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Abstract: Networked Automation Systems (NAS) result from the increasing decentralization of automa-
tion systems using new network structures. Those structures are less expensive and more flexible than 
traditional ones. However, they introduce stochastic and coupled temporal behavior. Therefore, a detailed 
analysis is necessary accounting for the special characteristics of NAS. In this article, two approaches for 
the analysis of response times in NAS are presented. While simulation using Dymola/Modelica offers a 
user-friendly implementation of the system models, probabilistic model checking using PRISM gives 
more accurate and reproducible results in less time. The strengths and weaknesses of the two approaches 
are discussed based on a typical NAS scenario. The results are then validated by a large number of meas-
ured samples. It is demonstrated that quite accurate results are obtainable by both approaches. 

1. INTRODUCTION 

The trend towards an increasing decentralization in automa-
tion systems by means of new network structures leads to 
Networked Automation Systems (NAS, Fig.1). Due to those 
networked and decentralized architectures, a variety of delays 
with probabilistic duration are introduced into NAS. These 
aspects have direct influences on dependability, quality, 
safety, and reliability issues of automation processes. 
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Fig. 1 Example schematic of a Networked Automation Sys-
tem (NAS). 

The analysis of response times (i.e. delays) lies the basis for 
the quantitative evaluation of temporal system properties. 
However, only few methods are feasible for such an analysis 
(see section 2). This paper is arranged to cover such issues in 
detail, and is organized as follows: In the third section, a 
simulative approach using the simulation environment Dy-
mola is introduced, followed by the presentation of a formal 

approach based on Probabilistic Model Checking (PMC) in 
section 4. Section 5 compares these two methods. Further, the 
two approaches are applied to a case study and the obtained 
results are compared with extensive laboratory measurements 
in section 6. Finally, some important points are summarized 
and an outlook is given.  

2. REQUIREMENTS FOR ANALYSIS METHODS 

For the analysis of response times in a NAS, it is necessary to 
take account of the process shown in Fig. 2. The process to 
be supervised covers the signal change at a sensor, as well as 
the associated signal processing and the resulting reaction at 
the actuator. Such a procedure begins with sending the re-
quest message from the PLC-I/O to the field-I/O. After being 
transmitted through the network, processed by the field-I/O 
and transmitted back, the replied message is processed by the 
PLC. In this course an associated actuator instruction (to-
gether with the next inquiry on sensor) is sent from the PLC-
I/O to the field-I/O through the network. The process ends 
with the activation of the actuator. 
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Fig. 2 Response time in NAS. 
If failures, errors, and queuing times shall be considered, it is 
necessary to know the corresponding occurrence probability 
functions. Furthermore, it is important to consider the times, 
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which are necessary to recognize and to handle the above 
mentioned situations. Additionally, the probability, that an 
information is completely lost, i.e. the probability that a nec-
essary information does not arrive within a given time inter-
val, needs to be taken into account.  

From the above process, four fundamental questions in the 
analysis of response times are concluded:  

1. Maximum- und minimum response times: Examples for 
this are: (1) the time which elapses from the activation of an 
emergency-stop button till the stop operation being executed, 
or (2) the earliest permissible opening of a clamp after as-
signing an instruction. 

2. Distributions: For the analysis of performance and quality 
of control, it is essential to determine the (whole) probability 
distribution. The mean value and deviation can be computed 
from the distribution and properties such as error sensibility 
can be also estimated. Such a probability distribution can be 
determined directly using an analytic approach or by compos-
ing the relative portions determined for several time segments. 

3 Interval probabilities: Therein are all the questions associ-
ated, which are based on the probabilistic boundaries. For 
example: with which probability is the system capable to 
react on a signal change within a given time interval? To an-
swer questions like this, it is not necessary to calculate the 
whole distribution of the response times. Yet it is sufficient, 
as all the information is given within the distribution. 

4. Differences, Distances: time difference between arrivals of 
two sequential data-packets or the probability whether the 
data packets arrive in the correct sequence. 

