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Abstract: In the paper it is investigated, under which conditions a time variable state
transformation can be used to change a periodic autonomous system realization into a form
with constant real coefficients. Conditions for the transformation to be periodic are further
considered, and it is shown that the necessary and sufficient condition to meet the conditions is
in that two specific matrices must be similar to each other. The properties of the matrices and
the transformation are studied, and the discussion is then extended to input-output systems.
An approach to design stabilizing control laws for these kinds of periodic systems is outlined.
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1. INTRODUCTION

The analysis and control of linear time-variable periodic
systems have been discussed extensively in the literature
because of their importance in many practical engineering
problems. The key ideas are expressed by the Floquet-
Lyapunov theory (Montagnier et al. (2004), Deshmukh
and Sinha (2004)) which compares the solutions of the
original periodic system to those of a structurally simpler
system. The main idea is to change the periodic system
matrix into a constant matrix by a state transformation;
a procedure which makes analysis of the original system
simpler as well (Rugh (1993)). It is well-known that a
periodic system matrix is always kinematically similar or
reducible to a constant system matrix (Harris and Miles
(1980)), (Brockett (1970)), but a deeper analysis of the
transformation is usually lacking. For example, it is often
stated that the target matrix can be complex-valued.
That is true, but it is often possible to choose real target
matrices as well, which is far more motivating to a systems
engineer or control engineer. It is important to investigate,
which real target matrices can be achieved through a
periodic transformation.

State transformations are especially useful, if they keep
the structural properties, i.e. stability, observability and
controllability, unchanged between the original and target
systems. It is well-known that stability is preserved, if and
only if the transformation matrix is a Lyapunov trans-
formation (Lyapunov (1966)). There have been numerous
attempts to analyze the stability properties of general
time-variable linear differential systems, see e.g. (Kamen
(1988), Neerhoff and van der Kloet, Zenger (2004)), but
none of these methods has not - at least so far - lead to
any major breakthrough. Special time-varying systems like

the important subclass of T-periodic systems are easier to
attack because they possess some special utilizable charac-
teristics. The fact that they can be changed into a constant
coefficient form by a time-periodic transformation is one
of these.

The purpose of the paper is twofold. Conditions under
which a time-periodic system matrix can be changed into
a real constant matrix by a periodic state transformation
are studied. It is shown, how a similarity transformation
plays the key role and also gives the necessary freedom
in choosing the target system matrix. Analysis is then
extended to input-output systems, for which the structural
properties are investigated under the periodic transfor-
mation. A strategy to design stabilizing control laws is
outlined.

2. REDUCTION OF A TIME-PERIODIC SYSTEM
MATRIX INTO A CONSTANT FORM

Consider the two autonomous linear differential systems
ẋ(t) = A(t)x(t), x(t0) = x0 (1)
ṡ(t) = E(t)s(t), s(t0) = s0 (2)

where A(·) ∈ (�n×n)�, E(·) ∈ (�n×n)� are bounded
regulated functions and x(t0) = P0s(t0) with a fixed t0 ∈ �
and a constant invertible matrix P0 ∈ �n×n. It is then
easy to show (Zenger (2004)) that there exists a linear
transformation

x(t) = P (t)s(t), P (t0) = P0 (3)

where the matrix-valued function P (·) ∈ (�n×n)� is given
by
P (t) = ΦA(t, t0)P0ΦE(t, t0)−1 = ΦA(t, t0)P0ΦE(t0, t) (4)

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11486 10.3182/20080706-5-KR-1001.3047



The function is differentiable and pointwise invertible;
the functions ΦA(·, ·) and ΦE(·, ·) are the state transition
matrices of the systems (1) and (2), respectively. The
transformation matrix P (·) fulfils the differential equation

Ṗ (t) =
∂

∂t
(ΦA(t, t0)) P0ΦE(t, t0)−1

+ΦA(t, t0)
∂

∂t

(
P0ΦE(t, t0)−1

)
= A(t)ΦA(t, t0)P0ΦE(t, t0)−1

−ΦA(t, t0)P0ΦE(t, t0)−1E(t)ΦE(t, t0)ΦE(t, t0)−1

= A(t)P (t) − P (t)E(t)

(5)

The state transition matrices of A(·) and E(·) are related
according to

ΦA(t, τ) = P (t)ΦE(t, τ)P−1(τ) (6)
ΦE(t, τ) = P−1(t)ΦA(t, τ)P (τ) (7)

as shown in (Zenger (2004)).

