
A Suboptimal Controller Design

Methodology for Input-Output

Feedback-Linearizable Systems

Peyman Mohajerin Esfahani ∗ Masoud Karimi-Ghartemani ∗∗

∗ Department of Electrical Engineering, Sharif University of
Technology, Tehran, Iran (Tel: 21-661-65936; e-mail:

mohajerin@ee.sharif.edu).
∗∗ ( e-mail: karimig@ sharif.edu).

Abstract: This paper addresses suboptimal control of nonlinear systems which can be feedback-
linearized from input to output. The case of input-to-state linearizable systems is also covered
as a special case. The method is thus applicable to all nonlinear systems which can be partially
linearized using the method of output-feedback linearization while having a stable internal
(or zero) dynamics. The well-known LQR technique applied to the linearized system does
not guarantee the suboptimality of the nonlinear system. This paper uses output feedback
linearization technique to partially linearize the system and then designs an output-feedback
for the feedback-linearized system in such a way that it ensures suboptimal performance of the
original nonlinear system. The proposed method can optimize any arbitrary smooth function of
states and input. The proposed controller is, however, suboptimal due to the facts that (1) the
form of the controller is a linear static feedback of the linearized state, (2) the search algorithm
may fall into a local extremum rather than a global, and (3) the calculated controller depends
on the initial conditions. The method is successfully applied to control design of the longitudinal
subsystem of a laboratory double-rotor helicopter and the results are discussed and compared
with those of the LQR method.
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1. INTRODUCTION

Feedback linearization technique is an important tech-
nique in the study of nonlinear control systems. Different
from the regular concept of Jacobian linearization of a
nonlinear system, the purpose of feedback linearization
is to transform a given nonlinear system into a linear
system via state-feedback. Differential geometric control
is a direct synthesis method in which the controller is
derived by requesting a desired closed-loop output re-
sponse in the absence of input constraints. A widely used
differential geometric control method is input-output lin-
earization, which cannot be used to operate a process at a
nonminimum-phase (NMP) steady state. Efforts to make
input-output linearization applicable to processes with a
NMP steady state include the use of equivalent outputs
for the controller design (Niemiec-1998), coordinated con-
trol (McLain-1996), controller design by inverting the
minimum-phase part (Doyle-1996), (Kravaris-1990), and
approximate input-output linearization (Kanter-2002)
and (Panjapornpon-2004).

To enlarge the class of nonlinear systems which can
be handled using the differential geometric approach,
the dynamic feedback linearization problem was initi-
ated and addressed in (Charlet-1959) by introducing
dynamic compensators and searching for the correspond-
ing state and control transformations in the augmented
state spaces. Sufficient conditions for dynamic feedback

linearization were given in (Charlet-1991) and necessary
conditions were established in (Sluis-1993). Partial feed-
back linearization problem was formulated and studied in
(Marino-1986) and (Respondek-1986) by identifying the
largest feedback linearizable subsystems, where conditions
were given to transform a portion of the nonlinear system
into a linear part. When the relative degree of the con-
sidered nonlinear system is less than system dimension,
feedback linearization based nonlinear control can also
render the transformed system consisting of a nonlinear
zero dynamics plus a linear controllable system (the so-
called normal form) (Isidori-1995). The difference between
the normal form and the partial feedback linearizable form
is that the nonlinear zero dynamics in the normal form is
only driven by the states of the linear controllable system
while the nonlinear part in partial feedback linearizable
system can contain control inputs. More recently, nonreg-
ular feedback linearization problem was defined in (Sun-
2003), where the purpose is to transform the nonlinear
system into the linear controllable form with reduced con-
trol input dimensions.

Feedback linearization technique transforms the original
nonlinear system into a linear system. A stable controller
for the linearized system will then also stabilizes the
original nonlinear system. Performance of the nonlinear
system, however, is not directly related to that of the
linear system and cannot be inferred based on that. An
optimal design such as linear quadratic regulator (LQR)
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for the linearized system, for instance, does not necessarily
correspond to any optimality in the performance of the
nonlinear system. This paper is to address an suboptimal
state-feedback design for the feedback-linearized system to
achieve suboptimal performance of the nonlinear system.
A technique is presented which arrives at the solution for
any arbitrary cost function which is a smooth function
of state variables and input. The method is successfully
applied to a physical system and results are discussed and
compared with those of the LQR design.