For the analysis of (in account of response times) dependabil-
ity and performance relevant questions of a NAS, it is re-
quired to use a methodology, which fulfils the following five 
properties:  

1. Modeling capability of stochastic and timed eigenbehav-
iors of all the components. In particular, it has to be noted, 
that it is necessary to have the ability of implementing both, 
arbitrary time distribution as well as deterministic and sto-
chastic decisions. 

2. Definition capability of arbitrary stochastic and timed ini-
tial- and boundary conditions. This property is especially 
required because mostly the system and the process to be 
considered are not synchronized.  

3. Verifiability of stochastic and timed properties. It is impor-
tant to enable the possibility to determine probability distri-
butions over time as well as to determine the probabilities for 
a system behavior within a given time frame. Pure worst-case 
analysis is not appropriate due to the stochastic eigenbehav-
iors of NAS.  

4. Capability to implement the interrelations between compo-
nents among each other and between components and input 
signals. This is essential for the description of various syn-
chronization aspects and process dependencies in a NAS. 

5. Statistical significance of the results. In a NAS, lots of ef-
fects occur with low probabilities. Therefore completeness 
and confidence of results are required. Completeness means 

that the analysis considers all the possible evolutions of the 
system. On the other hand, confidence of results indicates 
that the obtained result can be regarded as an acceptable ap-
proximation of the correct probability value (Error accuracy).  

Besides these five key criteria, the scalability of the system 
model built by the analysis method is particularly important. 
This is the main requirement to analyze re-configurations and 
to do re-engineering. For example, with high scalability of 
models, it is possible to discuss the influence of connecting 
an additional component with reasonable expenditure and 
acceptable time costs. Moreover, other properties should also 
be considered, such as lower resource consumption concern-
ing time and storage costs and complementary software tools. 

Known approaches for the determination of delay times are 
measurement, static analysis, verification and simulation. The 
measurement procedures can also be used for validation and 
especially for parameterization of the models needed in other 
approaches, e.g. (Parrott et al, 2006), (Irey et al. 2004). 

Static analysis methods furnish statements based on the sys-
tem configuration. I.e. all system processes are quasi frozen 
and represented by characteristic values such as e.g. the mi-
nimum, maximum, or average value. While average values 
are usually used for questions of capacity interpretation, an 
analysis using minimum values is as much a safety aspect 
(“the earliest opening of a security clamp”) as using maxi-
mum values. The maximum value based analysis is also used 
for a more detailed interpretation of capacity questions. If a 
system interpretation does not consider the exact architecture 
of the entire system (such as e.g. the exact modeling of bot-
tlenecks) this will result in very conservative limits. A multi-
tude of approaches and tools are available for static analysis, 
such as e.g. (Stanczyk and Obuchowicz, 2003). The main 
advantage of static analysis methods lies in their low compu-
tational complexity and hence in the fact that even large sys-
tems can be analyzed with relatively little efforts and time. 
The disadvantage is, however, that only statements on behav-
ior modes for extreme values are possible. 

An interesting alternative is the stochastic network calculus, 
introduced by (Vojnovic and Boudec, 2002) as it is able to 
deliver distributions if the input variables are independent of 
one another. Same is true for the use of queuing theory as 
applied e.g. by (Song et al., 2002). However, in a NAS, the 
behavior of the components is not independent, as for exam-
ple one and the same component might be passed twice. If 
that component then exhibits a cyclic behavior, its influence 
is not the same in the two cases. 

Formal verification approaches like model checking (MC), 
have for their aim to cover all of the system’s practically pos-
sible evolutions. Further-more, in comparison to static ap-
proaches, MC holds the advantage of heeding to and analyz-
ing both parallel and dynamic behavior equally. In the case of 
classical model checking, the main focus lies on the question 
of whether or not a property to be checked is fulfilled. Al-
though there is a number of works dealing with MC, e.g. 
(Vogel-Heuser et al., 2006), and a number of very good tools, 
e.g. Uppaal, Kronos, are available, classical model checking 
still has two disadvantages unacceptable for NAS analysis: 
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firstly, stochastic behavior modes cannot (or hardly at all) be 
represented, and secondly, results are strictly binary, which 
has the consequence that examinations not result in probabil-
istic statements (respectively distributions of delay times). 
The situation changes with the use of Probabilistic Model 
Checking. PMC is based on models with probabilistic transi-
tions. Furthermore, it allows to test probabilistic statements 
or even to derive distributions. Strictly speaking, the latter is 
not a function of the classical PMC, but supported by all 
common tools (e.g. PRISM, MRMC).  

