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Abstract: This paper presents a technique that can be used in designing an equivalent PI controller to different 
classes of the known Iterative Learning Control (ILC) namely P-type and high order ILCs. The equivalent PI controller 
can be explicitly represented in the z domain in contrast to the time domain based ILC, which gives another potential 
for stability analysis. Moreover, the derived PI controller combines the ease of tuning with the learning feature from 
past processes, which is the base of Iterative Learning Control (ILC). The results show that the ability of proposed 
approach to provide an equivalent PI controller that provides similar performances to the ILC when applied to various 
systems with no restrictions on the system order or type. 

 

1. INTRODUCTION 

In the mid eighties a new control technique called Iterative 
Learning Control (ILC) was developed by (Arimoto et al, 
1984). The main observation that led to this strategy is that 
when a process performs the same task over and over again, 
the resultant error is the same. Then it must be possible to 
gradually reduce this error by experience. The fact that 
several analyses, simulations and experiments have proven 
that is could be true, made people think that ILC is essentially 
something new. 

Although, the development of ILC stemmed originally from 
the robotics area where repetitive motions show up naturally 
in many applications (Gasalino and Bartolini, 2002), (Craig, 
1984), (Bondi et al., 1988), (Guglielmo and Sadegh, 1996), 
(Horowitz et al., 1991) and (Lange and Hirzinger, 1999); 
later on, this technique has shown significant ability to deal 
with other different systems such food processing plants, 
wafer steppers, hard disk servo controllers and chemical 
batch reactors (Cueli and Bordons, 2005). This is because its 
anticipatory character and ability to ensure the compensation 
for repetitive external disturbances by learning based on 
previous iterations without further modelling burdens. 
Moreover, ILC does not require knowing the variations of 
reference and disturbance with the ability to ensure the 
control system robustness under some well-stated conditions 
(Precup and Preitl, 2006). In addition, learning functions 
leads to rapid convergence (for example P-type) and allow 
controller tuning without requiring the detailed mathematical 
model of the controlled plant. Furthermore, in some well-
stated conditions ILC ensure the control system robustness 
with respect to process modelling uncertainties. Learning 
controller’s stability analysis with disturbances, uncertain 
initial conditions were discussed in reference (Heinzinger et 
al., 1992). Some of the nonlinear robust ILC algorithms (Xu 
and Qu, 1998), (Moon et al., 1998) and (Tayebi and 
Zaremba, 2003), are also addressed for uncertain systems.  

However, the main drawback of general ILCs is that, there is 
no mathematical model for the entire learning control system 
can describe both the dynamics of ILC along the time and 
iteration axes (Gopinath, 2007). Also, the ability to be tuned 
and formalizing the connection between robustness and 
dynamic and steady-state control systems performance and 
ensuring the best of these requirements simultaneously, 
treating the situations in which the reference and disturbance 
inputs do not have repetitive variations. Much of the work on 
ILC has focused on converged performance. In (Moore, 
1998) it was shown that, under ideal circumstances, the P-
type ILC can be used to obtain zero error tracking for an LTI 
discrete-time system. Later different learning algorithms have 
been developed with proven monotonic convergence such 
high order ILC (Chen et al., 1998) and (Chen, 1998). 
Monotonic convergence does not only ensure that 
performance improves at each iteration, but it can also be 
easily related to a convergence rate that indicates how 
quickly the ILC will effectively converge. 

On the other hand, PI control is common and popular 
controller in industry although it has number of limitations 
such as the difficulty of finding a suitable PI parameters. 
Accordingly, a considerable amount of research has been 
conducted to improve the performance of the PI controllers 
and PI parameters auto tuning schemes.  

The main objective of this paper is to introduce a technique 
that is able to design a PI controller based on the ILC 
controller. This concept is based on designing a PI controller 
that is able to provide similar response to that obtained by 
ILC after achieving a reasonable response. This will be 
conducted by using identification algorithm such as recursive 
least square (RLS). The proposed PI has all advantages of the 
ILC controller. Furthermore, it can be used as a self tuning PI 
controller. 

2. P-TYPE ILC 
ILC as a control idea is to refine the input signal to a system 
that operates repeatedly. This can be explained by 
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considering a system in an initial state to which a fixed length 
input signal is applied. Then the system is returned to its 
initial state when the end of input signal is reached. 
Consequently, the output trajectory that resulted from the 
applied input is compared to a desired trajectory. The error is 
used to construct a new input signal (of the same length) to 
be applied the next time the system operates. This process is 
then repeated. The goal of the ILC algorithm is to properly 
refine the input sequence from trial to trial so that as more 
and more trials are executed the actual output will approach 
the desired output at all points in time along the trajectory.  

