

Comparing Simulative and Formal Methods for the

Analysis of Response Times in Networked Automation Systems

Jürgen Greifeneder, Liu Liu, and Georg Frey

Electrical and Computer Engineering Department
University of Kaiserslautern, Kaiserslautern, Germany

e-mail: {greifeneder|liuliu|frey}@eit.uni-kl.de).

Abstract: Networked Automation Systems (NAS) result from the increasing decentralization of automa-
tion systems using new network structures. Those structures are less expensive and more flexible than
traditional ones. However, they introduce stochastic and coupled temporal behavior. Therefore, a detailed
analysis is necessary accounting for the special characteristics of NAS. In this article, two approaches for
the analysis of response times in NAS are presented. While simulation using Dymola/Modelica offers a
user-friendly implementation of the system models, probabilistic model checking using PRISM gives
more accurate and reproducible results in less time. The strengths and weaknesses of the two approaches
are discussed based on a typical NAS scenario. The results are then validated by a large number of meas-
ured samples. It is demonstrated that quite accurate results are obtainable by both approaches.

1. INTRODUCTION

The trend towards an increasing decentralization in automa-
tion systems by means of new network structures leads to
Networked Automation Systems (NAS, Fig.1). Due to those
networked and decentralized architectures, a variety of delays
with probabilistic duration are introduced into NAS. These
aspects have direct influences on dependability, quality,
safety, and reliability issues of automation processes.

cyclic
requests

read

sensors+
actuators

I/O1 answering
time: 2 ms

PLC1-I/O

cycle time
17 ms

Inputs

O
utputs

PLCPLC11 cycle time: 10 ms

w
rit

e

I/O3

I/On

I/O2

sensors actuators

network

read

PLC2-I/O

cycle time:
11 ms

write

cy
cl

ic
re

qu
es

ts

...

PLCPLC22

13 ms

execution

sensors+
actuators

sensors+
actuators

Fig. 1 Example schematic of a Networked Automation Sys-
tem (NAS).

The analysis of response times (i.e. delays) lies the basis for
the quantitative evaluation of temporal system properties.
However, only few methods are feasible for such an analysis
(see section 2). This paper is arranged to cover such issues in
detail, and is organized as follows: In the third section, a
simulative approach using the simulation environment Dy-
mola is introduced, followed by the presentation of a formal

approach based on Probabilistic Model Checking (PMC) in
section 4. Section 5 compares these two methods. Further, the
two approaches are applied to a case study and the obtained
results are compared with extensive laboratory measurements
in section 6. Finally, some important points are summarized
and an outlook is given.

2. REQUIREMENTS FOR ANALYSIS METHODS

For the analysis of response times in a NAS, it is necessary to
take account of the process shown in Fig. 2. The process to
be supervised covers the signal change at a sensor, as well as
the associated signal processing and the resulting reaction at
the actuator. Such a procedure begins with sending the re-
quest message from the PLC-I/O to the field-I/O. After being
transmitted through the network, processed by the field-I/O
and transmitted back, the replied message is processed by the
PLC. In this course an associated actuator instruction (to-
gether with the next inquiry on sensor) is sent from the PLC-
I/O to the field-I/O through the network. The process ends
with the activation of the actuator.

PLC

network

PLC-I/O

field-I/O

sends
request

tra
ns

po
rt

trigger
event

handling

sensor

tra
ns

po
rt

proce-
ssing

sends
request

tra
ns

po
rt

event
handling

actuator

Fig. 2 Response time in NAS.
If failures, errors, and queuing times shall be considered, it is
necessary to know the corresponding occurrence probability
functions. Furthermore, it is important to consider the times,

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 5113 10.3182/20080706-5-KR-1001.3025

which are necessary to recognize and to handle the above
mentioned situations. Additionally, the probability, that an
information is completely lost, i.e. the probability that a nec-
essary information does not arrive within a given time inter-
val, needs to be taken into account.

From the above process, four fundamental questions in the
analysis of response times are concluded:

1. Maximum- und minimum response times: Examples for
this are: (1) the time which elapses from the activation of an
emergency-stop button till the stop operation being executed,
or (2) the earliest permissible opening of a clamp after as-
signing an instruction.

2. Distributions: For the analysis of performance and quality
of control, it is essential to determine the (whole) probability
distribution. The mean value and deviation can be computed
from the distribution and properties such as error sensibility
can be also estimated. Such a probability distribution can be
determined directly using an analytic approach or by compos-
ing the relative portions determined for several time segments.

