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Abstract: The paper considers a high efficiency energy management control strategy for a
hybrid fuel cell vehicle using neural networks and Statistical Learning theory. Hybrid Electric
Vehicles may potentially improve fuel economy, reduce emission gases, and achieve performance
similar to conventional cars. The use of different power sources and the presence of different
constraints makes the power management problem highly nonlinear. Probabilistic and statistical
learning methods are used to design the weights of a neural networks to minimize the fuel
consumption during a given path. Numerical results are obtained using the model of a real
hybrid car, “Smile” developed by FAAM, using a stack of fuel cells as the primary power
source in addition to ultracapacitors. The results are satisfactory in terms of fuel consuming
and efficiency of ultracapacitors and batteries.
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1. INTRODUCTION

The history of electric vehicles started with the invention
of the battery by A. Volta and the discovery of elec-
tromagnetic induction by M. Faraday. This culminated,
in 1873, with the invention of the first electric vehicle
(Westbrook [2005]). Even though the first vehicles were
actually electric, gasoline and diesel cars overtook electric
vehicles since the 19th century, thanks to their better
energy-weight ratio. In recent years, the increase in the size
and weight of passenger cars have made gasoline and diesel
vehicles more pollutant and less efficient. In addition, the
ever increasing cost of fuel as well as pollution problems
are motivating car companies to look for new solutions to
minimize fuel consumption and the production of polluting
gases (O.Fuji [2002]).
Hybrid Electric Vehicles (HEVs) actually combine the
efficiency of electric cars with the high autonomy of con-
ventional vehicles and are considered a potential solution
to such problems. The combination of electric motors with
various storage elements (i.e. fuel cell, thermal engine, ul-
tracapacitors, etc..) brought about more complex systems,
as well as different control strategies to manage the vehicle
powertrain (Maggetto and Mierlo [April 2000]).
Hybrid vehicle controllers are based on a supervisor that
chooses, in the presence of different constraints, the best
power path to satisfy the power demands of the drive line,
while minimizing the fuel consumption and the produc-
tion of the pollution gases. Various solutions were devel-
oped in the literature in order to achieve different perfor-
mances: Dynamic Programming and Quadratic Program-

ming are used to minimize the fuel consumption over all
paths (G Rizzoni [December 2003], Sciarretta and Guzzella
[April 2007], Koot [2006]). Heuristic controllers, based on
Boolean of fuzzy logic rules, are used to minimize the fuel
consumption using different vehicular variables such as
torque demand or car speed (N. Jalil and Salman [1997],
Sciarretta and Guzzella [April 2007]). Artificial neural net-
works have also been used to achieve various performance
objectives during different driving cycles (J. Moreno and
Dixon [2006],N. Jalil and Salman [1997]).
An alternative solution to analytical optimization ap-
proaches is provided by statistical learning methods
(Koltchinskii et al. [2001]). In such an approach, a perfor-
mance index is minimized empirically while guaranteeing
that the difference between the empirical solution and the
optimal one is arbitrarily small with high probability.
In this paper, a neural network controller is proposed and
Statistical Learning theory is used to choose the networks’
weights in order to reduce the fuel consumption during a
given path. The controller is applied to a Fuel Cell Electric
Vehicle (FCEV) called “Smile” and produced by FAAM
S.p.A. (Italy). The vehicle has fuel cell stacks, that convert
hydrogen to electric power, using hydrogen as primary
power source. A buffer of energy in the powertrain is
provided by the lead battery pack and ultracapacitors. The
performance of the proposed controller is evaluated via
numerical simulation. The paper is organized as follows.
In Section 2 the powertrain and main power devices are
described. The details of the neural network controller
are discussed in Section 3 and Statistical Learning theory
is presented in Section 4. The results of the numerical
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simulations are reported in Section 5, and the paper con-
cludes with comments on the performance of the proposed
controller.