Using the well-known properties of the state-transition
matrix (see e.g. (Rugh (1993))) it is easy to write the
transformation P (·) as

P (t) = ΦA(t, t0)P (t0)Φ−1
E (t, t0)

= ΦA(t, 0)P (0)Φ−1
E (t, 0)

(8)

Next, consider an autonomous T -periodic system
ẋ(t) = A(t)x(t), x(t0) = x0, A(t + T ) = A(t) (9)

for all t and some non-negative constant T . Consider
the possibility to change the system matrix A(·) into a
constant matrix R in (1) - (2). That is always possible
(Zenger (2004)) by using the transformation (3) where

ΦA(t, t0) = P (t)eR(t−t0)P−1(t0) (10)

and
P (t) = ΦA(t, t0)P (t0)e−R(t−t0) = ΦA(t, 0)P (0)e−Rt (11)

Note that the result holds for all square matrices R of an
appropriate dimension, i.e. a transformation matrix P (·)
that changes A(·) to R exists. It is then meaningful to
consider only real matrices R, so that the transformation
is also real.

To study the periodicity of P (·) write

P (t + T ) = ΦA(t + T, 0)P (0)e−R(t+T )

= ΦA(t + T, T )ΦA(T, 0)P (0)e−RT e−Rt

= ΦA(t + T, T )P (T )e−Rt
(12)

But it is easy to prove that
ΦA(t + T, T ) = ΦA(t, 0)

so that
P (t + T ) = ΦA(t, 0)P (T )e−Rt = P (t) (13)

provided that P (T ) = P (0). Note that this does not
imply that the solution to the autonomous system x(t) =
ΦA(t, t0)x0 would be T -periodic.

But it is not at all obvious that P (T ) = P (0). The
condition to be fulfilled is then

eRT = P (0)−1ΦA(T, 0)P (0) (14)

so that the matrices exp(RT ) and ΦA(T, 0) must be similar
through the matrix P (0).

It is reasonable to emphasize the importance of the above
result. The necessary and sufficient condition for the
existence of a periodic transformation that changes a
periodic system matrix into a constant form is that two
specific matrices are similar to each other. The matrix
P (0) gives freedom in choosing the target matrix R. In
the literature it is stated that the target matrix R is
often complex (see e.g. Rugh (1993), Brockett (1970),
Montagnier et al. (2004), Montagnier et al. (2003)), but
this statement can be misleading: if the matrix P (·) is
real and the matrices exp(RT ) and ΦA(T, 0) are similar,
the matrix R is real indeed, which is generally a desired
property from the system engineering viewpoint.

It is interesting to study, what possibilities we have to
choose R. For example, it is obvious that if the matrix
exp(RT ) has an eigenvalue on the negative real axis, then
R cannot be real. Because of similarity, the eigenvalues
of exp(RT ) and ΦA(T, 0) must be the same. Let λ be the
eigenvalue of exp(RT ) and λR be the eigenvalue of R. Then
trivially

eλRT = λ ⇒ λRT = ln(λ) ⇒ λR =
1
T

ln(λ) (15)

It follows that in order for λR to be real, λ must be real
and non-negative.

In summary, R must be chosen such that eRT has the same
eigenvalues as ΦA(T, 0). The transformation

P (t) = ΦA(t, 0)P (0)e−Rt (16)

then works, and the matrix P (·) is T-periodic.

The matrix R can be chosen to be a diagonal matrix,
if the eigenvectors of ΦA(T, 0) are linearly independent.
Then P (0) contains these vectors as its columns. If P (0)
is chosen to commute with ΦA(T, 0), the standard choice

eRT = ΦA(T, 0) (17)

follows. Additionally, from the properties of the similarity
transformation it follows that if the eigenvector belonging
to the eigenvalue λ of exp(RT ) is x, then the eigenvector
belonging to the same eigenvalue of ΦA(T, 0) is P (0)x.

