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Abstract: This paper addresses the design of gain scheduled observer-based controllers for rational linear 
parameter varying systems (LPV). Such systems are equivalently recast as affine descriptor LPV systems. 
Based on this new realization a descriptor observer-based controller is designed by means of some new 
sufficient conditions given as LMIs. The stability of the descriptor closed-loop system is proved. A state 
space rational controller, with an observer-based structure, is then derived. The stability of the obtained 
rational closed-loop is also proved. A numerical example is presented to illustrate the efficiency of the 
method. 

 

1. INTRODUCTION 

Analysis and control of linear parameter varying systems have 
been a very popular topic during the last two decades since 
this class of systems covers a large scale of practical systems, 
including some non linear systems as illustrated for instance 
in (Apkarian et al. 1994), (Leith et al., 2000) and  many other 
papers.  
Several techniques can be found in the literature about gain 
scheduling control of LPV systems. One of these approaches 
consists in interpolating several invariant controllers tuned for 
different operating points. This classical gain scheduling 
design is obtained in three steps: define the operating points 
for the LPV system, design a linear time invariant controller 
for each one of them and finally build the gain scheduled 
controller. The last step of the design is based on interpolation 
techniques. Numerous interpolation schemes can be used, as 
for instance the interpolation of the state space matrices, the 
poles, zeros and gains of the controllers...(see for example 
(Stillwell et al., 1999)). This simple scheme has the drawback 
that in most cases no theoretical proof of the stability of the 
closed-loop is given. However in (Stilwell et al., 2000) the 
stability of the closed-loop is ensured thanks to some 
additional constraints. Furthermore, interpolation of observer 
and state feedback gains has been tackled with in several 
papers as for instance in (Raharijoana et al., 2006) and (Berriri 
et al., 2006). Another way to design gain scheduled 
controllers is based on the Lyapunov’s theory and the 
extension of the LMI conditions known in the LTI case. The 
main advantage of this approach is that the stability of the 
closed-loop system is ensured. Recently, significant progress 
has been made in this area by using some special 
representations for LPV systems: LFT (linear fractional 
transformation), affine, polytopic, representations. In the case 
of polytopic systems, the design of an observer-based 

controller was addressed by (Bara et al., 2002), (Bara et al., 
2001). Our objective is to extend these results to the case of 
rational LPV systems. Numerous results on the control of 
LPV rational system can be found in the literature. Most of 
them are based on the use of a LFT and provide sufficient 
conditions for the design of stabilizing controllers (see for 
example (Scherer et al., 2001)). In this paper the design of 
observer-based controllers for rational LPV systems is tackled 
with via an equivalent descriptor realization with an affine 
dependency on the varying parameter. This idea was used in 
(Bouali et al., 2006) and (Bouali et al., 2007a) in the state 
feedback synthesis case.  
This paper is organized as fallows. We present the problem 
under consideration in Section 2. Some preliminary results 
concerning the stability of LPV descriptor systems are 
presented in Section 3. In section 4, we consider the design of 
an observer-based controller for the equivalent LPV 
descriptor system. The obtained descriptor controller is used 
in Section 5 to derive a state space rational controller with an 
observer-based structure. Finally, a numerical example is 
given, in Section 6, to illustrate the efficiency of the proposed 
method before concluding. 
 
Notation: The notation 0A>  (respectively 0A ≥ ) stands 
for A  definite positive (respectively semi-definite positive). 
The notation 1 2( , )Bdiag A A  denotes for a bloc diagonal 
matrix with 1A  and 2A  on the principal diagonal. { }He A  
stands for TA A+  and •  for terms that are induced by 
symmetry. 

2. PROBLEM FORMULATION 

The considered class of LPV systems is described by 
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where the state matrices are assumed to be rational functions 
of the time varying vector ( )tθ . The state vector is given by 
( ) 1

1
nx t ∈ . The input vector is ( ) unu t ∈  and 

( ) yny t ∈  is the output vector. The vector 

( ) ( ) ( ) ( )1 2 ...
T

qt t t tθ θ θ θ =     is assumed to be real, 

continuous time varying and satisfying the following 
constrains:  
-Each parameter ( )i tθ  is real time measurable and ranges 

between known extremal values ( )i i itθ θ θ ∈    .  