3 Interval probabilities: Therein are all the questions associ-
ated, which are based on the probabilistic boundaries. For
example: with which probability is the system capable to
react on a signal change within a given time interval? To an-
swer questions like this, it is not necessary to calculate the
whole distribution of the response times. Yet it is sufficient,
as all the information is given within the distribution.

4. Differences, Distances: time difference between arrivals of
two sequential data-packets or the probability whether the
data packets arrive in the correct sequence.

For the analysis of (in account of response times) dependabil-
ity and performance relevant questions of a NAS, it is re-
quired to use a methodology, which fulfils the following five
properties:

1. Modeling capability of stochastic and timed eigenbehav-
iors of all the components. In particular, it has to be noted,
that it is necessary to have the ability of implementing both,
arbitrary time distribution as well as deterministic and sto-
chastic decisions.

2. Definition capability of arbitrary stochastic and timed ini-
tial- and boundary conditions. This property is especially
required because mostly the system and the process to be
considered are not synchronized.

3. Verifiability of stochastic and timed properties. It is impor-
tant to enable the possibility to determine probability distri-
butions over time as well as to determine the probabilities for
a system behavior within a given time frame. Pure worst-case
analysis is not appropriate due to the stochastic eigenbehav-
iors of NAS.

4. Capability to implement the interrelations between compo-
nents among each other and between components and input
signals. This is essential for the description of various syn-
chronization aspects and process dependencies in a NAS.

5. Statistical significance of the results. In a NAS, lots of ef-
fects occur with low probabilities. Therefore completeness
and confidence of results are required. Completeness means

that the analysis considers all the possible evolutions of the
system. On the other hand, confidence of results indicates
that the obtained result can be regarded as an acceptable ap-
proximation of the correct probability value (Error accuracy).

Besides these five key criteria, the scalability of the system
model built by the analysis method is particularly important.
This is the main requirement to analyze re-configurations and
to do re-engineering. For example, with high scalability of
models, it is possible to discuss the influence of connecting
an additional component with reasonable expenditure and
acceptable time costs. Moreover, other properties should also
be considered, such as lower resource consumption concern-
ing time and storage costs and complementary software tools.

Known approaches for the determination of delay times are
measurement, static analysis, verification and simulation. The
measurement procedures can also be used for validation and
especially for parameterization of the models needed in other
approaches, e.g. (Parrott et al, 2006), (Irey et al. 2004).

Static analysis methods furnish statements based on the sys-
tem configuration. I.e. all system processes are quasi frozen
and represented by characteristic values such as e.g. the mi-
nimum, maximum, or average value. While average values
are usually used for questions of capacity interpretation, an
analysis using minimum values is as much a safety aspect
(“the earliest opening of a security clamp”) as using maxi-
mum values. The maximum value based analysis is also used
for a more detailed interpretation of capacity questions. If a
system interpretation does not consider the exact architecture
of the entire system (such as e.g. the exact modeling of bot-
tlenecks) this will result in very conservative limits. A multi-
tude of approaches and tools are available for static analysis,
such as e.g. (Stanczyk and Obuchowicz, 2003). The main
advantage of static analysis methods lies in their low compu-
tational complexity and hence in the fact that even large sys-
tems can be analyzed with relatively little efforts and time.
The disadvantage is, however, that only statements on behav-
ior modes for extreme values are possible.

An interesting alternative is the stochastic network calculus,
introduced by (Vojnovic and Boudec, 2002) as it is able to
deliver distributions if the input variables are independent of
one another. Same is true for the use of queuing theory as
applied e.g. by (Song et al., 2002). However, in a NAS, the
behavior of the components is not independent, as for exam-
ple one and the same component might be passed twice. If
that component then exhibits a cyclic behavior, its influence
is not the same in the two cases.

Formal verification approaches like model checking (MC),
have for their aim to cover all of the system’s practically pos-
sible evolutions. Further-more, in comparison to static ap-
proaches, MC holds the advantage of heeding to and analyz-
ing both parallel and dynamic behavior equally. In the case of
classical model checking, the main focus lies on the question
of whether or not a property to be checked is fulfilled. Al-
though there is a number of works dealing with MC, e.g.
(Vogel-Heuser et al., 2006), and a number of very good tools,
e.g. Uppaal, Kronos, are available, classical model checking
still has two disadvantages unacceptable for NAS analysis:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5114

firstly, stochastic behavior modes cannot (or hardly at all) be
represented, and secondly, results are strictly binary, which
has the consequence that examinations not result in probabil-
istic statements (respectively distributions of delay times).
The situation changes with the use of Probabilistic Model
Checking. PMC is based on models with probabilistic transi-
tions. Furthermore, it allows to test probabilistic statements
or even to derive distributions. Strictly speaking, the latter is
not a function of the classical PMC, but supported by all
common tools (e.g. PRISM, MRMC).

