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Abstract: In the present study, a new correlation test based model validity monitoring procedure is 
proposed to online check the quality of nonlinear recursively identified models. The new method provides 
a simple but effective diagnose of nonlinear recursive models by detecting if the residuals are reduced to 
uncorrelated noise sequences. In the monitoring procedure, the correlation functions are periodically 
computed with a specified frequency and a constant data window. The computational time and sensitivity 
of the correlation tests can be easily modified by adjusting the testing time interval, data length, and 
maximum lag. A simulated case study is employed to demonstrate the effectiveness and efficiency of the 
new method. 

 

1. INTRODUCTION 

Recursive identification deals with the problem of building 
equivalent models of unknown systems when the systems are 
in operation. It has been widely applied in many fields such 
as adaptive control and adaptive signal processing. In many 
cases, the recursive models may be applied online in parallel 
with the recursive identification. Hence, real time model 
validity detection is important to check the quality of the 
models during the identification procedure. Furthermore, it is 
sometimes difficult to effectively check the goodness of the 
models by only comparing the observed and predicted data 
sequences since, in practice, the data are always measured in 
unknown noisy environments. Therefore, efficient and 
effective model validity monitoring methods need to be 
developed. 

In the last three decades, several correlation test based model 
validation methods have been developed to detect the quality 
of a wide range of linear and nonlinear models (Bohlin, 1971, 
1978, Billings and Voon, 1983, 1986, Söderström and 
Stoica,1990, Billings and Zhu 1994, 1995, Mao and Billings 
2000). Based on a common assumption that the system can 
be adequately described by a model, all these methods detect 
the validity of the identified model by checking if the 
residuals are reduced to a white noise sequence and 
independent to the delayed inputs and outputs. In 2007, two 
sets of first order correlation functions named combined 
omni-directional auto-correlation function (ODACF) and 
combined omni-directional cross-correlation function 
(ODCCF) have been proposed to detect linear and nonlinear 
associations between variables. The new tests provide a more 
effective and comprehensive correlation detection by 
separately investigating the associations between both the 
absolute values and signs of the analysed variables. Then, 
they have been used to construct a set of new nonlinear 
model validity tests (Zhang et al., 2007, Zhu et al., 2007). 
However, all these methods are designed for validating the 

identified models after the structures and parameters of the 
models are determined. It is obviously that they cannot be 
directly used to validate recursive models since in recursive 
identification the parameters are sequentially estimated. 

To overcome this problem, a new online correlation test 
procedure is proposed in this study to monitor the validity of 
nonlinear models during the real-time estimation procedures. 
In the new method, the combined ODACF and ODCCF tests 
between residuals, inputs and outputs are repeatedly 
computed with a specified frequency and only the latest 
observed data with a specified data length is involved in the 
computation. In other words, the correlation functions are 
computed periodically with a constant moving data window. 
It is believed that the new method can provide simple and 
effective online validity detection to a wide range of 
recursive models including intelligent models and adaptive 
noise cancellers. 

This study is organised as follows. In section 2, a brief 
introduction to recursive identification and correlation test 
based model validation is presented. In section 3, a new 
combined ODACF and ODCCF based model validity 
monitoring method is proposed. A simulated case study, then, 
is employed in section 4 to demonstrate the new method. 
Finally, in section 5 conclusions are drawn to summarise the 
study. 

2. RECURSIVE IDENTIFICATION AND CORRELATION 
TESTS BASED MODEL VALIDATION 

Initially, the basic principles of recursive identification and 
correlation tests based model validation are introduced.  

2.1  Recursive Identification 

Consider a generalised single input and single output (SISO) 
nonlinear model. 
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where )(ˆ ⋅f  denotes an identified nonlinear model. )(ˆ ty , 
)(ty , )(tu , and )(tε  respectively denote the predicted 

outputs, measured outputs, inputs, and residuals. A typical 
parametric expression of (1) is Nonlinear Auto-Regressive 
Moving Average with eXogenous input (NARMAX) model 
(Leontaritis and Billings 1985) formulated as 
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where θ  denotes the parameter vector, and )(tφ  denotes the 
vector valued linear or nonlinear terms.  