-The variation rate of each parameter ( )i tθ  is limited by 

known upper and lower bounds, that is ( )i i itθ τ τ ∈    . 

As a consequence, the varying parameter and its rate evolve 
both in hyper rectangles with vertices defined by
 ( ) { }{ }1 2,... \q i i iω ω ω θ θΞ = ∈   

and  ( ) { }{ }1 2,... \q i i iτ τ τ τ τΩ = ∈ .  
The set of possible trajectories ( ).θ  is noted Θ .  
The main objective of this paper is to design an observer state 
feedback controller which is rationally dependent on the time 
varying parameter. The sought controller can be given by  

 ( )

( ) ( ) ( )( )

( ) ( )

( ) ( )( )

1 1

1

1

ˆ ˆ ˆ

ˆ ˆ:

ˆ ˆ

r r r

r r r

r r

x A x B u L y y

K y C x D u

u F x G y y

θ θ θ

θ θ

θ θ

 = + + − = + = + −

 (2) 

where ( )rL θ  and ( )rF θ  are respectively the parameter 
varying observer and state feedback gains which are rationally 
dependant on the varying parameter. 
In order to design a stabilizing controller as given by (2) we 
propose to use a descriptor realization. Indeed, it has been 
demonstrated in (Bouali et al., 2006) that the rational LPV 
system given by (1) can be equivalently recast into a 
descriptor realization as follows 
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( ) ( )
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                    = +                        Σ ∈        =    

 (3) 

where ( )( ) { }1,2,3,4i iA θ ∈  are affine functions of the parameter 
( )tθ  and matrices 1 2 1,  ,  B B C  and 2C  are all constant. 

Matrix ( )4A θ  is non singular for all trajectories (.)θ ∈ Θ . 
 
The following equations describe the relation between 
realization (1) and (3) 
 ( ) ( ) ( ) ( ) ( )1

1 2 4 3rA A A A Aθ θ θ θ θ−= −  (4.a) 
 ( ) ( ) ( ) 1

1 2 4 2rB B A A Bθ θ θ −= −  (4.b) 
 ( ) ( ) ( )1

1 4 3 2rC C A A Cθ θ θ−= −  (4.c) 
 ( ) ( ) 1

2 4 2rD C A Bθ θ −= −  (4.d) 
 
The design of the controller given by (3) can be done thanks 
to the synthesis of an observer state feedback controller for 

the equivalent affine descriptor realization (3). This controller 
can be given by 

 ( )

( ) ( )( )

( )

ˆˆ ˆ

ˆ ˆ:

ˆ
d

Ex A x Bu L y y

K y Cx

u F x

θ θ

θ

 = + + − = =

 (5) 

where the generalized state vector is 1 2ˆ ˆ ˆ
TT Tx x x =     and 

the state matrices are partitioned as follows  
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, ( )

( ) ( )

( ) ( )

1 2

3 4

A A
A

A A

θ θ
θ

θ θ

  =   
,  

 
1

2

B
B

B

  =   
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( )

( )
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2

L
L

L

θ
θ

θ
  =   

, 

 ( )1 2C C C= , ( ) ( ) ( )( )1 2F F Fθ θ θ= . 

The design of the controller (2) thanks to classical LMIs as 
those proposed in (Bara et al., 2002) is interesting when state 
matrices are polytopic. Due to the rational dependency of the 
state matrices in (2), we can no longer use a finite set of LMIs 
as done in (Bara et al., 2002). The use of realization (3) is an 
intermediary step. In fact, we propose here new sufficient 
conditions allowing to design a descriptor observer-based 
controller by means of a finite set of LMIs. Since (3) is 
affinely dependant on the varying parameter, it seems natural 
to choose the same structure for the descriptor controller. A 
rational controller, of the form (2), can then be easily 
extracted.  
 

