them onto the reduced space defined by the first
few principal components, where the data are described
adequately and in a simpler and more meaningful way.
The principal components are ordered such that the first
one describes the largest amount of variation in the data,
the second one the second largest amount of variation,
and so on [13]. By retaining only the first N principal
components, the X matrix is approximated by (5) [9]. PCA
can be mathematically expressed as follows [6]:

N
X=> tjp] +E (5)

j=1

where N is the number of principal components. Two
complementary multivariate control charts are required
for process monitoring using projection methods: 72 and
Q-statistic. Multivariate control charts based on T2 can
be plotted based on the first N principal components as
follows [9]:

2
7

N
0= (6)
j=1

)

Tt

Where S’tzj is the estimated variance of ¢;. This control
chart will only detect variation in the plane of the first
N principal components which are greater than what can
be explained by the common-cause variations. When a
new type of special event occurs which was not present
in the in-control data used to build the PCA model, the
new observations will move off the plane. This type of
event can be detected by computing the Q-statistic or
Squared Prediction Error (SPE) of the residual for new
observations. It is defined as [9] [20]:
N
Qx =Y (2 = Ejnew) (7)

j=1

where Xnew is computed from the reference PCA model.
Normally, @Q-statistic is much more sensitive than T2. It
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is due to this fact that @ is very small and therefore
any minor change in the system characteristics will be
observable. T2 has a great variance and therefore requires
a great change in the system characteristic for it to be
detectable.

3.2 Multiway Principal Component Analysis (MPCA)

An extension of PCA models specially conceived for work-
ing with batch process is MPCA (Multiway PCA). In this
approach each batch is represented by a matrix contain-
ing the evolution of sensors during the batch execution
(each column represents one variable and each row a time
instant during the batch execution). Consequently, the
initial dataset or observations matrix, X, built from a set
of I batches (or observations) becomes a three dimensional
matrix (IxJxK) containing I observations or batches each
one described by J variables sampled during K consecutive
instants during the batch execution. In order to capture
the correlation in the direction of both variables and time,
this three dimensional matrix is unfolded in the direction
of batch resulting a two dimensional matrix (IxJK). This
new matrix (2D) contains the same information as the
original one but reorganised resulting in one row all the
information from one single batch. In other words, one
row of the unfolded matrix contains the sequence of sam-
ples of each variable registered during a batch (J times
K). The PCA methodology is then applied to this new
matrix in order to capture relationships among variables
and samples extracted from the set of batches (I) [20]
[19]. A parallelism between batch concept and sags have
been performed in this work: Registers of sags contain
waveforms of three voltage phases and three line currents
(J=6), gathered during a fix duration time ( 0.78 seconds)
and sampled at 6400 Hz (K=4992). The number of sags
registered in a substation (see Table 1) used to built the
model corresponds to I dimension.

All the equipments used in the experiment have been
configured to start the register of sags two periods of the
waveform before its detection and the detection threshold
has been configured to be 10% below the nominal value
rms voltage.

3.3 Case Based Reasoning (CBR)

CBR is a reasoning methodology for reusing experiences.
Simply, CBR is based on the following assumptions: if
the source case is similar to the query case, its solution
should be similar as well and therefore transferable, per-
haps with modifications [4] [18]. In other words, we can
reuse solution of a similar problem to solve an actual
problem. CBR completes those tasks in a four-step cycle
(4R cycle). Experiences about a problem and its solution
are continuously coded and Retained as cases for its further
Reuse. Some of these cases will be Retrieved for finding
the best solution to a new one, according to a similarity
criteria. Afterwards, through an adaptation procedure, we
apply the Revised solution to the case, and finally in the
last step, the solved situation (problem and solution) can
be retained in the case base, after an evaluation, as a
solved case for a possible future reuse [10]. Consequently,
the further the time it runs, the better the decisions are
made. Interested readers can find CBR foundations and a

1. Retrieve

Retrieved
cases

Learned
case

Mewyproblem

r CASE BASE

4. Retain

| Proposed
Solution

Solution
Fig. 2. CBR cycle

detailed description of this methodology based on the 4R
in [1] and [7].