Simulating approaches mainly differ from static ones by their 
extended possible illustrations: dynamics and random deci-
sions can be imitated in simulations. Yet, the used tools are 
either borrowed from the net analysis (e.g. OMNet) or else 
they use simulators of discrete event e.g. CPNtools (Marsal et 
al , 2006) or hybrid systems e.g. Matlab/Simulink (Cervin et 
al., 2003) or Dymola (Liu and Frey, 2007). 

From the comparison above, it results that only simulation 
and probabilistic model checking are suitable for the analysis 
of NAS. However, both methods have their own specific 
characteristics and therefore their suitability for a certain in-
vestigation depends upon the given objective. Hence, prior to 
the comparison in section 5, both methods are introduced 
exemplarily in some detail in the following two sections. A 
Modelica Model is implemented for the simulative approach 
(section 3) and the Probabilistic Model Checker PRISM is 
utilized for the probabilistic formal method (section 4).  

3. SIMULATION 

The basic principle of a stochastic simulation is to reproduce 
a system’s behavior randomly – by using varying initial con-
ditions – on the basis of a (probabilistic) system model. By 
repeated executions, diverse images of the system’s behav-
iors can be gained. The obtained results point out the individ-
ual evolution on the system as well as several different de-
scription properties such as mean value and distribution of 
global system behavior. However, the statistical significance 
is hereby an inevitable deficiency. That is to say, the result 
obtained by overlying individual system evolutions can only 
be regarded as an acceptable approximation of the correct 
system behavior under the restriction of a large amount of 
simulation runs. Due to the interactions of different compo-
nents as well as the existence of failures and interferences in 
a NAS, events with low occurrence probabilities have to be 
considered. Thus it is necessary to determine the required 
amount of simulation procedures by means of statistic ap-
proaches of confidence interval estimation. For example, in 
order to guarantee for a result in the magnitude of r=10-3

 with 
a confidence of γ=99% that a simulated result deviates by a 
maximal factor of B=0.1*r from the real value, the following 
formula can be used to determine the necessary amount of 
samples n:  

2 2 2
2 1 / 2

1 / 2 2 2

1 4 (1 )2 1zr ( r) r rn z
B B B

α
α

−
−

− −
= + +

 

Here z1-α/2 is estimated from the standard distribution func-
tion tables in which γ is the integral of this function within 

the boundary of ± z1-α/2. In the case of the given example, it is 
required to have 1.3 million samples in order to make a cor-
rect approximation. Fig. 3 illustrates the graph of necessary 
samples for different values of B. According to those graphs, 
it is clear that if only a rough estimation about system behav-
iors is required, fewer samples are sufficient (see the com-
parison in Fig. 11). If the necessary amount of samples is 
taken into consideration, the simulative approach becomes 
appropriate for the response time analysis of NAS. The great 
advantages of simulation are the various tool-supports and 
the integrated graphical interface, thus the modeling and cal-
culation of complex systems in large scale is relative simple. 
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Fig. 3 Minimum required sample size to guarantee a resulting 
relative percentage r being within an interval [r-B, r+B] with 
a probability of 99%.  

To choose the appropriate random algorithm for different 
system evolutions, the following requirement needs to be 
considered. That is, whether all the possible system evolu-
tions are covered in accounting for periodic execution and 
initial values. 