3. PRELIMINARY RESULTS 

3.1 Admissibility conditions of LPV descriptor systems 

In this paper, the admissibility of LPV descriptor systems as 
defined in (Masubuchi et al., 2003) is considered. In fact, 
consider the following LPV descriptor system 
  ( )Ex A xθ=  (6) 
with ( ) nx t ∈  and ( ) 1rank E n n= ≤ . 
We assume, without loss of generality, that   

1
0

0 0
nI

E
  =    

 

since it is always possible to consider a singular value 
decomposition (SVD) of matrix E . Moreover, this particular 
structure is natural when considering the LPV descriptor 
system ( )dΣ .  
 
Theorem 1: (Masubuchi et al., 2003) 
The descriptor system given by (6) is admissible if there exists 
a continuously differentiable function : n nP ×Θ →  such that 
for all (.)θ ∈ Θ  
 ( ) ( ) 0TTE P P Eθ θ= ≥  (7.a) 

 ( ) ( ){ } ( )( ) 0T T dHe A P E P
dt

θ θ θ+ <  (7.b) 

 An equivalent strict LMI condition has been proposed in 
(Bouali et al., 2006a) and is reminded next. 
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Theorem 2: (Bouali et al., 2007a)  
The descriptor system given by (6) is admissible if there exist 
continuously differentiable functions : n nP ×Θ →  and 

1 1( ) ( ): n n n nS − × −Θ →  such that for all (.)θ ∈ Θ  
 ( ) ( ) 0TP Pθ θ= >  (8.a) 
 ( ) ( ) ( ){ } ( )( )( ) 0T T T dHe A P E US V E P E

dt
θ θ θ θ+ + <  (8.b) 

where 1( ), n n nV U × −∈  are matrices of full column rank and 
composed of bases of kerE  and ker TE  respectively.  
 
Remark 1: Conditions given by (7) or (8) are hardly 
exploitable for the design of an observer state feedback 
controller without avoiding the use of gridding techniques. 
For this reason, a new condition is proposed next in terms of 
an extended LMI. 
 
Theorem 3: The descriptor system (6) is admissible if there 
exist continuously differentiable functions : n nP ×Θ → , 

1 1( ) ( ): n n n nS − × −Θ →  and a matrix n nW ×∈  such that for 
all (.)θ ∈ Θ  

 ( ) ( ) 0TP Pθ θ= >  and ( ) ( ) 0TS Sθ θ= >  (9.a) 

 

{ } ( ) ( )

( )
( )( )

( )

, 0 0 0

T T THe W W A W

dPBdiag
dt

θ θ

θθ

θ

 − + Φ      • −Φ + <     • • −Φ  

 (9.b) 

with ( ) ( ) ( )( ): ,Bdiag P Sθ θ θΦ =  
Proof.  For brevity reasons only the main lines of the proof 
are presented here. Let assume that conditions (9) hold. 
Considering that null spaces of ( )0 0I  and 

( )( )I A Iθ−  are 
0 0

0 0

TI

I

     
 and 

( ) 0

0

TTA I

I I

θ      
, we 

can drop matrix W  by applying projection lemma and Schur 
complement. This leads to conditions (8). As a consequence 
the descriptor system given by (6) is admissible. 
 
Remark 2: When applying conditions presented in Theorem 
3 in (Bouali  et al., 2006a) for a state feedback design it 
appears that an additional structure constraint on the matrix 
W  is necessary to solve the LMIs. This is obviously not the 
case when using Theorem 3. One of the advantages of this 
extended LMI condition is that there is no longer products 
between the state matrices and the unknown functions ( ).P  
and ( ).S . The parameterized LMIs proposed in Theorem 3 
can be solved thanks to a finite set of LMIs when dealing with 
polytopic descriptor systems. A dual form of the previous 
Theorem can easily be derived. 

3.2 Strong equivalence and admissibility 

When two LTI realizations are equivalent, the stability of the 
first one implies the stability of the second. This simple result 
is no longer true when considering time varying systems as 
illustrated in (Cobb 2006). In this paper, we introduce a new 

characterization of equivalence of two realizations in the 
descriptor LPV case.  
 
