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Abstract: Monitoring of the air intake system of an automotive engine is important to
meet emission related legislative diagnosis requirements. In this paper, the problem of fault
detection in the air intake system is stated as a constraint satisfaction problem over continuous
domains with a big number of variables and constraints. This problem can be solved using
Consistency Techniques. Consistency techniques are shown to be particularly efficient for
checking the consistency of the Analytical Redundancy Relations (ARRs), dealing with
uncertain measurements and parameters, and using experimental data.
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1. INTRODUCTION

Automotive engines is an important application for model-
based diagnosis not only because of environmentally based
legislative regulations, but also because of repairability,
availability, and vehicle protection (Nyberg, 2002). Differ-
ent model-based approaches have been studied in several
works as in (Gertler et al., 1995; Nyberg and Nielsen,
1998; Nyberg et al., 2001; Nyberg, 2002; Kimmich et al.,
2005). One important part of the diagnosis requirements
for automotive engines is the air path. Possible faults
include sensor faults, actuator faults and leakages. These
types of faults typically lead to degraded emission control,
and also possible damage to engine components.

This paper introduces a fault detection method based on a
model that takes into account the uncertainties in the mea-
sured signals and in the model by using intervals. These
uncertainties are caused by, for example, non-modeled
effects, electrical disturbances, model simplifications, and
so on.

Two research communities work on model-based tech-
niques: the FDI (Fault Detection and Isolation) commu-
nity, formed by researchers with a background in control
systems engineering, and the DX (Principles of Diagnosis)
community, formed by researchers with a background in
computer science and intelligent systems.

Among the techniques developed by the FDI research
community, there are classical methods, such as state
observers, parity equations and parameter estimation
(Blanke et al., 2003; Chen and Patton, 1998; Gertler, 1998;
Patton et al., 2000). One of the methods to detect faults
consists in comparing the behavior of an actual system and
a model of the system. This principle is called analytical
redundancy. Consider an actual system or a part of it that

can be represented by a model described by the following
nonlinear discrete-time equation,

y(k) = f(y(k−1), . . . ,y(k−n), u(k−1), . . . ,u(k−m), θθθ),
(1)

where y(k) ∈ R
ny . . . y(k − n) ∈ R

ny are the outputs
of the system at instants k . . . k − n, f is a vector of
functions, u(k − 1) ∈ R

nu . . . u(k − m) ∈ R
nu are the

inputs at instants k− 1 . . . k−m, and θθθ ∈ R
np is a vector

of parameters.

An analytical redundancy relation (ARR) is an algebraic
constraint deduced from the system model which contains
only measured variables. An ARR for Equation 1 is

y(k) = ŷ(k), (2)

where y(k) is the measured output of the system at instant
k and ŷ(k) is the analytical output of the model at instant
k.

An ARR is used to check the consistency of the observa-
tions with respect to the system model. Therefore, a fault
is detected when

ŷ(k) 6= y(k), (3)

or equivalently

r(k) = ŷ(k) − y(k) 6= 0, (4)

where r is called the residual of the ARR.

The main problem is that the measured output y(k)
and the computed output ŷ(k) are seldom the same
because the model is, by definition, inaccurate, i.e. it is
an approximate representation of the system. This is the
consequence of the uncertainties of the system and the
procedure of systems modelling.

The better model used to represent the dynamic behavior
of the system, the better will be the chance of improving
the reliability and performance in detection and diagnosis
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of faults. However, modelling errors and disturbances in
complex engineering systems are unavoidable and, hence
there is a need to develop robust fault diagnosis algo-
rithms. The goal of robustness is to minimize the false
and missing alarm rates due to the effects that modelling
uncertainty and unknown disturbances will have on the
residuals. This can be achieved in several ways, e.g. by
statistical data processing, averaging, or by finding and
using the most effective threshold. One way to find effec-
tive thresholds is using intervals to bound the uncertainty
of parameters and measurements. In this way adaptive
thresholds (envelopes) could be obtained.