4. METHODOLOGICAL ASPECTS

In this section, we explain how MPCA is used for clas-
sification of electrical sags according to its origin in High
Voltage (HV) and Medium Voltage (MV) lines using a sta-
tistical criterion based on the T?-Hotelling and Q-residual
statistics. Afterwards, results are improved based on the
concept of CBR in the projection space described by prin-
cipal components. The following steps for the construction
of the dataset matrix, X, have been considered:

(1) Preprocessing: Instantaneous rms value for each vari-
able (three voltages and three currents) is computed.
FFT in a one period (20 msec. -50Hz-) sliding window
is used to isolate the estimate the magnitude of nom-
inal frequency (50Hz) during the sag. Preprocessing
finishes with autoscaling (zero mean centered and
unit variance) transformation applied to the variables
in order to reduce overweight of voltage variables
towards current due to its bigger magnitude.

(2) Dataset organisation and labelling: A two dimensional
matrix is built containing in each row information
related to one single sag. Each row contains as many
elements as number of variables times samples per
variable (JK). For each substation the number of sags
available (number of rows) is different (see Table 1).
The original dataset also contains information about
the origin of these sags and have been labelled as MV
(Medium Voltage) or HV (High voltage) to identify
downstream or upstream origin of disturbances.

(3) Data cleaning: A MPCA analysis has been performed,
before building the final model for classification, with
the original dataset organised in two subsets contain-
ing only HV or MV sags. These models have been
used to identify outliers and registers containing non-
normal behaviours. @ and T? statistics have been
used with a confidence level of 0.95 to delimitate them
(See table 1). The majority of these abnormal regis-
ters do not correspond to sags; they can be caused
by other disturbances as interruptions (deeper than
90%), subvoltages (longer than a sag) or transients
(shorter than sags) or they can contain only part
of a sag (bad registers). The same threshold will be
applied to new sags before applying the classification
method. Those that overpass the threshold are con-
sidered unclassified.
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The resulting data set, X, has been used in training and
testing purposes according to the following considerations:

e Training and Test data sets: The cleaned data sets
containing HV (idem for MV) has been randomly
split into two subsets: training (75%) and test (25%)
subsets.

e Building MPCA models and validation: The HV
(MV) training data subset (75% of the total) has been
used to create an HV (MV) MPCA model. In the
validation step testing subset (25%) has been used.
4-fold cross validation has been applied in evaluating
the results.

e Model Exploitation: The test subset has been spread
using registers from the other class MV (HV). The
projection of this new testing subset allows to evalu-
ate how the model performs with sags from different
class.

Following these stages, the traditional statistical method
derived from MPCA technique has been applied and
improved using CBR methodology in the decision step for
locating the origin of new sags.

4.1 Traditional statistical method

The test set is projected onto both HV and MV MPCA
models to classify them according to its origin or class. A
decision is made based on the following criteria:

(1) A test batch projected onto the HV (MV) MPCA
model will be considered as an HV (MV) batch if
the T2 and @ statistics of its projection lie inside
the region delimited by @ and T2 of the model.
Otherwise, it will assigned to the other class, MV
(HV) by this model HV (MV).

(2) If the conclusion after the projection of the test sag
on both models HV and MV is the same, there is a
decision; otherwise no decision can be made.

Results using this approach are summarised in Table 11
and commented in the next section.

4.2 Hybrid MPCA-CBR method for fault location

In this subsection, we develop a CBR-based classifier
implemented on the projection space obtained from the
MPCA models. The proposed method after the projection
of test data onto both HV and MV models, continues with
the following stages (See Fig.3):

(1) Distance calculation: On the T? — @ plane, the eu-
clidean distance (principal component space is or-
thogonal) between the projection of each test sag and
the training sags in the transformed space of the HV
and MV MPCA models is calculated.

(2) Sorting: Distances are reordered in an ascending way
to identify the sagas closer to the tested one.