In fact, consider two LPV descriptor realizations given by the 
pairs 
 ( )( ),E A θ , ( )( ),E A θ  (10) 
 
Definition 1: The two realizations (10) are said strongly 
equivalent if there exist two continuously differentiable 
functions : n nM ×Θ → , : n nN ×Θ →  such that for all 
(.)θ ∈ Θ  

i) ( )M θ  and ( )N θ  are non singular matrices 
ii) ( )1 ,M θ−  ( )1N θ−  are continuously differentiable  

and the following equations hold 
 ( ) ( )M EN Eθ θ =  (11.a) 

 ( ) ( ) ( ) ( )M A N Aθ θ θ θ=  (11.b) 

 ( ) ( )( ) 0dM E N
dt

θ θ =  (11.c) 

 
This property is used in the next result. 
 
Theorem 4: (Bouali et al., 2007b) 
Consider the two strongly equivalent descriptor realizations 
( ), ( )E A θ  and ( ), ( )E A θ . The following statements are 

equivalent  
i) There exists a continuously differentiable function 

: n nP ×Θ →  such that for all  (.)θ ∈ Θ  

 ( ) ( ) 0TTE P P Eθ θ= ≥   

 ( ) ( ){ } ( )( ) 0T T dHe A P E P
dt

θ θ θ+ <   

ii) There exists a continuously differentiable function 
: n nP ×Θ →  such that for all  (.)θ ∈ Θ  

 ( ) ( ) 0TTE P P Eθ θ= ≥   

 ( ) ( ){ } ( )( ) 0T T dHe A P E P
dt

θ θ θ+ < .  

3.3 Admissibility of descriptor systems with a special 
structure 

In this section we consider two descriptor polytopic pairs 
given by ( )( )1,E A θ  and ( )( )2,E A θ . 
 
Lemma 1: If there exist affine functions 1 : n nX ×Θ →  and  

2 : n nX ×Θ →  such that for all (.)θ ∈ Θ  the following 
conditions hold  
 
 ( ) ( ) 0TT

i iE X X Eθ θ= ≥  (12a) 

 ( ) ( ){ } ( )( ) 0T T
i i i

dHe A X E X
dt

θ θ θ+ <  (12b) 
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for { }1, 2i ∈ , then for any bounded matrix ( )3A θ , the 

descriptor pair given by 
( )

( ) ( )

1

3 2

0 0
,

0

E A

E A A

θ

θ θ
                

 is 

admissible. 
 
Proof. Assume that conditions (12) hold for the pairs 

( )( )1,E A θ  and ( )( )2,E A θ . Thus, there exist positive real 
numbers 1r  and 2r  such that  
 ( ) ( ){ } ( )1 1 1 1

T THe A X E X r Iθ θ θ+ ≤ −  

 ( ) ( ){ } ( )2 2 2 2 0T Tr I He A X E Xθ θ θ− ≤ + <  
Since ( )2X θ  and ( )3A θ  are bounded for all (.)θ ∈ Θ  there 
exists a real positive number 3r  such that 
( ) ( )2 3 3X A r Iθ θ ≤ . 

Let us consider now the matrix 
 ( ) ( ) ( )( )1 2,X Bdiag X Xθ θ λ θ=  
with 0λ > . First, it is easy to see that ( )X θ  is a 
continuously differentiable function such that for all 
(.)θ ∈ Θ , ( ) ( )( , ) ( , ) 0TTBdiag E E X X Bdiag E Eθ θ= ≥  

holds. We show next that the inequality included in conditions 
(7) holds for the pair  

( )

( ) ( )
1

3 2

0 0
,

0

E A

E A A

θ

θ θ
                

 

Indeed by noting that 
 

( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1

1
3 2 2 2 2 2 3

2
1 2 3 2 2 3 1 2 3

T T

T T TT

T T

He A X E X

A X He A X E X X A

r I r A X X A r I r r I

θ θ θ

λ θ θ θ θ θ θ θ

λ θ θ θ θ λ

−

+

− +

≤− + ≤− +

 

and by choosing ( ) 21
1 2 30 r r rλ −−< <  it comes that  

 
( ) ( ){ } ( )

( ) ( ) ( ) ( ){ } ( )( ) ( ) ( )