Some interval methods have been proposed in the context
of fault detection and diagnosis, e.g. (Armengol et al.,
2000; Ploix and Follot, 2001; Puig et al., 2006b). (Stancu
et al., 2003) includes constraint propagation to solve fault
detection problems. In (Puig et al., 2006a), the problem
is solved using a tool known as IntervalPeeler, based
on constraint projection algorithms (2B-consistency) to
reduce interval domains of variables without bisections.

In this paper, the uncertainties associated with the system
itself and with the measurements are taken into account,
also by using intervals.

When interval uncertainties are considered, consistency
methods which combine interval methods and constraint
satisfaction techniques can be used to solve different prob-
lems such as parameter and state estimation. Constraint
satisfaction techniques implement local reasoning on con-
straints to remove inconsistent values from variable do-
mains. In practice, the set of inconsistent values is com-
puted by means of interval reasoning. In section 2 the
alternative to use local and global consistency techniques
such as Hull and Box consistency, is explored. The fault
detection problem is shown like a constraint satisfaction
problem and the resolution of this problem is performed by
the solver RealPaver (Granvilliers and Benhamou, 2006).
A stronger technique than 2B-consistency, called Weak-
3B, is used.

The novelty of this paper is that an interval observer
is stated as a Constrain Satisfaction Problem (CSP), in
order to solve the fault detection problem by means of
consistency techniques. Also, a sliding time window is used
to reduce the computational effort. Thus, the aim of this
paper is to show the usefulness of the consistency methods
to solve real and highly complex fault detection problems
like the ones of automotive engines.

In section 3, the engine used model is described, and the
experimental fault detection results in two scenarios are
presented. An alternative approach using the signs of the
symptoms is introduced as well. Finally, section 4 provides
some conclusions and outlines the future work.

2. FAULT DETECTION AS A CONSTRAINT
SATISFACTION PROBLEM

Many engineering problems can be formulated in a logical
form by means of some kind of first order predicate for-
mulas: formulas with the logical quantifiers (universal and
existential), a set of real continuous functions (equalities
and inequalities), and variables ranging over real interval
domains.

As defined in (Shary, 2002), a numerical constraint sat-
isfaction problem is a triple CSP = (V ,D, C(x)) defined
by

(1) a set of numeric variables V = {x1, . . . , xn},
(2) a set of domains D = {D1, . . . , Dn} where Di, a set

of numeric values, is the domain associated with the
variable xi,

(3) a set of constraints C(x) = {C1(x), . . . , Cm(x)} where
a constraint Ci(x) is determined by a numeric relation
(equation, inequality, inclusion, etc.) linking a set of
variables under consideration.

The fault detection problem can be represented by a
CSP similar to the one presented in (Jaulin, 2002), which
deals with the problem of nonlinear state estimation. For
example, the set of variables for the system (1) with one
output is

V = {θ1, . . . , θnp , y(k − n), . . . , y(k), u1(k − m), . . . ,

u1(k − 1), . . . , unu(k − m), . . . , unu (k − 1)}

the set of domains is

D = {Θ1, . . . , Θnp , Y (k − n), . . . , Y (k), U1(k − m), . . . ,

U1(k − 1), . . . , Unu(k − m), . . . , Unu (k − 1)}

and the set of constraints is

C = {f(y(k−1), . . . , y(k−n), uuu(k−1), . . . , uuu(k−m), θθθ) − y(k) = 0}.

Consistency techniques can be used to contract the do-
mains of the variables involved removing inconsistent val-
ues (Collavizza et al., 1999; Benhamou et al., 1999). In
particular for the fault detection application, they are used
to guarantee that the observed behavior and the model are
inconsistent when there is no solution. The algorithms that
are based on consistency techniques are actually ”branch
and prune” algorithms, i.e., algorithms that can be defined
as an iteration of two steps (Collavizza et al., 1999):

(1) Pruning the search space by reducing the intervals
associated with the variables until a given consistency
property is satisfied.

(2) Generating subproblems by splitting the domains of
a variable

Most interval constraint solvers are based on either hull-
consistency (also called 2B-consistency) or box-consistency,
or a variation of them (Benhamou et al., 1999). Box-
consistency tackles the problem of hull-consistency for
variables with many occurrences in a constraint. The afore-
mentioned techniques are said to be local: each reduction
is applied over one domain with respect to one constraint.
Better pruning of the variable domains may be achieved if
complementary to a local property, some global properties
are also enforced on the overall constraint set.