(3) Distance-based decision (CBR): The dominant class
of the majority of the K-Nearest neighbors inside a
surrounded space determines the class of the tested
sag; i.e. if most of the neighbors are HV (MV), the
test sag will be classified HV (MV).

The number of nearest neighbors (K) is chosen to be an
odd number in order to avoid draw results. Therefore,

Data Organization
and Labelling

I

Data Cleaning

75% MV
Training Data

Training Data | |

25% HV 75% HV
HV
Test Data

MPCA Model MPCA Model

Distance
Calculation

I

Sorting

I

Distance-based
Decision

Decision Making
based Q-T2 Graphs

CBR-based Classification

Fig. 3. Schematic of fault classification method.

always we will be able to make a decision. The surrounded
space of each new (test) sag on the two-dimensional T2 —
Q@ plane is a circle. The optimal values for K and the
circle radius have been determined through solving an
optimization problem in this two dimensional space which
leads to the maximum classification rate. Fig 4 and Fig
5 represent this dependency for MV and HV sags. We
would like to highlight at this point that using autoscaling
method for scaling HV and MV data makes reasonably
possible that we calculate the distance between different
sags without any concern about the voltage or currents
amplitudes and their effects on scores in HV and MV
MPCA models. In fact, not or using other scaling methods
will lead to completely wrong decisions in CBR due to the
big differences between voltages and currents of the HV
and MV lines. Through this method, we bring them to
one scale and can manipulate them in a similar method.

5. FAULT LOCATION AND RESULTS

The proposed method has been tested using sets of data
taken from five electrical substations located in Catalonia,
Spain. The data consists of preprocessed records of the
three phase voltages and three currents in a number that
depends on the substation as the two first columns in Table
1 summarises.

The first step was to generate the MPCA models for the
HV and MV data. The data was auto-scaled in order to
avoid problems dervide of different magnitude of variables.
The confidence limit was set on 95% and the number of
remaining sags, after the removal, is shown also in Table
1. These remaining data was used to build and test the
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Table 1. Number of sags per substation before
and after the removal of non characteristic

batches.
Total Remaining
Substation HV MV HV MV
A 77 69 62 53
B 69 75 60 56
C 75 83 63 65
D 59 308 52 245
E 142 101 109 77

Table 2. Percentage rate of correct classifica-
tion of sags using the traditional MPCA sta-
tistical method.

Substation

Class Model A B C D E
HV 1 33.33  33.33 60 76.92 3.70
2 60 66.67  66.67 30.77  22.22
3 40 40 53.33  30.77  37.04
4 40 73.33  73.33  46.15 14.81

Mean 43 53 63 46 19
MV 1 61.54 50 62.50 88.52  57.89
2 53.85 57.14  43.75  85.25  68.42
3 69.23  64.29 56.25  73.77  52.63
4 38.46  71.43 81.25  65.57  47.37
Mean 55.77  60.71  60.94 78.28 56.58

models. A cross validation technique was used to create
the training and test sets. Thus, the datasets were divided
into 4 subsets; one of the subsets was used as a test set
and the remaining data were used to build a model. This
way, 4 different models could be built and tested for each
class (HV and MV).

Provided the final data to work with, the MPCA mod-
els for both classes were built. The confidence limit was
set again on 95% and the number of principal compo-
nents used was 10 capturing a significant percent of total
variance (around 90%). Once obtained the HV and MV
models, test sags were projected onto both models and,
according to previous criteria, a sag has been considered
to be correctly classified when it is assigned to the same
class when projected to both models. The rates of correct
classification following this criterion are summarized in
Table 2 resulting in a poor success ratio.

Table 2 shows that HV class sags are hardly correctly
classified while MV class sags have a better, though still
low, rate of classification. Then, the CBR technique was
applied on the projected data to improve the results. First
of all, a nearest neighbour criteria was fixed in order to
identify the best value of K (number of neighbours) . As
explained earlier, the optimal values for K and the circle
radius are determined through solving an optimization
problem in two dimensions. The well known Euclidean
distance definition was used to find the nearest neighbors.
Several simulations were run; the number of neighbors was
varied from 3 to 11 and the circle radius was varied from
100 to 5000. Following this methodology, the circle radius
used to classify the test batches was 1250 and the number
of neighbours (K) was set on 5. This selection is based on
the average values obtained when applying the 4-fold cross
validation (represented in the Fig. 4 and Fig.5).