Fig. 1. Powertrain scheme of a fuel cell electric vehicle

2. FUEL CELL ELECTRIC VEHICLE

Fuel cells (FCs) are electrochemical devices that convert
the chemical energy of Hydrogen directly into electric
energy without combustion products. The combination
of fuel cells and electric batteries allows to design clean
(zero emission) and high efficiency vehicle. FCEVs are
thus considered a potential solution to various pollution
problems. As shown in Figure 1, the configuration of the
FCEV powertrain consists of a battery pack, a fuel cell
stack (PEM), ultracapacitor bank and an inverter that
provides power to the electric motor. The fuel cell stack,
by a dc/dc converter (Boost), are in parallel with the
battery and the supercapacitors bank are connected to
the power bus by a Buck/Boost converter. The Boost
converter allows to push power from the fuel cell stack to
the battery. On the other hand, the Buck/Boost converter
works in both directions. The fuel cell stack provide the
mean power to the vehicle; the ultracapacitors supply
and recive power during the accelleration or the brake
conditions, respectively. At the end, the inverter converts
the dc voltage into an ac voltage used to drive the motor.
Along a given path, the amount of power required by
the vehicle is provided by the different power devices as
described by the following equation:

Pt(t) = Pfc(t) + Puc(t) + Pbat(t). (1)

where Pt(t) is the power required by the inverter at
each time instant, and Pfc(t), Puc(t) and Pbat(t) are
the power provided by the fuel cell, the ultracapacitors
and the battery pack, respectively. The low-level control
architecture of the power devices is shown in Figure (2),
where the current provided by the fuel cell stacks is
controlled by the Controller1, using the reference signal

Ifc
ref (T ). The complete closed-loop system of fuel cell stacks

and Boost converter is modeled by the following equations:

Ifc(kT ) =

n1
∑

j=1

afc
j Ifc((k − j)T ) +

n2
∑

j=1

bfc
j Iuc

ref ((k − j + 1)T )

Vfc(kT ) = f1(Ifc(kT ))

∆h(kT ) = f2(Ifc(kT ))

ηbs(kT ) = f3(Ifc(kT ))

I1(kT ) = Vfc(kT )Ifc(kT )/ηbs(kT )Vbat(kT )

Ibs(kT ) =

n3
∑

j=1

abs
j Ifc((k − j)T ) +

n4
∑

j=1

bbs
j I1((k − j + 1)T )

(2)

where T is the sampling time, Ifc(kT ) and Vfc(kT ) are

the current and voltage provided by the fuel cell, Ifc
ref (kT )

is the reference signal for Controller1 and represents the
current required to the fuel cell stack, Ibs(kT ) is the
current output of the Boost converter and Vbat(kT ) is the
battery voltage at time kT . The hydrogen consumption is
∆h(kT ), while η(kT ) is the efficiency curve of the Boost

converter and abs
j , bbs

j , afc
j and bfc

j are the parameters of
the dynamics of the fuel cell and of the Boost converter.
The Boost steady-state current is I1(kT ), the nonlinear
functions f1 is the current-voltage characteristic of the fuel
cell and f2 is the nonlinear function that relate the request
of the current to the instantaneous fuel consumption of
the fuel cell. The nonlinear function f3 is the efficiency
function of the Boost related to the fuel cell current
Ifc(kT ). The power provided by the fuel cell is given by

Pfc(kT ) = Ibs(kT )Vbat(kT ). (3)

In the proposed low level control architecture shown in Fig-
ure (2), the model of the power provided to the vehicle by
the ultracapacitors is obtained considering the closed-loop
system of the ultracapacitors with the Buck/Boost con-
verter, where the reference signal Iuc

ref (kT ) is the current
required to the ultracapacitors bank. The current provided
by the ultracapacitors bank is controlled by Controller2

and the corresponding closed-loop system (ultracapacitors
bank and Buck/Boost converter) is given by:

Iuc(kT ) =

n5
∑

j=1

auc
j Iuc((k − j)T ) +

n6
∑

j=1

buc
j Iuc

ref ((k − j + 1)T )

Vuc(kT ) =
1

C

k
∑

j=0

Iuc(jT )T − RucIuc(kT )

ηbb(kT ) = f4(Iuc(kT ))

I2(kT ) = Vuc(kT )Iuc(kT )/ηbb(kT )Vbat(kT )

Ibb(kT ) =

n7
∑

j=1

abb
j Ifc((k − j)T ) +

n8
∑

j=1

bbb
j I2((k − j + 1)T )