To estimate the parameters in (2), many offline parameter 
estimation methods have been developed. Nevertheless, the 
computational complexity of these methods increases rapidly 
with the amount of data. Hence, they are not suitable for real-
time system identification where a new model will be 
estimated within each sampling instant by exploiting the 
information contained in the new collected data. In many 
cases, for the sake of making real-time decisions, it is 
necessary to identify the models online when the systems are 
in operation. To cope with this problem, many recursive 
identification methods have been developed, such as the least 
mean square (LMS) method, the recursive least square (RLS) 
method, the recursive instrumental variables (RIV) method, 
and the recursive prediction error method (RPEM). At time 
instant t, these methods estimate the new parameters based on 
the estimated parameter values at the previous sampling 
instant t-1 and the new observed data samples at t. Hence the 
computational complexity of these methods will not increase 
with the amount of data samples. A typical recursive 
identification method can be mathematically described as 
follows. Consider the general form of a nonlinear polynomial 
model expressed as 

)1()()( −= ttty T θφ)                                                              (3) 

where )(tθ  denotes the vector valued estimated parameters at 
time instant t. )(tθ  can be derived as follows. 

))()()(()1()( tytyttt )−+−= γθθ                                         (4) 

where )()( tyty )−  denotes the prediction error at t. )(tγ  is 
defined as the correction function vector that determines how 
the current prediction error affects the update of the estimated 
parameter vector. 

2.2  Correlation tests based offline model validation 

Model validation is the final step of any system identification 
procedure to check if the identified model is an adequate 
approximation of the underlying system (Ljung, 1999, 
Wigren, 2003). It is widely accepted that if a model is valid 
the residuals should be reduced to a white noise sequence 

with zero mean, finite variance, and independent to the 
delayed inputs, outputs. Auto-correlation function (ACF) and 
cross-correlation function (CCF) have been widely applied in 
linear model validation to check if the residuals are 
uncorrelated to the delayed residuals, inputs, and outputs 
(Bohlin, 1971, 9178, Söderström and Stoica,1990). To 
validate nonlinear models, several higher-order correlation 
tests based approaches have been proposed (Billings and 
Voon, 1983, 1986, Billings and Zhu 1994, 1995, Mao and 
Billings 2000). 

Recently, two sets of first order correlation functions named 
combined omni-directional auto-correlation functions 
(ODACFs) and combined omni-directional cross-correlation 
functions (ODCCFs) have been proposed to detect nonlinear 
associations between variables. (Zhang et al., 2007, Zhu et al., 
2007). Consider that )(τεur denotes the general form of CCF 
between )(tu  and )(tε  with a time delay element of τ . 
ODCCF ( )(τεuR ), which includes four first-order correlation 
tests, can be simply formulated as 

[ ])(),(),(),()( '''''''' τττττ βεεαβαε uuu rrrrR =                              (5) 

where ututut −== )()'()(α , εεεβ −== )()'()( ttt , and 
prime ’ denotes that the mean value has been removed from 
the corresponding data sequence. Then, the results obtained 
from using ODCCFs are combined together to constitute a 
more condensed correlation function named combined 
ODCCF ( )(τρ εu ) derived as follows. 
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For the special case that )()( ttu ε= , (5) and (6) are called 
ODACFs and combined ODACF respectively.  

Based on these correlation functions, a set of nonlinear model 
validity tests have been proposed in the study of Zhu et al. 
(2007) to detect the omitted nonlinear terms in the residuals. 
For a valid model, the correlation tests can be derived as 
follows 

Combined ODACF validation of residuals 
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Combined ODCCF validation between inputs and residuals: 

ττρε ∀= ,0)(u                                                                       (8) 

Combined ODCCF validation between outputs and residuals: 
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Compared to the previous methods, combined ODACF and 
ODCCF tests provide an enhanced nonlinear correlation 
detection power and a more condensed correlation illustration. 

These methods, however, are not applicable in recursive 
identification since they all operate on the whole collected 
data set. The computational cost of the correlation tests will 
increase rapidly with the amount of the collected data. 
Particularly, as ∞→t  the total data length will become 
extremely large. 