2. BACKGROUND AND PROBLEM STATEMENT

Consider the affine nonlinear system represented by

ẋ = f(x) + g(x)u, y = h(x), (1)

where x is the n-dimensional state vector, f and g are
sufficiently smooth vector fields on D ⊂ R

n and u is the
scalar input signal. The basic approach of input-output
linearization is simply to differentiate the output function
repeatedly until the input u appears. The differentiated
output can then be rewritten using the following expres-
sion:

y = h(x) = L0
fh(x),

dy

dt
= L1

fh(x),

...
dρ−1y

dtρ−1
= L

ρ−1
f h(x),

dρy

dtρ
= L

ρ
f (h(x)) + LgL

ρ−1
f h(x)u.

(2)

where L1
fh(x) = ∂h

∂x
f(x) is called the Lie Derivative of h

with respect to f or along f. This is the familiar notion of
the derivative of h along the trajectories of the system
ẋ = f(x) which is more convenient notation when we
repeat the calculation of the derivative with respect to
the same vector field or a new one.

Definition: The nonlinear system (1) is said to have
relative degree ρ, 1 ≤ ρ ≤ n, in a region of D ⊂ R

n

if

LgL
i−1
f h(x) = 0, i = 1, 2, · · · , ρ − 1,

LgL
ρ−1
f h(x) 6= 0.

(3)

for all x ∈ D.

Theorem: Consider the system (1), and suppose it has
relative degree ρ ≤ n in D ⊂ R

n. If ρ = n, then for every
x0 ∈ D, a neighborhood N of x0 exists such that map

T (x) =











h(x)
Lfh(x)

...
Ln−1

f h(x)











(4)

is a diffeomorphism on N . If ρ < n, then for every
x0 ∈ D a neighborhood N of x0 and smooth functions,
ϕ1(x), . . . , ϕn−ρ(x) exist such that

∂ϕi(x)

∂x
g(x) = 0, i = 1, · · · , n − ρ, ∀x ∈ N (5)

is satisfied for all x0 ∈ N and the map T (x)

z = T (x) =























ϕ1(x)
...

ϕn−ρ(x)
−−−
h(x)

...

L
ρ−1
f h(x)























=

(

Φ(x)
−−−
Ψ(x)

)

=

(

η
−
ξ

)

(6)

is diffeomorphism on N (Khalil-2002).

The input-output linearization technique is based on ap-
plying

z = T (x), v = α(x) + β(x)u (7)

where z = T (x) is an admissible state transformation
witch is expressed in (6) and v is the new control input
signal. the functions α(x) and β(x) are then expressed in
terms of h(x) as

α(x) = L
ρ
fh(x), β(x) = LgL

ρ−1
f h(x). (8)

Upon using the linearizing transformation T and associ-
ated functions α and β, the representation (1) will change
to the normal form as

η̇ = f0(η, ξ),

ξ̇ = Acξ + Bcv,
y = Ccξ

(9)

where

Ac =















0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

... 0 1
0 · · · · · · 0 0















, Bc =













0
0
...
0
1













,

Cc = ( 1 0 . . . 0 0 ) .

(10)

This form decomposes the system into a linear subsystem
described by ξ and an internal nonlinear subsystem de-
scribed by η and η̇ = f0(η, ξ). Setting ξ = 0 in the internal
dynamics results in

η̇ = f0(η, 0). (11)

which is called zero dynamics. The system is said to
be minimum phase if (11) has an asymptotically stable
equilibrium point in the domain of interest.

Assume that the system (1) has relative degree ρ and is
minimum phase; hence, having transformed (1) into (9),
the stabilization problem can easily now be addressed by
choosing

v = −Kξ, (12)

where K is an 1×ρ constant vector such that all eigenval-
ues of (A−BK) lie on the negative left-half of the complex
plane (Khalil-2002). This selection of control input ensures
stability of the original system (1). However, desired perfor-
mance of the system (1) cannot be inferred from desired
performance of the system (9). As an illustration, if the
relative degree ρ is n, according to (6), T (x) = ξ and the
system (9) is transformed to

ξ̇ = Acξ + Bcv,
y = Ccξ.