Rate of correct classification (CBR method)

90--

Percentage of correct classification

80-.
5000 T
3750 \\\A

2500 T -

1250 5

. : 100 3
Circle radius Number of nearest neighbors

Fig. 4. Percentage of correct classification of HV sags using
the CBR method.

Rate of correct classification (CBR method)

100"
90~

80~

Percentage of correct classification

Number of nearest neighbors

Fig. 5. Percentage of correct classification of MV sags using
the CBR method.

Table 3. Percentage rate of correct classifica-
tion of sags using the proposed method based

on CBR.
Substation
Class Model A B C D E

HV 1 93.33 100 100 100 74.07
2 100 100 86.67 100 70.37

3 86.67  73.33  66.67 100 88.89

4 100 100 93.33 100 77.78

Mean 95 93.38  86.67 100 77.78

MV 1 76.92  71.43 100 100 89.47
2 76.92  92.86 93.75  96.72  89.47

3 92.31 78.57  87.50 95.08 94.74

4 76.92  92.86 100 86.89  84.21

Mean 80.77 83.93  95.31  94.67  89.47

The rate of correct classification using the CBR technique
is summarized in Table 3. This table shows a significant
increase in the rate of classification with respect to that
obtained with the T2 — () statistics criterion.

A profound look at Fig. 4 and 5 illuminates that the
classification rate along the circle radius axis after 1250
never changes, while for the next axis, number of nearest
neighbors, it varies from beginning up to end. This fact
can be easily interpreted based the sorted distances in the
T? — @ plane. The majority of those distances are less
than 1000 which mean that when we increase the radius
of the circle in the T? — @ plane, most of them come into
the considered region. In this case, the more impressive
factor on classification rate is the number of neighbors as
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depicted in these figures. First, using auto-scaling method
paves the way for comparing the processed data in one
scale while they are originally quite different in terms of
magnitude. Second, computing distances in T2 —Q plane is
the best alternative for taking into account similarities and
differences between HV and MV sags in our classification.
The supporting reason is arising from this fact that 72
and @ are entailing the information of all scores and not
captured variations for different batches. Choosing each
of T? or @) alone will substantially lower the classification
rate. Third, Fig. 4 and 5 make us sure that the taken values
for K and threshold result in the highest possible rate of
classification under the mentioned circumstance.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we developed a hybrid method for classifi-
cation of electrical sags in two classes: High Voltage (HV)
and Medium Voltage (MV). The proposed method is a
distance-based classifier which has been applied on the
principal component space (MPCA projection) instead of
comparing original original waveforms in the time domain
directly. Origin of new sags is determined by projecting
it into two MPCA models (HV and MV) and its class is
determined based on the class of its neighbor majority in a
bounded region on the T2 — @ plane. Majority and region
concepts build up an optimization problem which is solved
numerically resulting in the maximum classification rate of
electrical sags.

The capability of the proposed method was examined with
the real HV and MV data sets recorded in five distribution
substations. Results obtained with these data were signifi-
cantly better than those obtained with traditional MPCA
methods. Apparently, the performance of this hybrid clas-
sifier can be substantially improved through calculations of
the distances in different spaces and comparison of them.
Furthermore, the traditional statistical method can be
used as a complement beside the proposed method leading
to a perfect classification rate. These issues with more
details will be addressed in next works.

The results obtained with this method also improve pre-
vious classification ratios obtained by the authors by ex-
tracting temporal and phasorial features from waveforms
and using them as input of a classifier [12]. A possible
explanation can be based on the capability of M-PCA
to retain the information of the original waveform and
the fact that these new features (scores) are independent.
Independence between features is assumed by classifiers
based on the distance criteria as CBR but not this is not
always true.
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