3. A NEW MODEL VALIDITY MONITORING 
PROCEDURE 

In this study, a new model validity monitoring method is 
proposed based on the combined ODACF and ODCCF tests 
introduced above. In the method, the correlation functions are 
repeatedly computed in parallel with the recursive 
identification. For reducing the computational cost without 
losing effectiveness, they are not computed at all t  but 
computed periodically. To enhance the tracking capability 
and sensitivity, only the latest parts (a data window with 
specified length of rN ) of the data sequences are used to 
compute the correlation functions. It makes the 
computational time of each step constant, and avoids a step 
by step increasing computational cost. The online correlation 
test procedure is presented as follows. 

1. Determine the time interval rt  between two steps of 
correlation computations, maximum lag rτ , and 
maximum data length rN  for the correlation tests. 

Remark 1: The values of rt , rτ , and rN  are chosen by 
the user. Generally, rτ  needs to be selected lager than the 
order of the model. rN  musts be selected larger than rt . 
Furthermore, the choice of rN  will influence the strict of 
the validity test that a larger rN  will result in a smaller 
confidence interval and a more strict validation. All these 
values have to be determined carefully to ensure that each 
computation of correlation functions can be finished 
within the time interval rt . 

2. For rNt ≤ , compute the combined ODACF and ODCCF 
defined in (7) to (9) at time instant rrrr kttttt ,...,3,2,=  
( rrrr tNktN −>≥ ) by using the testing data sequences 

)(, trε , ),(try  and ),(tru  given as 
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Remark 2: It should be noticed that )0(εερ  and )0(ερ y  
are not computed since theoretically they are nonzero 
numbers and unnecessary to the validity detection. 

Then, the correlation tests for a recursively identified 
model at t  are derived as follows. 
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To provide a better illustration and reduce the number of 
correlation plots, the results obtained from (11) are 
combined together as 
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3. For rNt > , compute the correlation functions at time 
instant rrr Kttktkt ,...,)2(,)1( ++=  ( rr tNKtN −>≥ ) 
with a fixed data length of rN . 

The testing data sequences )(, trε , )(, try  and )(, tru  are 
defined as 
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The computational procedure of the correlation functions 
in this stage is same as that in stage 2. 

Then, )(tεεΘ , )(tuεΘ , and )(tyεΘ  are used to online detect 
the quality of the recursive models. Theoretically, if a model 
is recursively identified adequately at t, the correlation 
functions can be derived as 
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According to the central limit theorem, the estimates of 
)(tεεΘ , )(tuεΘ  and )(tyεΘ  are asymptotically normal with 

zero mean and finite variance (Bowker and Lieberman, 1972). 
In practice, a model can be considered as valid when all the 
correlation functions lie within the 95% confidence interval. 
The confidence intervals for the online correlation tests are 
derived as follows. 

1. For rNt ≤ , the %95  confidence intervals are computed  

as t95.1±  where rrrr kttttt ,...,3,2,= .  
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2. For rNt > , the %95  confidence intervals are computed 

as rN95.1±  

Remark 3: At the beginning of the recursive identification, 
)(tεεΘ , )(tuεΘ , and )(tyεΘ should lie significantly outside 

the confidence interval since the model is unfitted. If the 
model structure and parameter estimation algorithm are 
selected correctly, the correlation functions will decrease as 
the model is recursively fitted. Finally, they will converge to 
the confidence interval while a valid model is achieved. 

Remark 4: It should be noticed that all )(tΘ  indicate the 
worst correlation values (with the highest amplitude) of 

)1(ρ ,…, )( rτρ  at time instant t. For large rτ  there is always 
one or more correlation functions lie around the confidence 
interval. Consequently, a )(tΘ , which closes to the 
confidence limits, is also acceptable. 

4. SIMULATION STUDY 

4.1 Simulation and Identification of a Hammerstein System 

In this section, a simulated Hammerstein system (Kung and 
Shinh, 1986) was employed to demonstrate the method. 
Consider a Hammerstein system expressed as follows 
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where )(tu  was selected as a uniformly distributed input 
sequence with zero mean and amplitude from -1 to 1. The 
additive white noise )(te  was selected as a normally 
distributed data sequence with zero mean and variance of 

3101 −× . All the data sequences were generated with length of 
3000. Fig. 1 shows the data sequences for system (15). 

 

Fig. 1. The original data sequences for system (15): A. noise 
free outputs; B. measured outputs; C. additive noise.  