1 1 1

1
3 2 2 2 2 2 3 0

T T

T T TT

He A X E X

A X He A X E X X A

θ θ θ

λ θ θ θ θ θ θ θ−

+

− + <
 

and ( ){ } ( )( )2 2 2 0T THe A X E Xλ θ θ+ < .  
Applying Schur complement leads finally to  
 

 
( )

( ) ( )
( ) ( )

1

3 2

0 0
0

0

T TA E
He X X

EA A

θ
θ θ

θ θ

           + <             
 

which implies that the pair 
( )

( ) ( )
1

3 2

0 0
,

0

E A

E A A

θ

θ θ
                

 is 

admissible according to Theorem 1. 
 

4. DESCRIPTOR OBESERVER-BASED CONTROLLER  
DESIGN 

In this section, the state feedback and the observer problems 
are addressed separately. Sufficient conditions for the 
synthesis of a stabilizing state feedback gain are proposed. 
Similarly, dual conditions will be given for the synthesis of 
the observer gain. Finally, the stability of the closed-loop with 
the descriptor observer-based controller is proved. 

4.1 A new LMI-based condition for state feedback synthesis 
for descriptor systems 

Let us consider the following descriptor LPV system given by 
  

 

( )

( ) 1

,  

,  n

Ex A x Bu

y Cx

x rank E n n

θ= + =
∈ = ≤

 (13)

  
Theorem 5: There exists a descriptor state feedback 
controller such that the closed-loop pair given by 

( ) ( )( ),E A BFθ θ+  is admissible if the there exist 
continuously differentiable functions ( ):P Pθ θ→  

( ):S Sθ θ→ , ( ):R Rθ θ→  of appropriate dimensions 
and a matrix n nW ×∈  such that for all (.)θ ∈ Θ   

 ( ) ( ) 0TP Pθ θ= >  and ( ) ( ) 0TS Sθ θ= >  (14.a) 
{ } ( ) ( ) ( )

( )
( )( )

( )

, 0 0 0

TT T THe W W A R B W

dPBdiag
dt

θ θ θ

θθ

θ

 − + + Φ      • −Φ − <     • • −Φ  

 (14.b) 

with ( ) ( ) ( )( ): ,Bdiag P Sθ θ θΦ =  
The state feedback gain is then given by  
 ( ) 1( ) TF R Wθ θ −=  

Proof. By setting ( ) ( )( ) TR F Wθ θ= , this result can easily 
be proved using Theorem 3. 
 
In the case of a polytopic descriptor system, previous 
condition can be expressed thanks to a finite set of LMIs as 
follows.  
 
Corollary 1: There exists a descriptor state feedback 
controller such that the closed-loop pair given by 

( ) ( )( ),E A BFθ θ+  is admissible if the there exist affinely 
dependant functions ( ):P Pθ θ→  ( ):S Sθ θ→ , 

( ):R Rθ θ→  of appropriate dimensions and a matrix 
n nW ×∈  such that ( ),i jω τ∀ ∈ Ξ×Ω  

 ( ) ( ) 0T
i iP Pω ω= >  and ( ) ( ) 0T T

i iS Sω ω= >  

 
{ } ( ) ( ) ( )

( ) ( ) ( )( )
( )

0 , 0 0 0

TT T T
i i i

i j

i

He W W A R B W

Bdiag P P

ω ω ω

ω τ

ω

 − + + Φ     • −Φ + − <    • • −Φ  

 

with ( ) ( ) ( )( ): ,i i iBdiag P Sω ω ωΦ =  
The state feedback gain is then given by  
 ( ) 1( ) TF R Wθ θ −= . 

4.2. A new LMI-based condition for observer synthesis of 
descriptor systems 

New sufficient conditions similar to those proposed for the 
state feedback design are proposed next.   
 