(13)

A Linear Quadratic Regulator (LQR) can then be designed
for system (13) by properly selecting the vector K but it
may or may not result an optimal performance for the
original system (1). The LQR optimal controller for the
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linear system (13) is the one which minimizes the following
cost function

Jξ =

∫

∞

0

(v2 + ξT Q̄ξ)dt, (14)

where Q is a positive-definite n×n matrix and T stands for
matrix transposition. The solution can easily be obtained
using lqr command in Matlab. We used the subscript ξ to
emphasize that this cost function is defined on ξ-space not
on the original x-space. The solution to this problem does
not necessarily minimize

Jx =

∫

∞

0

(u2 + xT Qx)dt, (15)

which is the associated cost function in the x-space. In
other words, optimality of the linearized system does not
result in optimality of the nonlinear system.

Formulating the general solutions to (15) is challenging
due to the nonlinearities involved. That is why this prob-
lem has not been carefully addressed in the literature.
This paper is to address this problem and to formulate
a solution to (15) for the special case where the control
input is of the form (12). In other words, we use the input-
output linearization technique to partially linearize the
system but then we design the controller coefficients K to
ensure the suboptimality of nonlinear system (quantified
by Jx) rather than the linearized system (quantified by
Jz). The presented suboptimal controller is numerically
examined on a real example and the results are discussed.
The results show that the proposed controller can perform
ways better than the LQR controller.

Problem Statement. For the nonlinear affine system (1)
with the original state vector x and the transformed system
of (9) with the state vector of z, determine the suboptimal
K in (12) which minimizes Jx of (15). We assume that
the zero dynamics (11) is globally asymptotically stable.

The solution presented in this paper is not limited to the
quadratic-type cost functions such as Jx and the proposed
solution is formulated for any smooth form of a cost
function.

3. PROPOSED METHOD

Using v = −Kξ, the system (9) can be represented as

η̇ = f0(η, ξ),

ξ̇ = (Ac − BcK)ξ,
y = Ccξ.

(16)

In the x-space, it will be

ẋ = F (x,K),
y = h(x).

(17)

where K = [k1, k2, · · · , kρ]
T is the controller coefficients

vector to be determined. Let us assume a general form for
the cost function J as

J =

∫ Tf

0

Γ(x,K)dt. (18)

where Γ is a function from R
n+ρ to R. Initial condition

x0 = x(t)|t=0 and final time Tf are assumed to be known.
The objective is to reach at a constant, suboptimal vector
K that minimizes J .

Define a new variable

xn+1(t) =

∫ t

0

Γ(x(τ),K)dτ.

It is clearly observed that xn+1(0) = 0 and xn+1(Tf ) is
equal to J in (18) which is to be minimized. Moreover, for
all 0 < t < Tf

ẋn+1(t) = Γ(x(t),K). (19)

Augmenting (17) and (19) yields

Ẋ = H(X, K), (20)

where X is the augmented (n+1)-dimensional state vector
defined by

X(t) = [x(t), xn+1(t)]
T , (21)

and H(X,K) is a function from R
(n+1+ρ) to R

n+1 given
by

H(X, K) =

(

F (x(t),K)
Γ(x(t),K)

)

. (22)

The initial condition for (20) is X0 = [x0, 0]T and the
final time is Tf , both are assumed to be known. Thus,
the objective will now be to find a constant vector K to
minimize xn+1(Tf ) = J .

To arrive at a solution, define

W =
∂X

∂K
(23)

which implies that W ∈ R
(n+1)×ρ is in the form of

W =















∂x1

∂k1
· · ·

∂x1

∂kρ

...
...

∂xn+1

∂k1
· · ·

∂xn+1

∂kρ















. (24)

Taking the time derivative of W in (24) and using the
chain rule results in

Ẇ =
∂H

∂X
×

∂X

∂K
+

∂H

∂K
=

∂H

∂X
W +

∂H

∂K
. (25)

Notice that W (0) = 0 because X at t = 0 is independent
from choice of K. It is also interesting to note that the
last row of W is the gradient of J with respect to K which
shows variational behavior of J with respect to changes in
K.

Based on the above observations, it is now possible to
propose an iterative algorithm to obtain the suboptimal
K as follows.

• Step 1. Choose an initial value for K. A proper initial
value can, for example, be obtained by solving the
LQR problem in the ξ-space.