This is different from conventional control, where tracking 
problems attempt to converge to the desired trajectory in the 
limit as time increases. The basic idea of ILC is illustrated in 
Fig. 1 (Moore, 1998), (Casalino and Bartolini, 2002). 
Standard assumptions are that the plant has stable dynamics 
i.e., the system returns to the same initial conditions at the 
start of each trial and then the trial lasts for a fixed time Tf , 
and that each trial has the same length. However, in case of 
unstable systems, it is suggested to stabilize the system first 
with a suitable control technique then the ILC can be 
introduced. This section introduces the following P-type 
(Arimoto-type ILC) considering the architecture shown in 
Fig. 1 

)1()()(1 ++=+ tetutu kkk γ    (1) 

where, )(tuk  is the system input, )()()( tytyte kdk −=  is the 
error and γ is the learning gain with )(tyk  the system output 
and )(tyd the desired response, “k” is the iteration index. 
According to the above algorithm, the learning controller’s 
goal is to derive an optimal input )(tu , for ]1,1[ −∈ Nt  by 
calculating the error )()()( tytyte kdk −=  on the interval 

],1[ Nt ∈ . This is achieved by adjusting the input from the 

current trial ku  to a new input 1+ku  for the next trial. It is 
clear that, the main feature of ILC is that the algorithm 
depends on past data, the fact that the initial conditions are 
reset at the beginning of each trial allows ILC to do “non-
causal” processing on the errors from the previous trial.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Iterative learning control 

 

3. CONVERGENCE 

It is natural to argue that the ILC design objectives should be 
first focused on the monotonic convergence issue. The 
convergence properties of the Arimoto-type ILC algorithm 

can briefly discussed in this section. Consider a discrete-time, 
linear, time-invariant system of relative degree one: 
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where 1−z  is the standard delay operator in time, )(zyk  and 

)(zuk  are the z-transforms of the system’s output and input 
sequences, )(tyk  and )(tuk  respectively, “t” is the time 
index and satisfies ],0[ Nt ∈ , and “k” denotes the iteration 
index. This system can be written as 
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and H is the matrix of Markov parameters of the plant given 
by 
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The variables ih  are the standard Markov parameters of the 
system H(z). The convergence properties of the Arimoto-type 
ILC algorithm have been well-established in the literature. It 
is well-known that the combination of Equation 1 with 
Equation 2 converges in a given norm topology if the induced 
operator norm satisfies  
 

1<−
i

HI γ       (5) 
 
Note that this sufficient condition ensures monotone 
convergence in the sense of the relevant norm topology. 
Moreover, if 
 

11 1 <− hγ      (6) 
 
then this is the necessary and sufficient condition for 
convergence (Moore, 1998). The latter condition does not 
guarantee monotone convergence as observed in (Moore, 
1998). Therefore, to guarantee monotone convergence in 
addition to the necessary and sufficient condition for 
convergence (6), the following condition can be considered 
 

∑
=

>
N

i
ihh

2
1      (7) 

 
However, this is just a sufficient condition which may be too 
restrictive since it does not relate to the learning gain. 
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4. PI CONTROL DESIGIN BASED ON ILC 
 
Proportional-integral (PI) controllers have been used 
extensively in the process industries since they are simple 
with highly acceptable tuning capability and often effective. 
Moreover, there are different arrangements exist for the PI 
design, which allow designers to choose the most suitable for 
achieving their goals. The used PI control law in this paper is 
represented in the following form 
 

( ))()()( tytyKKtu d
I

p −







∆

+=    (8) 

 
where )(tyd  denotes the reference trajectory, )(ty  is the 
system output, Kp and KI are the proportional and integral 
gains respectively, and is )1( 1−−=∆ z  is difference operator.  
 