Theorem 6: There exist a descriptor observer gain such that  
the closed-loop pair given by ( ) ( )( ),E A L Cθ θ+  is 
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admissible if the there exist continuously differentiable 
functions ( ):P Pθ θ→ , ( ):S Sθ θ→ , ( ):H Hθ θ→  
of appropriate dimensions and a matrix n nW ×∈  such that 
for all (.)θ ∈ Θ   

 ( ) ( ) 0TP Pθ θ= >  and ( ) ( ) 0TS Sθ θ= >  (15.a) 
{ } ( ) ( ) ( )

( )
( )( )

( )

, 0 0 0

T THe W W A H C W

dPBdiag
dt

θ θ θ

θθ

θ

 − + + Φ      • −Φ + <     • • −Φ  

 (15.b) 

with ( ) ( ) ( )( ): ,Bdiag P Sθ θ θΦ =  
The observer gain is then given by ( )( ) TL W Hθ θ−= . 
 
As in Corollary 1 those conditions can be turned into a finite 
set of LMIs in the case of affine LPV descriptor systems.  

4.3. Stability of the closed-loop LPV system with the observer 
state feedback controller. 

We consider the closed-loop descriptor system (2) with the 
controller (3). We assume that the state feedback ( )F θ  and 
the observer ( )L θ  have been synthesized thanks to Theorem 5 
and Theorem 6.  The closed-loop can be described by  

 0 ( ) ( )
ˆ0 ( ) ( ) ( ) ( )ˆ

x xE A BF

xE L C A BF L Cx

θ θ

θ θ θ θ

              =        − + +         
 

Let us define ˆe x x= − . The closed-loop system is 
equivalent to 

 
0 ( ) ( ) 0

ˆ0 ( ) ( ) ( )ˆ

e eE A L C

xE L C A BFx

θ θ

θ θ θ

   +            =        − +        
 (16) 

According to the design of the state feedback and the 
observer, the pairs ( ) ( )( ),E A BFθ θ+  and 

( ) ( )( ),E A L Cθ θ+  are both admissible. As a consequence, 
applying Lemma 1, lead to the admissibility of the closed-
loop given by (16). 
 

5. OBESERVER STATE FEEDBACK DESIGN FOR 
RATIONAL LPV SYSTEMS 

In this section, we extract the rational observer state feedback 
controller thanks to the descriptor controller (5) designed in 
previous section. Once the state space rational LPV controller 
obtained we still need to prove the stability of the state space 
closed-loop. These results are formulated in next theorem. 
 
Theorem 8: There exists a rational observer-based controller 
(2) stabilizing the rational LPV system given by (1) if there 
exists a descriptor observer-based controller given by (5) 
stabilizing the descriptor LPV system (3). The rational state 
feedback and observer gains are then given by 
( ) ( ) ( ) ( )( )( ) ( )1

2 4 2 2 2r RF I F A B F B Fθ θ θ θ θ−= − +   (17.a) 

 ( ) ( ) ( ) ( ) ( )1
1 2 4 2rL L A A Lθ θ θ θ θ−= −   (17.b) 

with ( ) ( ) ( ) ( ) ( )1
1 2 4 3RF F F A Aθ θ θ θ θ−= −  (17.c) 

and the matrix ( )rG θ  is given by  
 ( ) ( ) ( ) ( )( ) ( )1

2 4 2 2 2rG F A B F Lθ θ θ θ θ−= − +  (17.d) 

Proof: Realizations (1) and (3) are strongly equivalent (see 
Definition 1). Indeed, if we consider the two following 
continuously differentiable and non singular  functions  

( )
( ) ( )

( )
( )

( ) ( )

1
2 4

11
4 34

0
,  

0

II A A
M N

A A IA

θ θ
θ θ

θ θθ

−

−−

   −    =  =     −     
 

it appears that  

 ( ) ( ) ( ) ( )( ),  0dM EN E M E N
dt

θ θ θ θ= =

 ( )
( ) ( )

( ) ( )
( )

( )1 3

2 4

0

0
rA A A

M N
IA A

θ θ θ
θ θ

θ θ

       =      
 

and that ( ) ( )1 1,M Nθ θ− −  are non singular and continuously 
differentiable functions. 
Based on this, a strongly equivalent system to the descriptor 
controller (5) can be given by  

 

( )

( )

( )

( ) ( )
( )

( ) ( )( )
( )