• Step 2. Jointly solve (20) and (25) with initial condi-
tions X(0) = [x(0), 0]T and W (0) = 0. This involves
a set of (n + 1) + ρ(n + 1) = (n + 1)(ρ + 1) ordinary
differential equations.

• Step 3. Update K using the information at time Tf .
It can simply be done using the gradient descent rule
as below

Ki+1 = Ki − µWn+1
i , (26)

where Wn+1
i is the last row of matrix W at stage i

and µ is a positive definite matrix which controls the
convergence rate of the algorithm.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8787



Fig. 1. (a) Double-Rotor Laboratory Helicopter, (b) Lon-
gitudinal Subsystem (Lopez-Martinez-2003,L).

A sequence of Ki yields a sequence of Ji. Since J is a
positive cost function, it will have a lower bound and
selecting an appropriate µ ensures that Ji is a decreasing
sequence and converges at least to a local minimum.

4. NUMERICAL RESULTS

This section studies feasibility of the proposed algorithm
to design an suboptimal state-feedback controller for a
realistic control system as described and discussed below.

4.1 Case Study

The laboratory helicopter consists of a 2 degrees of freedom
(DOF) mechanism thrusted by two rotors resembling a
helicopter, Fig. 4.1. The degrees of freedom are the yaw
and the pitch angles. In this analysis, the orientation angle
is fixed (θ=constant) , and the angular velocity of the tail
rotor is null (ωt=0). The pitch angle will be controlled by
the main rotor.

The equations of the longitudinal dynamics are as follows:

Iϕϕ̈ + Gs sin(ϕ) + Gc cos(ϕ) + Kϕϕ̇ = Lg|ωg|ωg

Igω̇ = Pm − (Bg + Dg|ωg|)ωg.
(27)

The output measurement is

ym = ϕ − ϕeq, (28)

where

• ϕ: Pitch angle measured from the horizontal plane.
• Iϕ: Inertia of the longitudinal system with respect to

its rotation axis.
• ωg: Angular velocity of the main rotor.
• Ig: Inertia of the propeller with respect to its rotation

axis.
• Lg|ωg|ωg: Torque due to the aerodynamic force of

thrust in main rotor.
• Kϕϕ̇: Friction torque.
• Gs sin(ϕ): Gravity Torque 1.
• Gc cos(ϕ): Gravity Torque 2.

• Pm: Engine torque.
• Bg: Friction constant of the engine.

• D: Drag constant of the propeller.

It can be seen that there is only an engine Pm and 2 DOF,
the pitch angle ϕ and the angular velocity of the rotor
ωg. Therefore it is an underactuated system in the sense
that it has less control inputs than degrees of freedom (see
(Fantoni J. and Lozano-2002) for details).

With respect to the linearization loop, it was seen in
(Lopez-Martinez-2003) that such a law was not suitable
next to the static equilibrium point of the system. In order
to control the system in a region around this point, the
system model is modified (see (Hauser, J.. Sashy, S. and
Kokotovic-1992)) and a new approximate law is obtained,
which is suitable only in this region. As it was shown
in (Lopez-Martinez-2004), the longitudinal system is
controllable via output-feedback linearization if the rotor
velocity is not next to zero; in fact, a switching control
based on the two laws is studied and applied depending on
the working point to control the system. While the rotor
velocity is near the static equilibrium point of the system,
a simplified model of the aerodynamic forces applied
to the system is assumed (Lopez-Martinez-2004). The
simplification consists of linearizing the aerodynamic force
in a region that contains ωg = 0, that is, linearizing the
force when the angular velocity is next to zero. Therefore,
this approximate model is valid only for small forces.

The equations of the longitudinal dynamics are now
changed by the following ones

Iϕϕ̈ + Gs sin(ϕ) + Gc cos(ϕ) + Kϕϕ̇ = Lgωg

Igω̇ = Pm − (Bg + Dg)ωg
(29)

where constant Lg and D could be determined from those

of the quadratic forces Lg and Dg to ensure a soft switching
between both laws in two step control (Lopez-Martinez-
2004). The state vector is defined as

x =

(

ϕ − ϕeq

ϕ̇
ωg

)

=

(

x1

x2

x3

)

(30)

and the system state-space equations will be given by
ẋ = f(x) + g(x)u where

f(x) =

(

x2

f2

−kx3

)

f2 =
−Gs sin(x1 + ϕeq) − Gc cos(x1 + ϕeq) − Kϕx2 + Lgx3

Iϕ

,

g = ( 0 0 k )
T

,
y = h(x) = x1.