Simulating approaches mainly differ from static ones by their
extended possible illustrations: dynamics and random deci-
sions can be imitated in simulations. Yet, the used tools are
either borrowed from the net analysis (e.g. OMNet) or else
they use simulators of discrete event e.g. CPNtools (Marsal et
al , 2006) or hybrid systems e.g. Matlab/Simulink (Cervin et
al., 2003) or Dymola (Liu and Frey, 2007).

From the comparison above, it results that only simulation
and probabilistic model checking are suitable for the analysis
of NAS. However, both methods have their own specific
characteristics and therefore their suitability for a certain in-
vestigation depends upon the given objective. Hence, prior to
the comparison in section 5, both methods are introduced
exemplarily in some detail in the following two sections. A
Modelica Model is implemented for the simulative approach
(section 3) and the Probabilistic Model Checker PRISM is
utilized for the probabilistic formal method (section 4).

3. SIMULATION

The basic principle of a stochastic simulation is to reproduce
a system’s behavior randomly – by using varying initial con-
ditions – on the basis of a (probabilistic) system model. By
repeated executions, diverse images of the system’s behav-
iors can be gained. The obtained results point out the individ-
ual evolution on the system as well as several different de-
scription properties such as mean value and distribution of
global system behavior. However, the statistical significance
is hereby an inevitable deficiency. That is to say, the result
obtained by overlying individual system evolutions can only
be regarded as an acceptable approximation of the correct
system behavior under the restriction of a large amount of
simulation runs. Due to the interactions of different compo-
nents as well as the existence of failures and interferences in
a NAS, events with low occurrence probabilities have to be
considered. Thus it is necessary to determine the required
amount of simulation procedures by means of statistic ap-
proaches of confidence interval estimation. For example, in
order to guarantee for a result in the magnitude of r=10-3

 with
a confidence of γ=99% that a simulated result deviates by a
maximal factor of B=0.1*r from the real value, the following
formula can be used to determine the necessary amount of
samples n:

2 2 2
2 1 / 2

1 / 2 2 2

1 4 (1)2 1zr (r) r rn z
B B B

α
α

−
−

− −
= + +

Here z1-α/2 is estimated from the standard distribution func-
tion tables in which γ is the integral of this function within

the boundary of ± z1-α/2. In the case of the given example, it is
required to have 1.3 million samples in order to make a cor-
rect approximation. Fig. 3 illustrates the graph of necessary
samples for different values of B. According to those graphs,
it is clear that if only a rough estimation about system behav-
iors is required, fewer samples are sufficient (see the com-
parison in Fig. 11). If the necessary amount of samples is
taken into consideration, the simulative approach becomes
appropriate for the response time analysis of NAS. The great
advantages of simulation are the various tool-supports and
the integrated graphical interface, thus the modeling and cal-
culation of complex systems in large scale is relative simple.

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
6

10
7

10
8

10
9

10
10

10
11

10
12

r [log]

n
[lo

g]

B=0.02 r
B=0.1 r
B=0.2 r
B=0.3 r
B=0.4 r

Fig. 3 Minimum required sample size to guarantee a resulting
relative percentage r being within an interval [r-B, r+B] with
a probability of 99%.

To choose the appropriate random algorithm for different
system evolutions, the following requirement needs to be
considered. That is, whether all the possible system evolu-
tions are covered in accounting for periodic execution and
initial values.

The problem is that it is not sufficient to consider the execu-
tion sequences in their local surrounding only, as lots of the
distributed processes operate in a manner that are not as the
same as they would, if they were separated. Furthermore, two
questions arise:
(1) In which state will each of the distributed processes be
found by the occurrence of an external signal? To cover dif-
ferent possibilities, the input signal has to be generated at
random times. This is implemented in the same way as for
the measurements, as discussed in some detail in the Fig. 9.
(2) How to handle unsynchronized interacting processes? In
the presented comparison it is assumed that either the period
lengths of interacting processes are prime or exhibit mini-
mum deviations of system clocks. In this special case, all the
distributed processes can be shifted arbitrarily to each other.
In simulation, this can be generated based on the following
assumption. If a random deviation of up to 0.01% is added to
all cycle times, any arbitrary time shift is reachable in the
long run.
In the presented approach (Liu and Frey, 2007) the models
are built in Modelica and graphically presented and con-
nected in Dymola. Modelica/Dymola has the advantage that