The problem is that it is not sufficient to consider the execu-
tion sequences in their local surrounding only, as lots of the 
distributed processes operate in a manner that are not as the 
same as they would, if they were separated. Furthermore, two 
questions arise: 
(1) In which state will each of the distributed processes be 
found by the occurrence of an external signal? To cover dif-
ferent possibilities, the input signal has to be generated at 
random times. This is implemented in the same way as for 
the measurements, as discussed in some detail in the Fig. 9. 
(2) How to handle unsynchronized interacting processes? In 
the presented comparison it is assumed that either the period 
lengths of interacting processes are prime or exhibit mini-
mum deviations of system clocks. In this special case, all the 
distributed processes can be shifted arbitrarily to each other. 
In simulation, this can be generated based on the following 
assumption. If a random deviation of up to 0.01% is added to 
all cycle times, any arbitrary time shift is reachable in the 
long run. 
In the presented approach (Liu and Frey, 2007) the models 
are built in Modelica and graphically presented and con-
nected in Dymola. Modelica/Dymola has the advantage that 
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its component-oriented graphical interface is easily under-
standable in the automation community. The library concept 
of Modelica dramatically reduces the time needed to model 
systems. In (Wagner et al, 2008), a device library with net-
work components and process hardware was introduced 
(available at: http://www.eit.uni-kl.de/frey/). Compared to 
other tools such as Matlab/Simulink, Modelica emphasizes 
the advantages of object-oriented modeling. i.e., modeling is 
based on connection of components without consideration of 
calculation order. The resulting signal flows in the overall 
system need not to be defined globally; instead, they are con-
structed automatically from various locally defined behaviors. 

Fig. 4 shows a Model of a small NAS as built using the pre-
viously mentioned library. It consists of a PLC, which is con-
nected with two IO-modules through an Ethernet-Switch. At 
one of the IO-Modules a Sensor got connected, while at the 
other one an Actuator got attached.  

 

Fig. 4 Screenshot of the NAS-model created in Mode-
lica/Dymola. 

4. PROBABILISTIC MODEL CHECKING (PMC) 

By using a formal logic, it is verified whether or not a prede-
fined property will hold on a system’s model. In contrary to 
simulation based approaches, a simple repetition of evolu-
tions within the model is neither possible nor necessary for 
PMC. This is the most important advantage. Oppositely, the 
main disadvantage is that there is nearly no tool-support avai-
lable for the relative young PMC method. In consequence, 
the modeling task has to be done on program-code-level (cf. 
Fig. 7). Furthermore, PMC does not support the use of con-
tinuous models. From here it follows that the accuracy of the 
results is dominated by the discretization step width. Unfor-
tunately the step width can not be chosen arbitrarily small, as 
this would result in an exponential increase of the state space. 
Moreover, access conflicts (respectively the waiting queues 
which are necessary to deal with access conflicts) comprise a 
real challenge to the resource consumption. Finally, for the 
use of PMC it is necessary to reduce the system’s complexity 
by dividing large systems into smaller units, which is not 
supported by any tools yet. However, the already discussed 
time transformation makes it possible to describe a large 
number of complex processes by their characteristic (stochas-
tic) transfer behavior – and PMC only proves one property at 
the same time, i.e. adjusted models can be used.  

If the processes of the system are independent, the determina-
tion of the initial state distribution is relatively simple: each 
process may proceed from each of his states. If the processes 
are not independent, the dependencies have to be imple-
mented, which is not too complicated by using PMC. Doing 
so, it is not necessary to determine an optimal start scenario 

as in the case of simulation. This is because all possible ini-
tial states will be covered automatically.  

It is neither necessary nor wise nor possible to let the system 
evolve longer than the process to be supervised. It is not nec-
essary, as all evolutions will have been covered after one run 
of the process anyway. It is not wise, as the state space would 
be increased unnecessarily. It is not possible, as some situa-
tions occur more than once, due to the cyclic character con-
tained in several processes. This would lead to tampered re-
sults as discussed in (Greifeneder and Frey, 2006). 