Even more information can be obtained by noticing that
the matrices exp(RT ) and ΦA(T, 0) must have the same
Jordan form, because they are similar. That is a necessary
and sufficient condition. Other necessary conditions are
easily derived. In addition to the conditions mentioned
above it must also hold

det
(
eRT

)
= det (ΦA(T, 0))

tr
(
eRT

)
= tr (ΦA(T, 0))

(18)

The determinant condition can be explored further. Be-
cause exp(Rt) is the state transition matrix attached to
the system matrix R, then according to the theorem of
Abel-Jacobi-Liouville (Rugh (1993))

det
(
eRt
)

= etr(R)t ⇒ det
(
eRT

)
= etr(R)T (19)

Also

det (ΦA (T, 0)) = e

T∫
0

tr[A(τ)]dτ

(20)
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so that

etr(R)T = e

T∫
0

tr[A(τ)]dτ

⇒ tr(R) =
1
T

T∫
0

tr [A (τ)]dτ (21)

which can be seen as the generalization of the following re-
sult: If we choose exp(RT ) = ΦA(T, 0) and A(·) commutes
with its integral, or in other words

ΦA(T, 0) = e

T∫
0

A(τ) dτ

then

R =
1
T

T∫
0

A(τ) dτ (22)

It is certainly of interest to study, when the solution of the
original T -periodic autonomous system (1) is periodic as
well. According to the literature (see e.g. (Rugh (1993))),
given t0 there exists an initial state x(t0) such that the
solution is T -periodic exactly, when at least one eigenvalue
of eRT is unity. Let us look at this closer.

From (10) it follows that

ΦA(t + T, τ) = P (t + T )eR(t+T−τ)P−1(τ)
= P (t)eR(t−τ)eRT P−1(τ)

(23)

so that
x(t + T ) = ΦA(t + T, τ)x(τ)

= P (t)eR(t−τ)eRT P−1(τ)x(τ) (24)

The result indicates that if the matrix eRT P−1(τ) has a
unity eigenvalue, then choosing the corresponding eigen-
vector x(τ) as the initial value results in a periodic solu-
tion.

For stability considerations note that since P (·) is con-
tinuous and bounded, it is a Lyapunov transformation,
indicating that the stability properties of the original and
transformed systems are the same (Lyapunov (1966)).

Example: Consider the system ( 1) with

A(t) =
[ −1 0
−cos(t) 0

]

and x(0) = x0=0 (Rugh (1993)). Clearly, the system is
T-periodic with T = 2π. The state transition matrix is

ΦA(t, 0) =
[

e−t 0
−1/2 + 1/2 · e−t(cos(t) − sin(t)) 1

]

so that

ΦA(2π, 0) =
[

e−2π 0
−1/2 + 1/2 · e−2π 1

]

and
λ (ΦA (2π, 0)) =

{
e−2π, 1

}
, λR = {−1, 0}

It is then possible to choose e.g.

R =
[ −1 0
−1/2 0

]

or

R =
[−1 0

0 0

]
For easier calculations choose the latter one and calculate

P (0) =
[

p11(0) p12(0)
p21(0) p22(0)

]
= ΦA(T, 0)P (0)e−RT

=
[

e−2π 0
−1/2 + 1/2 · e−2π 1

] [
p11(0) p12(0)
p21(0) p22(0)

]
·
[

e2π 0
0 1

]
The elements on the equation become then⎧⎪⎨

⎪⎩
p11(0) = p11(0)
p12(0) = p12(0)e−2π

p21(0) = 1/2p11(0)
p22(0) = −1/2 · p12(0)

(
1 − e−2π

)
+ p22(0)

and
p12(0) = 0, p11(0) ∈ � �= 0,
p21(0) = 1/2 · p11(0), p22(0) ∈ � �= 0

P (0) =
[

p1 0
1/2 · p1 p2

]
, p1 �= 0, p2 �= 0

Finally, the transformation is

P (t) = ΦA(t, 0)P (0)e−Rt =
[

p1 0
1/2 · p1 (cos(t) − sin(t)) p2

]
The inverse matrix is

P−1(t) =
1

p1p2

[
p2 0

−1/2 · p1 (cos(t) − sin(t)) p1

]

and it is obvious that for p1 �= 0, p2 �= 0 the matrix P (·)
is a Lyapunov transformation.