Consider three candidate models formulated as follows.  
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(18) 

In this study, RLS was used to estimate the parameters 
associated in the models.  

Moreover, to compare the performance of the models, an 
error signal )(tξ , which is the difference between noise free 
outputs and predicted outputs, is computed as follows. 

)(ˆ)()( tytzt −=ξ                                                           (19) 

It should be notice that, in practice, it is impossible to obtain 
)(tξ  since )(tz  is always unknown. In simulation studies, 
)(tz  is defined in advance so that )(tξ  can be obtained to 

indicate the performance of the models. In this study, it is 
used only for providing visual illustrations and comparisons. 

Figs. 2 to 4 depict the predicted data sequences for the three 
models. 

 

Fig. 2. The predicted signals for model (16): A. )(ˆ1 ty ; B. 
)(1 tε ; C. )(1 tξ  
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Fig. 3. The predicted signals for model (17): A. )(ˆ 2 ty ; B. 
)(2 tε ; C. )(2 tξ  

 

Fig.4. The predicted signals for model (18): A. )(ˆ 3 ty ; B. 
)(3 tε ; C. )(3 tξ  

As shown in Figs. 2 and 3, both )(1 tξ  and )(2 tξ  did not 
converge to an acceptable level that (16) and (17) are 
inadequate. Fig. 4 shows that )(3 tξ  was reduced to a low 
level that (18) is an adequate approximation of (15). In 
addition, the figures clearly suggest that it is difficult to 
diagnose the models by only comparing the measured outputs, 
predicted outputs, and residuals. 

4.2 Validity Monitoring and Discussions 

The new online correlation tests were used to monitor the 
validity of the three candidate models in parallel with the 
recursive identification. The parameters of the correlation 
tests were selected as 50=rt , 10=rτ , and 300=rN . Figs 
5 to 7 show the validity monitoring results for the three 
models. Then, the results for each model are discussed below. 

(16) is a linear model that the nonlinear terms of inputs are 
omitted. Fig 5 clearly shows that )(tuεΘ  lies significantly 

outside the confidence interval at all the time instants that the 
residuals still correlated to the delayed inputs. 

(17) is a nonlinear model with the same form as (15). Since 
there is an additive noise exists in the measured outputs 
which are used as important regressors in the identified 
models, the order of the model should be selected larger than 
the order of the underlying system to remove the effect of the 
additive noise in the measured outputs. Therefore, (17) 
cannot be used to adequately approximate (15). Fig. 6 shows 
that )(tεεΘ  lies significantly outside the confidence interval 
that the residuals were not reduced to a white noise sequence. 

(18) is a proper nonlinear model for approximating (15). As 
shown in Fig. 4, )(3 tξ  was reduced to an acceptable level. 
Fig. 7 shows that all the correlation functions converged to 
the confidence interval after a period of recursive 
identification that the third identified model (18) is valid. 

 

Fig. 5. Validity monitoring results for (16): A. )(tεεΘ ; B. 
)(tuεΘ ; C. )(tyεΘ . 

 

Fig. 6 Validity monitoring results for (17): A. )(tεεΘ ; B. 
)(tuεΘ ; C. )(tyεΘ . 
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Fig. 7. Validity monitoring results for (17): A. )(tεεΘ ; B. 
)(tuεΘ ; C. )(tyεΘ . 

5. CONCLUSIONS 

In this study, a new online correlation test procedure is 
proposed to monitoring the validity of nonlinear models 
during the recursive identification procedure. Simulation 
study has been presented to demonstrate the new tests. The 
advantages of the new method can be summarized as follows. 

1. The new online correlation tests can be used to clearly 
and precisely detect whether and when a recursive model 
is adequately identified since they are computed by 
normalized correlation functions. 

2. Different requirements of the computational time and 
sensitivity can be easily satisfied by modifying the values 
of rt , rτ and rN . 

3. The correlation tests are computed by using the lastest 
collected data so that they can provide an immediate and 
sensitive indication of the performance change of the 
identified model. 

It is believed that the new method should be applicable to 
much wider class of nonlinear recursive models including 
intelligence models and adaptive nose canceller, which are 
under investigation currently and will be reported in 
following publications. 
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