(4)

where Iuc(kT ) and Vuc(kT ) are the current and voltage
of the ultracapacitors, Iuc

ref (kT ) is the amount of current
required by the ultracapacitors. It is also the reference
signal for Controller2 while Ibb(kT ) is the current output
of the Buck/Boost. I1(kT ) is the Buck/Boost steady-state
current and Vbat(kT ) is the battery voltage and abb

j , bbb
j ,

auc
j and buc

j are the model parameters of the dynamics of
the ultracapacitors bank and the Buck/Boost. Moreover
C and Rint are the capacity and internal resistance of
the ultracapacitors, respectively. The nonlinear function
f4 relates the amount of the output current Iuc(kT )
to the efficiency of the Buck/Boost. The power by the
ultracapacitors is given by

Puc(kT ) = Ibb(kT )Vbat(kT ). (5)
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The battery pack are modelled by the following equations:

Vbat(kT ) = f5(Idyn(kT )) − RbatIbat(kT )

Qdyn(kT ) =

n9
∑

j=1

abat
j Qdyn((k − j)T ) +

+

n10
∑

j=1

bbat
j Qint

ref ((k − j + 1)T )

Qint(kT ) =
kT
∑

j=0

Ibat(jT )T (6)

where at time kT , Ibat(kT ) and Vbat(kT ) are the current
and the voltage of the battery packs. Qdyn(kT ) takes into
account the dynamical aspects of the battery and Qint(kT )
is used to model the charge of the battery. Moreover,
abat

j and bbat
j are the model parameters, while Rbat is the

internal resistance of the battery pack. The power provided
by the battery pack is given by

Pbat(kT ) = Ibat(kT )Vbat(kT ). (7)

A complete analysis of the considered model is provided
in (Cavalletti [2007]).

Fig. 2. Low level control architecture of the FCs current
Ifc(T ) and utracapacitors current Iuc(T ) in a FCEV

3. NEURAL NETWORK CONTROL

As described earlier, a major aim of this paper is to develop
a control system that integrates with the low-level control
architecture in order to reduce the fuel consumption along
a given path. A Neural Network is proposed to generate the

two control inputs Iuc
ref (kT ) and Ifc

ref (kT ) used as reference
signals in the low level architecture. The corresponding
closed-loop system is shown in Figure 3, where Pt(kT ) is
the requested power by the vehicle along the desired path,
and P y

t (kT ) is the generated power by the three power
devices. The outputs of the radial basis function (RBF)
neural network may be written as:

Ifc
ref (kT ) = θT

fcφ(κ(kT )) (8)

Iuc
ref (kT ) = θT

ucφ(κ(kT )) (9)

where θfc and θuc are the weight vectors of the RBF
network, the vector φ(κ(kT )) ∈ R

n is Gaussian and
defined as

φi(κ(kT )) = exp

(

−
‖κ(kT ) − ci‖

2

σ2
i

)

, i = 1, 2, · · · , n

(10)

where n is the number of nodes, ci ∈ R
n are the centers

of the basis functions and σi are scaling or “width”
parameters (Chen et al. [1991]). The considered input
vector κ(kT ) is defined in this work as:

κ(kT ) = [SoCbat(kT ) SoCuc(kT ) Pfc(kT ) Pt(kT )]T (11)

where SoCbat(kT ) and SoCfc(kT ) are two numbers rang-
ing between 0 and 1 and are proportional to the State of
Charge of the battery and the ultracapacitors, respectively
(0 when the device is empty, 1 when the device is full
charged). Pt(kT ) and Pfc(kT ) are the power functions
defined in (1) and (3), respectively. In the proposed ap-
proach, the weight vectors θfc and θuc are designed using
statistical learning theory.

Fig. 3. Closed-loop scheme for the whole powertrain sys-
tem

4. STATISTICAL LEARNING THEORY

The general supervised learning problem is considered
(Vapnik [2000]). Assume there is a system producing in-
put/output pairs (x, y). Moreover, assume that each input
is distributed according to a probability measure F (x)
(fixed but unknown), and that y is returned according to a
conditional distribution F (y|x) (also fixed but unknown).
Consider a “learning machine” capable of implementing a
set of functions fk(x) ∈ F , and that this learning machine
is given a training set of N independent and identically
distributed (i.i.d.) samples (x,y) = (x1, y1), ...(xN , yN )
distributed according to F (x, y). Then, given a function
L(y, fk(x)), that measures the loss or discrepancy between
the real system response y and the function fk(x), the
problem is to use the information contained in (x,y) to
choose fk such that the risk functional