1 1

22

1 1
4 2 4 2

1

2
2

1 2 2

ˆ ˆ0 0
ˆ0 0 0ˆ

ˆ

ˆ

ˆ

ˆ ˆ

r

r r

R

r

x xI A

I XX

B L
u y y

A B A L

x
u F F

X

y C x C X

θ

θ

θ θ θ

θ θ

θ

− −

               =                         + + −               =       = +

 (18) 

where  ( ) ( )1
2 4 3 1 2

ˆ ˆ ˆX A A x xθ θ−= +   
 ( ) ( ) ( ) ( ) ( )1

1 2 4 2rL L A A Lθ θ θ θ θ−= −    
and ( ) ( ) ( ) ( ) ( )1

1 2 4 3RF F F A Aθ θ θ θ θ−= −   

Eliminating 2X̂  from (18) leads to the following state space 
realization for the controller 

( )

( ) ( ) ( )( )

( ) ( )

( ) ( )( )

1 1

1

1

ˆ ˆ ˆ

ˆ ˆ:

ˆ ˆ

r r r

r r r

r r

x A x B u L y y

K y C x D u

u F x G y y

θ θ θ

θ θ

θ θ

 = + + − = + = + −

 

with ( ) ( ) ( ) ( )( )( ) ( )1
2 4 2 2 2r RF I F A B F B Fθ θ θ θ θ−= − +   

and ( ) ( ) ( )( ) ( )1
2 4 2 2 2rG F A B F Lθ θ θ θ−= − + .   

Furthermore, the admissibility of the descriptor LPV system 

(16) proves that ( )ˆ ˆ 0
TT Tx x x − →    which implies that 

( )1 1 1ˆ ˆ 0
TT Tx x x − →   . This means that the rational LPV 

closed-loop system is stable. 
Finally, the rational controller is entirely described by 
equations (17) and stabilizes the state space rational LPV 
system (1). 
 

6. NUMERICAL EXAMPLE 

Let us consider the following rational LPV system 

 

2
1 1

22

1 2

3 4 2
2 2

11 1

x x
uxx

y x x

θ θ θ
θ θ

  + +            + + = +                −     = +

 

with 1.5 1.5θ  ∈ −    and 1 1θ  ∈ −   .  
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The simple change of variables ( )3 1 22
x x xθ

θ
= −
+

 

leads to the following affine LPV descriptor realization 

( )

( )

1 1

2 2

33

1

2

3

1 0 0 2 1 2

0 1 0 1 1 0 1

0 0 0 02

1 1 0

x x
x x u

xx

x
y x

x

θ

θ θ θ

                           = − +                        − − +                    =    
   



 

Applying Theorem 5 and Theorem 6 leads to the following 
gains   
 ( )( ) -1.95+0.40 0.723 0.053 0.199 0.013F θ θ θ θ= − + − −  

 
 ( )( ) -2.961 0.41 1.202 0.16 2.647 0.16

TTL θ θ θ θ= − − − − −  

 
The rational LPV controller is then derived thanks to 
equations (17). We obtain the following rational matrices  
 2 20.387 0.951 3.9 0.06 0.816 1.446( )

2 2rF
θ θ θ θθ

θ θ
 − − − − =   + + 

 

 
 20.41 3.941 8.3890( ) 1.2021 0.16

2

T
T

rL
θ θθ θ

θ
 − − − = − −   + 

 

 
20.002 0.558 0.527( )

2rG
θ θθ

θ
− − −=

+
 

 
To see the influence of the chosen parameter variation, the 
eigenvalues domain of the estimation state error and the state 
feedback is given in Figure 1. 
 

 
Figure 1: The eigenvalues domain for matrices 

( )( ) ( )r r rA L Cθ θ θ+  and ( ) ( )( )r r rA B Fθ θ θ+  
 

7. CONCLUSION 

 
In this paper, a method for the design of gain scheduled 
observer-based controllers for rational LPV systems is 
presented. Based on an equivalent descriptor affine LPV 
realization, a descriptor observer-based controller is designed 
by means of some new sufficient conditions given as LMIs. A 
rational LPV controller, with an observer-based structure, is 
then derived. The stability of the obtained rational closed-loop 
is proved. The effectiveness of the proposed method has been 
tested on a numerical example.  
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