In this paper, the solution of the fault detection CSP
is performed by using the solver RealPaver (Granvilliers
and Benhamou, 2006). Weak-3B consistency, a stronger
technique than hull consistency and box consistency, is
used in Section 3.

2.1 Diagnostic observer

When dynamics is present and when a model’s estimates
of states are improved by feedback from measured signals,
it is called an observer. An observer used for diagnosis is
called a diagnostic observer.
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Taking into account the uncertainty by means of intervals,
as defined in (Puig et al., 2006b), a non-linear interval
observer equation with a Luenberger-like structure for a
system in the state-space representation can be written
as:

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k),uuu(k), θθθ) + KKK(yyy(k) − ŷ̂ŷy(k)),

ŷ̂ŷy(k) =hhh(x̂̂x̂x(k),uuu(k), θθθ), (5)

where x̂̂x̂x ∈ R
nx and ŷ̂ŷy ∈ R

ny are estimated state and output
vectors of dimension nx and ny, respectively, uuu ∈ R

nu

and yyy ∈ R
ny are measured input and output vectors

of dimension nu and ny, θθθ is the vector of uncertain
parameters of dimension np with their values bounded
θθθ ∈ [θθθ,θθθ], and KKK is the gain of the observer. The choice
of K can be done, for example, by pole placement. The
observer functions like a low-pass filter and thus the pole
placement is a compromise between fast fault response and
sensitivity to disturbances and noise (Nyberg and Nielsen,
1998).

The estimated outputs are used to check the consistency
of the observations with respect to the system model.
Therefore a fault is detected when the measured value is
either larger or smaller than the predicted value or in other
words, when the output of the model is not consistent with
the measured output. This assertion is expressed through
the logical statement,

(∀yyy(k) ∈ YYY (k)) (∀ŷyy(k) ∈ ŶYY (k)) rrr(k) 6= 000, (6)

where rrr(k) = yyy(k) − ŷ̂ŷy(k) is a vector of residuals.

The dynamic system (5) can be represented as a CSP:

V = {θθθ, yyy(1), . . . , yyy(k), ŷ̂ŷy(1), . . . , ŷ̂ŷy(k), x̂̂x̂x(1), . . . , x̂̂x̂x(k+1), uuu(1), . . . , uuu(k)}

D = {ΘΘΘ, YYY (1), . . . , YYY (k), Ŷ̂ŶY (1), . . . , Ŷ̂ŶY (k), X̂̂X̂X(1), . . . , X̂̂X̂X(k+1),UUU(1), . . . ,UUU(k)}

C = {x̂̂x̂x(2) = ggg(x̂̂x̂x(1), uuu(1), θθθ) + KKK(yyy(1) − ŷ̂ŷy(1))

ŷ̂ŷy(1) = hhh(x̂̂x̂x(1), uuu(1), θθθ)

.

..

x̂̂x̂x(k + 1) = ggg(x̂̂x̂x(k), uuu(k), θθθ) + KKK(yyy(k) − ŷ̂ŷy(k))

ŷ̂ŷy(k) = hhh(x̂̂x̂x(k), uuu(k), θθθ)}.

A problem finding the CSP solution is the continuous
increment with time in the computational effort. As it
is applied in this paper (Section 3.3), an alternative to
overcome this problem is the use of a sliding time window.
The time interval from the initial time point to the current
one is called time window of length w.

3. APPLICATION TO THE AIR INTAKE SYSTEM
OF AN AUTOMOTIVE ENGINE

3.1 System description

A schematic picture of the air-intake system is shown in
Fig 1. Ambient air enters the system and an air-mass
flow sensor measures the air-mass flow rate Wa. Next,
the air passes the compressor side of the turbo-charger,

the intercooler and then the throttle. The flow Wth is
dependent on the intercooler and manifold pressures, pic

and pim, the temperature Tic, and the throttle angle α.
Finally the air enters the cylinder and this flow, Wcyl

is dependent on pim and pem, the temperature Tim, the
engine speed N and the air-fuel ratio λ.

Fig. 1. A schematic figure of the turbo-charged engine
including the sensors.