3. INPUT-OUTPUT SYSTEMS

From the control engineering viewpoint the input-output
system and its structural properties are of interest. To that
end consider the input-state-output realization of a system

ẋ(t) = A(t)x(t) + B(t)u(t), x(t0) = x0

y(t) = C(t)x(t) + D(t)u(t) (25)

where the state x(·) ∈ (�n)�, input u(·) ∈ (�m)�

and output y(·) ∈ (�r)�, coefficients A(·) ∈ (�n×n)�,
B(·) ∈ (�n×m)�, C(·) ∈ (�r×n)� and D(·) ∈ (�r×m)�

are bounded regulated functions. A target system can be
written as

ṡ(t) = E(t)s(t) + F (t)v(t), s(t0) = s0

z(t) = G(t)s(t) + H(t)v(t) (26)

with obvious dimensions. Introduce the time-varying
transformations

x(t) = P (t)s(t) u(t) = U(t)v(t) y(t) = Y (t)z(t) (27)

so that the original system changes into the form (Zenger
(2004))

ṡ(t) = P−1(t)
[
A(t)P (t) − Ṗ (t)

]
s(t)

+P−1(t)B(t)U(t)v(t)
z(t) = Y −1(t)C(t)P (t)s(t) + Y −1(t)D(t)U(t)v(t)

(28)
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with

E(t) = P−1(t)
[
A(t)P (t) − Ṗ (t)

]
,

F (t) = P−1(t)B(t)U(t),
G(t) = Y −1(t)C(t)P (t), H(t) = Y −1(t)D(t)U(t)

(29)

The solution to the output of the original system is

yA(t) = C(t)ΦA(t, t0)x0 +

t∫
t0

gA(t, τ)u(τ)dτ + D(t)u(t)(30)

where gA(t, τ) = C(t)ΦA(t, τ)B(τ) is the weighting func-
tion. For the target system

zE(t) = G(t)ΦE(t, t0)s0 +

t∫
t0

gE(t, τ)v(τ)dτ + H(t)v(t)(31)

gE(t, τ) = G(t)ΦE(t, τ)F (τ)
= Y −1(t)C(t)P (t)ΦE(t, τ)P−1(τ)︸ ︷︷ ︸

ΦA(t,τ)

B(τ)U(τ)

= Y −1(t)gA(t, τ)U(τ)

(32)

Note that
G(t)ΦE(t, t0)s0

= Y −1(t)C(t)P (t)P−1(t)ΦA(t, t0)P (t0)s0

= Y −1(t)C(t)ΦA(t, t0)x0

(33)

zE(t) = Y −1(t)yA(t) (34)

as expected. Choosing U and Y to be identity matrices the
weighting functions and impulse responses are the same.

The controllability gramian of the original system is

WA(t0, t1) =

t1∫
t0

ΦA(t0, t)B(t)BT (t)ΦT
A(t0, t)dt (35)

which for the target system is (U = I)

WE(t0, t1) =

t1∫
t0

ΦE(t0, t)F (t)FT (t)ΦT
E(t0, t)dt

=

t1∫
t0

{
P−1(t0)ΦA(t0, t)B(t)BT (t)ΦT

A(t0, t)
(
PT (t0)

)−1
}

dt

= P−1(t0)WA(t0, t1)
(
PT (t0)

)−1
(36)

Because the matrix has full rank, the definiteness of the
gramians WA and WE is the same. Controllability remains
thus invariant in the transformation. A similar calculation
shows that observability is invariant with respect to the
transformation, because for the observability gramians
(Y = I)

MA(t0, t1) =

t1∫
t0

ΦT
A(t, t0)CT (t)C(t)ΦA(t, t0)dt (37)

ME(t0, t1) = PT (t0)MA(t0, t1)P (t0) (38)

For input-state-output systems, where the system matrix
A(·) is T-periodic the structural properties are preserved

in the state transformation. That is because controllability
and observability remain unchanged generally, and the
change of the state variable is done by a Lyapunov trans-
formation, which guarantees the preservation of stability.
For example, if the matrix E = R is asymptotically stable,
so is A(·); input output-stability follows.