4.1 PI Design Algorithm 
The main concept of designing an equivalent PI to the 
converged ILC controller is based on estimating the PI 
control parameters. This will be achieved after the certain N 
trials that achieve acceptable performance by the designer. 
Then the design of the equivalent PI is conducted based on a 
the selected control signal 
 

))1()1(()()( 11 +−++= −− tytytutu NdNN γ   (9) 
 
where )(tuN  is Nth trail of the control signal, )(1 tuN −  (N-1)th 

trail of the control signal, and )(1 tyN −  is the (N-1)th trail of 
the output signal. However, introducing )(1 tuN −  to the system 

leads to )(1 teN − , by holding both )(1 teN −  and )(1 tuN −  then 

considering Equation (9), this leads to )(tuN . The idea here 
is to find a PI controller that is able to produce the same 
response for the ILC. The proposed PI controller should 
produce a control signal Nu  according to an input signal 

)(:)( 1
* tete N −= . Consequently the PI controller can be 

represented as 
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where )(tu ∗  is the equivalent PI control signal, and ILC

pK  and 
ILC
IK  are the estimated proportional and integral gains of the 

equivalent PI. The new algorithm can be defined as follows 
by assuming U and Y be vector spaces and the equivalent PI 
is to develop an input u*, such that with *Huy =∗ , where 
 
1) Uu ∈*  and there exists Uuuk ∈~, , developed by the ILC, 

such that uu
Nk

k
~lim =

→
, provided that 1

~ ε≤−∗ uu  with 01 >ε  

and sufficiently small. 

2) Yy ∈*  and there exists Yyyk ∈~, , obtained by the ILC, 

such that yy
Nk

k
~lim =

→
, provided that 2

~ ε≤−∗ yy , with  

02 >ε  and sufficiently small. 
 
4.2 Identification Scheme 

The above assumptions can be achieved by using a suitable 
identification tool, such as Recursive Least Square (RLS) 
method. The RLS algorithm (Ljung, 1999) is based on 
representing the system to be identified as 
 

)()1()()()( 11 kkuzBkyzA η+−= −−    (11) 
 
where y(k) is the output of the system, u(k) is the input, and 

)(kη  is a zero-mean white Gaussian noise term, while 

naa L,1 , nbb L,1  are the system parameters that constitute 
the following polynomials 
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A concise vector expression for equation (11) is given by 
 

)()()( kkky T ηθφ +=     (12) 
 
where φ  is the vector of regression that includes measured 
values of input and output 
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and θ , is the unknown system parameter vector, 
 

T
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Deriving RLS algorithm, yield to the following  
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where λ  is the forgetting factor given by 10 ≤< λ , S(k) is 
the covariance matrix, and θ̂  is a vector contains the latest 
parameters estimates.  
 
4.3 The Design Scheme 

This section presents a new design scheme in Figure 2 that 
can be used for obtaining the equivalent PI controller to a 
pre-designed ILC. Similar design concept was introduced in 
(Ljung, 1999), where equivalent PID controllers were 
designed equivalent to GPC controllers. However, the 
difficulty of developing this new scheme is mainly regarded 
to the nature of the ILC which does not have an explicit 
representation in the z-domain. Considering this scheme, it 
can be seen that there is an estimator, namely RLS which is 
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Fig. 4: Second order response using PI and ILC 

deployed to estimate the parameters ILC
pK  and ILC

IK  of the PI 
controller simultaneously by considering the error e(t) and 
the control signal u(t) as input signals to the RLS (see: Figure 
2). The estimation process will be conducted offline/online 
after achieving an acceptable performance, in a selected 
iteration N, by the designed ILC. As soon as the RLS 
converges to certain parameters ILC

pK  and ILC
IK , the 

estimated PI controller is said to be obtained and equivalent 
to the pre designed ILC for a certain value of the learning 
gain γ . Accordingly, the PI can be applied to the system and 
replace the existing ILC when needed. The new PI controller 
would incorporate the advantage of being easy to tune and 
the aforementioned advantages of the ILC when introduced 
to different classes of systems.  
 
In addition, this technique has the potential to be used as an 
adaptive technique whenever an adaptive ILC is considered. 
In this case different values of γ  can be introduced and 
accordingly the PI parameters can be estimated. The major 
advantage of the proposed techniques, that it is not limited to 
certain ILC algorithms, it can be easily extended to other 
types such as high order ILC (see section 5), PID-type, and 
PD type. In order to show the similarity between the ILC and 
its equivalent PI controllers, the following examples are 
presented. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
4.4 Simulation Examples 
Example 1 