(31)
Computing time derivatives of the output gives the follow-
ing terms
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y = h(x) = x1

dy

dt
= Lfh + Lgh(x).u = x2

d2y

dt2
= Lf2h(x) + LgLfh(x).u = f2

d3y

dt3
= Lf3h(x) + LgLf2h(x).u = Lf3h(x) +

kLg

Iϕ

.u

Since LgLf2h(x) =
kLg

Iϕ
6= 0 is non-null, the system is said

to have the relative degree three, and u can be obtained
from

u =
v − Lf3h(x)

LgLf2h(x)
,

v = −Kξ.

(32)

where K = [k1 k2 k3] and

ξ =

(

ξ1

ξ2

ξ3

)

=

(

h(x)
Lfh(x)
Lf2h(x)

)

=

(

x1

x2

f2

)

(33)

In (Lopez-Martinez-2004), K is computed by applying the
LQR method to the linearized system in ξ-domain. Let us
apply the proposed method of this paper to obtain K and
make comparisons with the LQR in sequel.

According to (32) the control signal u is now a function of
x and K as u = u(x,K) and the objective is to locate the
suboptimal K which minimizes the cost function

J(K) =

∫ Tf

0

[u2(x,K) + xT Qx]dt (34)

for a given positive definite matrix Q. The stability re-
quirement on the eigenvalues of A−BK poses a constraint
on the elements of K as

k3k2 − k1 > 0,
ki > 0, i = 1, 2, 3.

(35)

The constraint (35) is derived using the Routh-Hurwitz
criterion (on the linearized system) and ensures stability
of the closed-loop system. Using the same notations intro-
duced in previous section, we have

F (x,K) = f(x) + g(x)u(x,K)
Γ(x,K) = u(x,K)2 + β‖x‖2

2,
(36)

where a selection of Q = βI (β > 0) is made for simplicity.

4.2 General Simulations

Results of computer simulations of the proposed algo-
rithm on the above case study is presented in this sec-
tion. Numerical values of β = 3 (for the cost function),
x0 = [π

3 0 0.8] (initial state) and µ = 0.01 I (step
size of the gradient method) are selected. The physi-
cal parameters Iϕ,Kϕ, Gs, Gc, k, ϕeq, Lg are estimated as
0.7, 1, 5, 5, 0.5, 0.23, 40, respectively, from the real physical
quantities. The initial value for controller coefficients K
is randomly selected as long as the stability requirement
(35) is satisfied.

Figure 2 shows evolution of the cost function as well as
norm of the gradient vector as iterations go on. Within
about 119 iterations, the gradient vector becomes suffi-
ciently small and the algorithm can be stopped. The sub-
optimal controller is KOpt = [20.1601, 24.4168, 11.6979]
and the minimum value of the cost function is JOpt=3.84.

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

Cost Function

Gradient Norm

Fig. 2. Evolvement of the cost function Jx and the gradient
norm ‖∂Jx

∂K
‖ versus the iteration index.

To compare the results with those of an optimally designed
LQR controller, the matlab command lqr is used to obtain
the optimal controller KLQR = [0.7071, 1.8419, 2.0454]
with the same β. 1 This controller results in a value of
JLQR = 232.74 for the same cost function J(K) given in
(34). The index function is improved about sixty times
by the proposed controller. This large difference is due to
the fact the the LQR algorithm addresses the problem in
the ξ-space which is only a fictitious space and does not
necessarily reflect any optimality. The proposed algorithm,
on the other hand, achieves the minimization in the real,
physical x-space.

Time responses of the closed-loop control system using
both the proposed controller and the LQR controller are
obtained and shown in Fig. 3 and Fig. 4. Figure 3, parts
(a) and (b) respectively depict the state variables of the
system using proposed controller and the LQR controller.
The control signals for the proposed controller and the
LQR are also respectively shown in Fig. 4 parts (a) and
(b). Comparing with the LQR responses, variations of the
state variables as well as the control signal are within
a much smaller range in the proposed controlled system
which confirms suboptimality of the proposed controller.