Next, let us investigate the possibility of finding a periodic
stabilizing state control law for an input-output system,
which has a T-periodic system matrix A and a T-periodic
control matrix B. Let A(t+T ) = A(t) in (25) and assume
that ΦA(T, 0) has no eigenvalues on the negative real
axis. Then use (8) to change the representation into (26)
with E(t) = R (constant matrix). The eigenvalues of R
show, whether the original system is stable or not. The
transformation x(t) = P (t)s(t) leads to

ṡ(t) = Rs(t) + P (t)−1B(t)u(t) (39)

for which the control law u(t) = −L(t)s(t) can be used,
which gives the closed-loop equation

ṡ(t) =
(
R − P (t)−1B(t)L(t)

)
s(t) = S(t)s(t) (40)

That has a T-periodic system matrix provided that L(t)
is T-periodic.

A sufficient condition for the existence of a stabilising T-
periodic control matrix L(t) is that there exists a stable
constant matrix R2 and an invertible square matrix P2(0)
such that

eR2T = P2(0)−1ΦS(T, 0)P2(0) (41)

If L(t) can assign all eigenvalues of ΦS(T, 0) to be the
same as with the matrix eR2T , a stabilizing control law
has been found. A general algorithmic procedure for doing
this is less obvious, however.

There are numerous application areas where the analysis
and synthesis problems of periodic time-varying systems
play an important role. One such class of systems is active
vibration control of rotor movements in electrical machines
(Rao (2000), Tammi (2007), Knospe et al. (1997)). When
the rotor is driven at the so-called critical frequency (or
its harmonics) the unbalancing factors in the rotor cause
a resonance, which is detected as oscillation. To avoid this
the motor must either be driven at subcritical speed or
alternatively an active vibration control method must be
developed. One such new idea is to design an extra coil
in the stator slots, and control the current through it in
such a way that the produced magnetic field creates a
counterforce to dampen the vibration.

In Fig.1 the frequency response of a rotor system has been
presented. A finite element model of the process has been
built and low-order state-space models of it have been
constructed by using prediction error and subspace identi-
fication. The results show a pretty good match between the
FE model and the PE approximation, except at higher fre-
quencies. It is quite extraordinary that the rotating forces
in the system can be described by a time-invariant model
(by using suitable coordinate transformations). However,
in more accurate modelling this is not possible anymore,
and systems of the form
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Fig. 1. Gain plot of the PEM model

d

dt

(
ξ
η
i

)
=

⎡
⎣ −2ΩΞ ΦT

rcPem(t)Φrc ΦT
rcCem

I 0 0
SemΦrc QemΦrc Aem

⎤
⎦( ξ

η
i

)

+

[ 0
0

Bem

]
v +

⎡
⎣ΦT

rc
0
0

⎤
⎦ fex

urc = [ 0 Φrc 0 ]

(
ξ
η
i

)
(42)

follow. The state variables are currents in the system
(divided into real and imaginary units), v is the control
current in the new actuator, fex is the disturbance due
to the rotor unbalance, and urc is the rotor vibration (in
two dimensions). The term Pem(t), which was a constant
matrix in a more elementary model, is now periodic.
Control design according to the above ideas for this system
are currently being developed.

4. CONCLUSION

It is well-known that linear periodic autonomous differen-
tial systems are reducible, i.e. they can be changed into
a constant form by a suitable state transformation. In
this paper it has been shown under which conditions the
transformation is periodic and what freedom do we have
in choosing the system matrix of the target system. Specif-
ically, it was found out that the target matrix can in most
cases be chosen to be real; a result which is believed to be
new. Discussion was then extended to study input-output
systems and their behaviour under state transformations.
The structural properties were shown to remain invariant,
if the original system matrix was periodic. A strategy to
find a stabilizing control law was briefly outlined and an
application was presented.
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