This example is to show how the proposed algorithm (see: 
Figure 2) will give similar results to that given by Iterative 
Learning Control (ILC). For the sake of clarity the controller 
will be designed for a second order model. 
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where the sampling was chosen to be Ts=0.1. The simulation 
was conducted by selecting the learning gain ( 3.0=γ ). 
Figure 3 illustrates the simulation of the model when the ILC 
is applied considering a sequence of iterations. It is clear that 
in iteration 6, the ILC is able to achieve reasonable 

performance. Holding the data from the last iteration and 
applying the identification algorithm (see: Figure 2) the 
parameters for the equivalent PI, are obtained and found to be 

1318.1=ILC
PK  and 0.1027=ILC

IK . Then applying the PI 
controller to the system can lead to the response which is 
given in Figure 4. It is clear that the PI still able to stabilize 
the system with mostly similar response to the one obtained 
by ILC. One of the main advantages of the designed PI 
controller is the potential to re-tune the identified parameters 
whenever different responses are required. 

 

 
 

 

 

 

 

 

 

 

 
Example 2 
 
One major advantage of the ILC is its ability to deal with 
different systems despite its order. Therefore, considering this 
advantage will have a good impact on designing an 
equivalent PI controller. This example is dealing with the 
following third order model 
 

321

321

2 44933.07734.1316.21
047073.013519.0094889.0)(

−−−

−−−

−+−
+−

=
zzz

zzzzG  (15) 

 
where the sampling time was chosen to be Ts=0.1 and the 
learning gain 4.0=γ . Figures 5 shows the system response 
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ILC (iteration 31) 
PI controller 

when it is controlled by the ILC. It can be easily observed 
that the system response improves by iterations and it can be 
seen that the steady state error and the tracking performance 
in the final iteration (number 13) is satisfactory. Again, by 
holding the final iteration, the design technique are used to 
estimate the PI controller parameters which are found to be 

3532.1=ILC
PK  and 0.1383=ILC

IK . Applying the derived 
controller to the same system results in the response shown in 
Figure 6. It is clear that the PI is able to provide satisfactory 
response, in terms of similarity, when it compared with the 
ILC. Again, this PI controller can be easily manipulated by 
most operators in different industrial applications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

5. HIGH ORDER ILC 

In this section an alternative ILC is introduced to show the 
ability of the proposed design technique to deal with different 
ILC schemes (Moore and Chen, 2002) 
 

))()1(()()(1 tetetutu kkkk βγ −++=+    (16) 
 

For some different values 0>β  for a selected learning gain 
γ , the convergence of this scheme can be achieved by 
verifying the same conditions. Accordingly, tuning can make 
the ILC convergence monotonic. In the simple time domain 
high order scheme demonstrated the learning matrix Q is 
given as (Moore and Chen, 2003). 
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The convergence condition is  
 

1<−
i

HQI      (18) 
 
The matrix Q can take different values to satisfy Equation 
(18), and H, is the matrix of Markov parameters. 

Example 3 

In order to ensure the ability of the proposed technique in 
designing equivalent PI controllers to different types of ILC, 
the above controller (Equation 16) is introduced to following 
second order model 
 

21

21

1 0.496591.4536-1
0.33705-0.37998)( −−

−−

+
=

zz
zzzG   (19) 

 
where β  is chosen to be 0.1 and learning gain γ  is selected 
to be 0.02. Repeating the same procedures in the above 
examples has shown that the ILC has provided a good 
tracking result at iteration 31 (see: Figure 7). Then applying 
the proposed technique to this iteration an estimating the PI 
controller parameters has given ILC

PK =0.6653, 
ILC
IK =0.335. The response of the PI controller is given in 

Figure 9. It is clear that the equivalent PI is able to provide 
similar response to that obtained by the ILC. This confirms 
the ability of the proposed technique to provide equivalent PI 
controller to different classes of ILC. 
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6. CONCLUSION 

This paper has introduced a new technique to design an 
equivalent explicit PI controller (in the z-domain) to the ILC 
P-type and high order ILC. The equivalent controller has 
shown good ability in providing similar performance to the 
original ILC, when tested with the same systems. This has 
been accomplished without introducing any restrictions on 
the type, order and structure of the chosen controlled systems. 
In addition, it has the advantage of providing the designer 
with preliminary PI control parameters that can be easily 
tuned whenever needed. This can facilitate the designer role 
while selecting the control parameters from a wide pool of 
selection. The new design framework is strongly 
recommended to be used as an equivalent approach to the 
ILC control design. Furthermore, the advantage of this work 
that it can be generalized to other forms of ILC approaches 
whenever an explicit PI controller is needed. However, issues 
such as system uncertainties and noise effects will be 
investigated in future work. 
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