In this work, software from the University of Birmingham is 
utilized: PRISM (Kwiatkowska et al., 2002). Several exam-
ples of NAS components have been already modeled using 
this software. As the modeling process of NAS should be 
done in continuous time, whereas the model-checking must 
be executed using Discrete Time Markov Chains (DTMC), a 
design-process got defined in (Greifeneder and Frey, 2007a). 
The first step in this process (cf. Fig. 5) is the modeling task, 
which is using a graphical description language (DesLaNAS), 
defined in (Greifeneder and Frey, 2007b). DesLaNAS also 
supports the definition of initial state and “to-be-checked”-
properties. In the next step, the model is mapped into a prob-
abilistic timed automaton (PTA). This PTA is defined for the 
special needs of NAS as discussed in (Greifeneder and Frey, 
2007a,b). One of the most important differences to other 
PTA-definitions is the necessity of NAS that not only the 
initial state but also the initial clock values must be assigned 
stochastically. In the third step, this continuous automaton is 
transformed into a discrete automaton in dependence of the 
discretization step width on the one hand and the properties 
to be verified on the other hand. The latter is important as 
depending on the discretization accuracy only part of the 
original information may be of interest for the property to be 
checked. Finally the PRISM-code is generated. 

Description language DesLaNAS (graphical model)

Continuous Automaton (continuous formal model)

Discrete Automaton (discrete formal model)

PRISM (programming language)

syntactical transformation

mathematical transformation

straight forward transformation

 
Fig. 5 Design Process (Greifeneder and Frey, 2007a). 

In Fig. 6 the DesLaNAS-model of a network transmission is 
shown. This automaton consists of two states: Initially, it 
waits in the state “idle” until a packet to be transmitted ar-
rives. The corresponding event is named “send” which is 
written on the arc of the state transition. If such an event oc-
curs, the automaton changes into the “deliver”-state. There, it 
stays for a stochastic time period dnet(x) which abstracts the 
network transmission towards a stochastic process. This ab-
straction is feasible, as networks in NAS are quite fast and 
seldom crowded. As soon as this period has elapsed, the 
automaton returns into the “idle” state. Thereby the output 
event “deliver” is produced, which can be used by other 
automata in the system.  
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dnet(x)

x:
=

0 idle
dx
dt = 0 send

deliver
dx
dt = 1

deliver  
Fig. 6 DesLaNAS-Model of the network transmission. 

In the time discretization step this becomes transformed to an 
automaton with n+1 states, where n is given by the maximum 
network delay (given by dnet(x)) divided by the discretisation 
step width (rounded towards the next integer). That is, the 
automaton has n states deliver, each of them associated with a 
specific time, and the idle state which does not have any time 
information and therefore is not influenced by the discretisa-
tion.  

The corresponding PRISM-module-code is shown in Fig. 7. 
The state “idle” got coded as Net=0. If the (now discrete!) 
overall system’s automaton is in a state, labeled with „send“, 
an integer value between 1 and n is assigned to the variable 
Net using the probabilities pN1 for Net=1 and pN2 for Net=2 
and so on. Net=n equals the maximum network delay, 
Net=1corresponds to the minimum. Obviously the probabili-
ties pN1 to pNn must sum up to one. Finally, [t] and [p] rep-
resent synchronization variables which force this automaton 
to act synchronously to a clock wide synchronization impulse. 

Note: The output event deliver must be set to true when the 
variable Net changes from 1 to 0. In this simple case however, 
this can be done by a logical representation that maps deliver 
to Net=1 without generating an additional variable. 

module Network 
 

  Net : [0..Net1Max] init 0; 
 

  [t] Net=0 & !send -> Net’=0; 
  [t] Net=0 &  send -> pN1:(Net’=1)+...+ pNn:(Net’=n); 
  [t] Net>0                   -> Net’=Net-1; 
  [p] true                     -> Net’=0; 
 

endmodule 

Fig. 7: PRISM-Code of the network transmission. 

5. METHODS COMPARISON 

Table 1 gives a comparison on the distinguishing aspects of 
both approaches: It is not possible to model continuous and 
closed-loop processes using PMC/PRISM at present. Fur-
thermore, the modeling costs and complexity are relative high 
because of missing graphical tool support. The Modelica-
based simulation approach in comparison has drawbacks in 
accuracy and resource consumption.  