The sensor signals, that are available to the diagnosis
system, are listed in Table 1.

Location Symbol Location Symbol

Ambient pressure p a Air-Filter entry T a

Before compressor p af After compressor T comp

After compressor p comp After intercooler T ic

After intercooler p ic In intake manifold T im

Intake manifold p im Exhaust manifold T em

Exhaust manifold p em After turbine T t

After Turbine p t

Location Symbol Location Symbol

Air-mass flow W af Air-fuel ratio λ

Throttle angle α Torque T q

Engine speed N Injection time t inj

Turbine speed N t

Pressure sensors Temperature sensors

Miscellaneous sensors

Table 1. Available sensors signals.

The faults in the air-intake system can be, for instance,
boost leakage, manifold leakage, pressure sensor bias,
pressure sensor gain-fault, etc, as described in (Nyberg,
2002).

3.2 Model equations

The model used in this paper is a part of the Mean Value
Engine Model explained in (Andersson, 2005). This model
describes the average behavior of the engine over one to
several thousands of engine cycles, and is a component
based model in which each component is described in
terms of equations, constants, parameters, states, inputs
and outputs. The equations describing the fault free air
intake model can be written as
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dpim

dt
=

RaTim

Vim

(Wth − Wcyl) +
mimRa

Vim

dTim

dt
(7)

Wth =
pic√
RaTic

Ψ(Π)Aeff (α) (8)

Wcyl = pimC1
1

1 + 1
λ( A

F
)s

rc − (pem

pim
)

1
γa

rc − 1
Vd

N

RimTim

(9)

where

Π =
pim

pic

(10)

Ψ∗(Π) =

√

2γ

γ − 1
(Π

2
γ − Π

γ+1

γ ) (11)

Ψ(Π) =







































√

√

√

√

γ

(

2

γ + 1

)

γ+1

γ−1

0 < Π ≤
(

2

γ + 1

)

γ
γ+1

Ψ∗(Π) Π <

(

2

γ + 1

)

γ
γ+1

≤ Πlin

Ψ∗(Πlin)

Πlin − 1
(Π − 1) Πlin < Π ≤ 1

(12)

The interval method presented in this paper uses discrete-
time models, in this case a discretization is obtained by
using a first order approximation:

xxx(t + Ts) ≃ xxx(t) + Ts ggg(xxx(t),uuu(t), θθθ), (13)

where the sample time, Ts, is equal to 10ms.

Thus, from (7) and including a non-linear interval ob-
server, it is obtained:

p̂im(k + 1) = p̂im(k) + Ts

RaTim(k)

Vim

(Ŵth(k) − Ŵcyl(k))

+K(pim(k) − p̂im(k)) (14)

where the set of sensors considered are: pressures pim, pic

and pem, temperatures Tim and Tic, engine speed N and
throttle plate angle α.

The uncertain parameters selected are two engine specific
parameters, and those are the gain parameter C1, which
describes the engine pumping capabilities, and the ratio
of specific heats γ. They have been bounded using the
criterion that in the fault free case, there should be no
false alarm. The variable λ (the air-fuel ratio) has been
considered as an interval, instead of the measured value,
because of the accuracy of the sensor and for a sake of
simplicity.

The set of variables of this model represented as a CSP is

V = {C1, γ, λ(k − w), . . . , λ(k − 1), p̂im(k − w), . . . , p̂im(k),

pim(k − w), . . . , pim(k − 1), pic(k − w), . . . , pic(k − 1),

pem(k − w), . . . , pem(k − 1), Tic(k − w), . . . , Tic(k − 1),

Tim(k − w), . . . , Tim(k − 1), N(k − w), . . . , N(k − 1),

α(k − w), . . . , α(k − 1)},

and the set of initial domains for the estimated variable
p̂im has been taken equal to [1 ∗ 104, 2 ∗ 105] with the ex-
ception of the initial domains of p̂im(k−w) and p̂im(k), at
the beginning and the end of the time window, which have
been assigned a value equal to the interval measurements
pim(k − w) and pim(k).

3.3 Experimental results

All experiments were performed on a four-cylinder turbo-
charged spark-ignited SAAB engine located in the research
laboratory at Vehicular Systems Group, Linköping Univer-
sity. The engine is mounted in a test bench together with
a Schenck dynamometer.