R(fk(x)) =

∫

L(y, fk(x))dF (x, y) (12)

can be minimized, trying to reproduce the behavior of
the real system with the learning machine fk(x). This
problem is very difficult to solve directly. First, there is the
already mentioned lack of knowledge of F (x) and F (y|x).
Moreover it may be very difficult to come up with the
actual form of fk(x) such that the response of the system
can be exactly reproduced. Instead, an approximation of
the real fk(x) as closely as possible is estimated (et al.
[2000]). This optimization problem is then reformulated
as follows. Given a desired accuracy ǫ > 0 and confidence

parameter δ ∈ (0, 1), find an estimate f̂k(x) of fk(x) such
that

sup
F (x,y)

P r{R(f̂k(x)) ≥ inf
F

R(fk(x)) + ǫ} ≤ δ. (13)
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or in other words, R(fk(x)) is within ǫ (small) of
inffk

R(fk(x)) with probability 1 − δ (high). To formalize
this concept the following definition is considered:

Definition 1. (Approximate Near Minimum). Given R(f) =
R(fk(x)), ǫ > 0 and δ ∈ (0, 1), a number R0 ∈ R is said
to be an approximate near minimum of R(f) to accuracy
ǫ and confidence 1 − δ if

P r{|R0 − inf
F

R(f)| ≤ ǫ} ≥ 1 − δ (14)

Another important concept in optimization via random-
ized algorithms is the so called “level” (Vidyasagar [2001],
Vidyasagar [1998]). Loosely speaking, the “level” describes
a set of potential solutions that may not be represented in
the sample taken for optimization. So if the size of this set
is large, the optimization may not be valid, since the sam-
ple is not representative of the family of possible solution.
On the other hand if this set can be guaranteed to be small,
then there will be a small probability of finding another
solution that provides considerably better performance
than those found during the sampling. Combining the level
with the confidence a new type of minimum is defined,
where the objective of high accuracy (ǫ) is replaced by
that of low probability of not finding the best solution
(α).

4.1 Statistical Learning theory applied to the energy
management in a FCEV

Statistical Learning theory may be used to solve the
optimization problem when it is difficult to find an analytic
solution. In this work, Statistical Learning theory is used
to solve the optimization problem to reduce the fuel
consumption in a FCEV. In the following the problem is
reformulated as a statistical learning one. Consider the
performance index J(·) related to the fuel consumption

J(θfc,θuc, KT ) = α1

K
∑

j=0

∆h(θfc,θuc, jT )T

+ α2|SoCbat(t0) − SoCbat(t1)|

+ α3|SoCuc(t0) − SoCuc(t1)| (15)

where K is the number of the samples required, ∆h(·) is
the fuel consumption function defined in (2) which depends

on Ifc
ref (kT ) and Iuc

ref (kT ) and by (8) and (9) it is a function

of θfc and θuc . The terms |SoCbat(t0) − SoCbat(t1)| and
|SoCuc(t0) − SoCuc(t1)| are used to obtain at the end of
the path the same initial amount of energy stored in the
power devices, α1, α2 and α3 are three design parameters.
The minimization of the performance index J(·) is given
by the design of the optimal weight vectors θfc and θuc

according with Statistical Learning theory. Note that in-
stead of looking for a solution J∗(·) that guarantees that
the cost function (15) achieves its exact minimum, an ap-
proximation J0(·) is calculated. The approximation value
that evaluates the cost function (15) will be arbitrarily
close to its exact minimum with probability almost equal
to one.
The condition on the number of samples needed to guar-
antee that the solution is sufficiently close to the optimal
solution are based on Lemma 1 on (et al. [2007]). The

minimum performance value for the system over the weight
vector space is

J∗ = min
Θ∈R2n

J(Θ) = J(Θ∗), (16)

the optimal solution for the system. Denote by {Θ̂} the set

of the weight samples {Θ̂1, ...Θ̂N}, with Θ̂i = (θfc
i ,θuc

i ),
let

J0 = min
1≤i≤·N

J(Θ̂i) = J(Θ̂0), (17)

be the minimum performance value for the system over
the set of vectors {Θ̂} . We then have the following result.