5. CONCLUSION

The problem of designing an suboptimal output-feedback
controller is addressed for a class of nonlinear systems
characterized by those which can be partially linearized
using the feedback linearization technique while its inter-
nal dynamics remain stable. The method is evaluated in
the context of a physical system and results confirm that
the proposed controller can behave ways better than the
conventional LQR designed for the linearized system. The
method is presented in a step-by-step algorithm.

1 We do not deny the possibility of existence of a Q̄ in the LQR

problem which may generate a lower index Jx but there is no

evidence as how to get to such Q̄.
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Fig. 3. (a) State variables using the proposed controller,
and (b) state variables using the LQR method.

0 1 2 3 4 5 6 7 8 9 10
−6

−4

−2

0

(a)

0 1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

(b)

Fig. 4. (a) control signal using the proposed controller, and
(b) control signal using the LQR method.

6. ACKNOWLEDGEMENT

We acknowledge the fund provided by the Iranian Telecom-
munications Research Center for this research. The au-
thors would also like to appreciate the great discussions
by Dr. Yaghoub Farjami.

REFERENCES

Niemiec, M., and C. Kravaris, ”Controller synthesis for
multivariable nonlinear non-minimum-phase processes,”
Proc. of ACC, 2076 (1998).

McLain, R.B., M.J. Kurtz, and M.A. Henson, ”Habitu-
ating control for nonsquare nonlinear processes,” Ind.
Eng. Chem. Res., 35 (11), 4067 (1996).

Doyle, F. J., F. Allgower, and M. Morari, ”A normal form
approach to approximate input-output linearization for
maximum phase nonlinear SISO systems,” IEEE Trans.
Auto. Contr., 41 (2), 305 (1996).

Kravaris, C., and P. Daoutidis, ”Nonlinear state feedback
control of second-order nonminimum-phase nonlinear
systems,” Comp. Chem. Eng., 14 (4-5), 439 (1990).

Kanter, J. M., M. Soroush, and W. D. Seider, ”Nonlinear
controller design for input-constrained, multivariable
processes,” Ind. Eng. Chem. Res., 41 (16), 3735 (2002).

Panjapornpon, C., M. Soroush, and W. D. Seider, ”A
model-based control method applicable to unstable,
non-minimum-phase, nonlinear processes,” Proc. of
ACC, 4, 2921 (2004).

B. Charlet, J. Levine, R.Marino, On dynamic feedback
linearization, System Control Lett. 13 (1989) 143-151.

B. Charlet, J. Levine, R. Marino, Sufficient conditions for
dynamic state feedback linearization, SIAM J. Control
Optim. 29 (1991) 38-57.

W.M. Sluis, A necessary condition for dynamic feedback
linearization, Systems Control Letters 21 (1993) 277-
283.

R. Marino, On the largest feedback linearizable subsystem,
System Control Lett. 6 (1986) 345-351.

W. Respondek,Partial linearization, decompositions and
fiber linear systems, in: C.I. Byrnes, A. Lindquist (Eds.),
Theory and Applications of Nonlinear Control, North-
Holland, Amsterdam, The Netherlands, 1986, pp. 137-
154.

A. Isidori, Nonlinear Control Systems, Springer, Berlin,
1995.

Z. Sun, S. Ge, Nonregular feedback linearization: a non-
smooth approach, IEEE Trans. Automat. Control 48
(2003) 1772-1776.

H. Khalil, Nonlinear Systems, third ed., Prentice-Hall,
Upper Saddle River, NJ, 2002.

FantoniJ. and Lozano,R.,(2OO2) Non-linear Control for
Underactuated Mechanical Systems. Springer-Verlag,
London. ISBN1 85233423 1

Lopez-Martinez, M. and Rubio, F.R., (2003) Control of
a Laboratory Helicopter Using Feedback Linearization.
ECC03: European Control Conference.

Hauser, J.. Sashy, S. and Kokotovic, P., (1992) Nonlinear
Control Via Approximate Input-Output Linearization:
The Ball and Beam Example. IEEE Transactions on
Automatic Conuol, Vol 37, No.3

M.Lbpez-Martinez, J.M.Diaz, M.G.Ortega and F.R.Rubio
Escuela, ”Control of a Laboratory Helicopter using
Switched 2-Step Feedback Linearization”, American
Control Conference Boston, Massachusetts, 2004.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

8790