In this section two faulty scenarios are considered, (i) a
gain-fault in the sensor of pressure pic, and (ii), a gain-
fault in the engine speed sensor. The fault detection results
are obtained by using Weak-3B consistency technique
and a window length equal to 30 samples (0.3s). The
computation time required and the sample time have the
same order of magnitude.

When no solution is found to the CSP, a fault is detected.
Otherwise, when the observed behavior and the model
are not proven to be inconsistent, means there is not a
fault or it could not be detected. In this way, the proposed
approach prioritizes to avoid false alarms to missed alarms.

• First scenario
In Fig. 2, obtained results in the case of no fault and a
10% gain-fault in the pressure sensor of pic are shown. A
“1” indicates there is a fault and a “0” means there is not
a fault or it could not be detected. As shown in this figure,
there is no false alarm in absence of fault. The fault in the
sensor begins at sample 600 and is detected at sample 604.
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Fig. 2. First scenario fault detection. Top: no fault. Bot-
tom: gain-fault in the sensor of pressure pic beginning
at sample 600. The fault is detected from sample 604.

Fig. 3 shows the interval measurement (solid line) and
the estimated manifold pressure (dashed line) in the fault
free situation. The external estimate has been obtained
with the same methodology explained before but with
the domains for the estimated variable p̂im(k) equal to
[1 ∗ 104, 2 ∗ 105]. Although the computation time is bigger
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Fig. 3. First scenario without faults. The upper plot shows
measured and estimated manifold pressure.

than the sample time being not suitable to operate in real-
time, it can be used when a fault is detected to obtain more
information, and then, to improve the task of diagnosis
(Section 3.4).

• Second scenario
Fig. 4 shows the results in the case of no fault and a 10%
gain-fault in the pressure sensor of pim. The fault in the
sensor begins at sample 800 and is detected at the same
time as the fault.

Fig. 5 shows the interval measurement and the estimated
manifold pressure in the fault free situation of this sce-
nario.

3.4 Diagnosis: signs of the symptoms

When it is possible to utilize detailed models for the faults,
this information can be used together with the signs in
the residuals, to prune the candidate space when perform-
ing the fault diagnosis task, as proposed in (Calderón-
Espinoza et al., 2007).
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Fig. 4. Second scenario fault detection. Top: no fault.
Bottom: gain-fault in the sensor of pressure pim. The
fault is detected at the same time as the fault.
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Fig. 5. Second scenario without faults. The upper plot
shows measured and estimated manifold pressure.

This approach could be applied to perform the diagnosis
in both studied scenarios. In order to do this, it is needed
to:

• Include in the fault signature matrix, the influence of the
faults in the residuals, and

• Obtain the sign of the symptom. This could be obtained
by observing the behavior of the estimated output with
respect to the measurement. For instance, the sign would
be +1 if the estimation is greater than the interval mea-
surement, or if the estimation is smaller than the interval
measurement, the sign would be -1.

For both scenarios, when a fault is detected, the algorithm
estimates the manifold pressure at the end of each sliding
window and the consistent region of this variable can be
seen in Fig 6 and 7. As it is expected, the interval mea-
surement (solid line) does not intersect with the estimate
(dashed line), and for the first case, the estimates are
always smaller than the measurements, whereas for the
second case, the opposite relation is observed.

4. CONCLUSIONS AND FUTURE WORK

When interval uncertainties are considered, consistency
methods can be used to solve fault detection problems.
In this paper, consistency methods are used to increase
robustness of a diagnosis system for an automotive engine
application. In this paper through the obtained results,
consistency techniques are shown to be particularly effi-
cient to check the consistency of the Analytical Redun-
dancy Relations (ARRs) and diagnostic observers, dealing
with uncertain measurements and parameters. In the fu-
ture, diagnosis approach introduced in section 3.4, which
uses the signs of the symptoms, must be studied in depth
in order to perform this task.
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of the Government of Catalonia.

REFERENCES

P. Andersson. Air Charge Estimation in Turbocharged
Spark Ignition Engines. PhD thesis, Linköpings Uni-
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