Theorem 1. (Minimum number of input samples). The
minimum number of samples N that guarantee that J0 is
a probable near minimum to level α and confidence δ of
J∗ is

N ≥
ln(1/δ)

ln(1/(1 − α))
. (18)

5. NUMERICAL RESULTS

Numerical tests of the proposed controller have been
performed on a Fuel Cell Electric Vehicle (FCEV) called
“Smile” developed by FAAM of Monterubbiano (Italy).
“Smile” is a commercial vehicle that requires a main
power of 5 Kw and which has a maximum velocity of
50 Km/h. The vehicle uses hydrogen (that converts to
electric power by a fuel cell stack) as a primary source and
ultracapacitors as an energy buffer as shown in figure (1).
The fuel cell stack and the Boost converter (embedded on

the fuel cell module) are produced by “HydrogenicsTM”;
the module provides 12 Kw of maximum power, with
current ranging between 0 to 300 A and the operating
voltage ranging between 40 to 55 V. The mathematical
model is given by (2) and the parameters are estimated
using data acquired during different tests. A complete
description of the modeling phase is reported in (Cavalletti
[2007]).
Ultracapacitors The ultracapacitors are produced by the
MaxwellTechnologiesTM and the module has 165 F of
capacity and the voltage ranging between 24.3 to 48.6 V. In
order to avoid damage of this power device, Controlloer2

works under the constraint that the capacitor voltage is
in the required range. The ultracapcitors and Buck/Boost
model is given in (4) . The State of Charge (SoC) is a
variable that represents the charged state of the device,
and given as a number between 0 to 1. The Battery pack is
composed of 6 batteries of 12 V and 105 Ah each one. The
mathematical model is given in (6). Different constraints
are considered for the battery pack. The State of charge
(SoC) of the battery ranges between 0 to 1. In fact, the
battery may not be completely discharged or over charged.
The maximum current provided by the battery is limited
to 200 A and the maximum current provided to the battery
is limited to −70 A.
The total power amount Pt(kT ) is obtained from the
request of power during a given drive test. The drive test
is chosen to be representative of a typical drive condition.
For this reason different road conditions (uphill, downhill,
and flat), different velocities, and different drive conditions
(speedup, brake) are considered.
Two different drive tests are used here: the first is used
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to design the weight vectors, while the second one was
chosen to test the proposed controller. In figure (4), the
vehicle velocity (top) and the request of power (bottom)
are shown as a function of the time during the training
phase. Figure (5) show the power path used to verify the
obtained performance of the proposed control.
The Neural Network controller was designed off line using
Statistical Learning theory as described in the previous
paragraph. The size of the RBFN has been chosen to
cover all the input space spanned by the input vector
κ(kT ) while maintaining as small a size as possible.
Therefore, the hidden layer is chosen to have 27 placed to
cover the whole input space spanned by the input vector
κ(kT ). The two linear vectors θfc and θuc are designed to

generated the two control inputs Ifc
ref (kT ) and Iuc

ref (kT )
using statistical learning theory. The values of α and δ are
chosen to be 0.01 and 10−3, respectively. This leads to the
number of samples N = 688. Figure 6 shows the control
inputs generated by the neural network controller using

the second path described in figure (5). Note that Ifc
ref (t)

takes on only positive values only because the fuel cell
stack is a power generator, while the reference signal for
the ultracapacitors Iuc

ref (t) can be positive and negative. In

figures 7, 8 and 9 the behaviors of the voltage (top) and the
current (bottom) during the drive path are reported. The
figures show that all the defined constraints are satisfied.
In figure 10, the states of charge of the battery pack and
of the ultracapacitors are shown. The figures clearly show
that the two power devices are used as power buffers, and
that the final amount of energy is almost the same of the
starting one. For this reason, all the energy required during
the drive path is provided by the fuel cell. At the end of
the drive path the efficiency of the whole system is 41.20%
.
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Fig. 4. Velocity and Power used for the training phase.

6. CONCLUSIONS

In this paper, the energy management problem applied
to a fuel cell electric vehicle is analyzed and solved using
statistical learning theory. Statistical learning theory is
a powerful tool to resolve optimization problems when
analytic solutions are difficult to find. This theory was used
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Fig. 5. Velocity and Power used to evaluate the perfor-
mance of the proposed controller.
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Fig. 6. Control input Ifc
ref (t) and Iuc

ref (t) generated by the
neural network controller.

to design the weight vectors of a neural network controller
with the aim to reduce the fuel consumption during a given
path. Numerical results show that statistical learning may
be a good tool to solve such problems. Future work is
oriented towards using this approach along different paths
with the aim to generalize the results. Moreover, in order
to allow a comparision with other techniques, the use of
standard drive paths will be consider in the future works.
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