Table 1 Comparison of the methods 

 Modelica PMC 
Closed-loop + - 
Modeling costs + - 
Complexity + - 
Accuracy - + 
Resource consumption - + 

6. CASE STUDY 

In order to validate the results from both proposed ap-
proaches, a NAS laboratory test-bed was designed (Fig. 8). 
One highlight of the test-bed is that the cycle times of PLC 
and PLC-I/O can be configured by software and thus various 
system configurations can be emulated on the same hardware. 
PLC and PLC-I/O are implemented on separate microcontrol-
ler boards (ATMEGA32). Moreover, the sensor, actuator and 
the evaluation module are also implemented individually on 
microcontrollers. The evaluation module takes charge of sen-
sor signal generation and response time registration. The 
WLAN-based communication between these components is 
realized by WiPorts from Lantronix. WiPort is a compact 
network processor module which enables to build wireless 
communication over serial interfaces. The communication 
between PLC and PLC-I/O is realized by SPI-bus. 

WLAN
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tu

at
or

P
LC

-I/
O

P
LC

evaluation

ATMEGA32

legend

WiPort

RS 232 comm.

SPI-bus

directly wired  
Fig. 8 Laboratory measuring setup. 

The key point to guarantee stochastically independent meas-
urements is to choose a proper random signal generation. The 
presented method is composed of two steps (Fig. 9). 

≈

n⋅340ms

triggering sensor‘s signal wait

(1+n)⋅340ms(0,5+n)⋅340ms

t

 
Fig. 9 Triggering the sensor’s signal. 

An event is triggered cyclically every 340 ms. Secondly, the 
sensor signal is generated after a random waiting time (0 to 
170 ms). The evaluation of response time begins with the 
occurrence of the sensor signal and elapses until the activa-
tion of the actuator. After each measuring procedure, the ob-
tained value is transmitted to a PC connected to the evalua-
tion module through a RS 232 interface. The PC logs all the 
measured values in a text file for further evaluation. This way 
simplifies the logging of measured values and allows a long 
time measurement without considering storage limitations on 
the evaluation module. The chosen values (170 respectively 
340 ms) are the multiples of the cycle times of 10 and 17 ms. 
Thereby it is ensured that all the possible shifts of cycles are 
taken into consideration.  

For 1.3 millions samples, the experiment must run continu-
ously for five days. The simulation takes 24 hours for 
300.000 samples. In contrast, the PMC-analysis in PRISM 
takes 17 seconds. Fig. 10 shows the convergence of meas-
urements and simulations against an increasing number of 
samples. The comparison of the results against those of PMC 
(Fig. 11) demonstrates that correct results are attainable by 
both approaches. However, it is noticeable that the (relatively 
large) PMC-step width of 1 ms leads to a less appropriate 
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mapping of the two steps. However, decreasing the discreti-
zation step-width by a factor of 10 would not only require to 
rerun the PRISM-Code-generation shown in Fig. 5 but also 
lead to an increase in resource consumption (storage and time) 
that is definitely remarkable larger than a factor of 10. 
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Fig. 10 Convergence of measurement (top) and simulation 
(bottom). 
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Fig. 11 Relative frequency distribution of 1.3 millions meas-
ured response times with 300000 simulated ones and the ana-
lytic ones. (Parameters: PLC: 10 ms and PLC-I/O: 17 ms). 

7. SUMMARY AND OUTLOOK 

In the presented work, two approaches for the analysis of 
response times in Networked Automation Systems are com-
pared: the simulation by Dymola/Modelica and the formal 
analysis by Probabilistic Model Checking (PMC). It is dem-

onstrated that both methods have their own specific charac-
teristics and are therefore differently well-suitable depending 
upon the aim of the analysis. The Modelica-model is notably 
simple to handle, while the PMC is much faster for small 
systems as long as discretization is not too fine. As for the 
drawbacks: simulation results are only acceptable based on a 
large number of samples, while for PMC the necessary dis-
cretization and the difficult implementation of queues are to 
be noticed. Validation by measurements shows that good 
results are retainable by both methods.  
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