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5115

its component-oriented graphical interface is easily under-
standable in the automation community. The library concept
of Modelica dramatically reduces the time needed to model
systems. In (Wagner et al, 2008), a device library with net-
work components and process hardware was introduced
(available at: http://www.eit.uni-kl.de/frey/). Compared to
other tools such as Matlab/Simulink, Modelica emphasizes
the advantages of object-oriented modeling. i.e., modeling is
based on connection of components without consideration of
calculation order. The resulting signal flows in the overall
system need not to be defined globally; instead, they are con-
structed automatically from various locally defined behaviors.

Fig. 4 shows a Model of a small NAS as built using the pre-
viously mentioned library. It consists of a PLC, which is con-
nected with two IO-modules through an Ethernet-Switch. At
one of the IO-Modules a Sensor got connected, while at the
other one an Actuator got attached.

Fig. 4 Screenshot of the NAS-model created in Mode-
lica/Dymola.

4. PROBABILISTIC MODEL CHECKING (PMC)

By using a formal logic, it is verified whether or not a prede-
fined property will hold on a system’s model. In contrary to
simulation based approaches, a simple repetition of evolu-
tions within the model is neither possible nor necessary for
PMC. This is the most important advantage. Oppositely, the
main disadvantage is that there is nearly no tool-support avai-
lable for the relative young PMC method. In consequence,
the modeling task has to be done on program-code-level (cf.
Fig. 7). Furthermore, PMC does not support the use of con-
tinuous models. From here it follows that the accuracy of the
results is dominated by the discretization step width. Unfor-
tunately the step width can not be chosen arbitrarily small, as
this would result in an exponential increase of the state space.
Moreover, access conflicts (respectively the waiting queues
which are necessary to deal with access conflicts) comprise a
real challenge to the resource consumption. Finally, for the
use of PMC it is necessary to reduce the system’s complexity
by dividing large systems into smaller units, which is not
supported by any tools yet. However, the already discussed
time transformation makes it possible to describe a large
number of complex processes by their characteristic (stochas-
tic) transfer behavior – and PMC only proves one property at
the same time, i.e. adjusted models can be used.

If the processes of the system are independent, the determina-
tion of the initial state distribution is relatively simple: each
process may proceed from each of his states. If the processes
are not independent, the dependencies have to be imple-
mented, which is not too complicated by using PMC. Doing
so, it is not necessary to determine an optimal start scenario

as in the case of simulation. This is because all possible ini-
tial states will be covered automatically.

It is neither necessary nor wise nor possible to let the system
evolve longer than the process to be supervised. It is not nec-
essary, as all evolutions will have been covered after one run
of the process anyway. It is not wise, as the state space would
be increased unnecessarily. It is not possible, as some situa-
tions occur more than once, due to the cyclic character con-
tained in several processes. This would lead to tampered re-
sults as discussed in (Greifeneder and Frey, 2006).

In this work, software from the University of Birmingham is
utilized: PRISM (Kwiatkowska et al., 2002). Several exam-
ples of NAS components have been already modeled using
this software. As the modeling process of NAS should be
done in continuous time, whereas the model-checking must
be executed using Discrete Time Markov Chains (DTMC), a
design-process got defined in (Greifeneder and Frey, 2007a).
The first step in this process (cf. Fig. 5) is the modeling task,
which is using a graphical description language (DesLaNAS),
defined in (Greifeneder and Frey, 2007b). DesLaNAS also
supports the definition of initial state and “to-be-checked”-
properties. In the next step, the model is mapped into a prob-
abilistic timed automaton (PTA). This PTA is defined for the
special needs of NAS as discussed in (Greifeneder and Frey,
2007a,b). One of the most important differences to other
PTA-definitions is the necessity of NAS that not only the
initial state but also the initial clock values must be assigned
stochastically. In the third step, this continuous automaton is
transformed into a discrete automaton in dependence of the
discretization step width on the one hand and the properties
to be verified on the other hand. The latter is important as
depending on the discretization accuracy only part of the
original information may be of interest for the property to be
checked. Finally the PRISM-code is generated.

Description language DesLaNAS (graphical model)

Continuous Automaton (continuous formal model)

Discrete Automaton (discrete formal model)

PRISM (programming language)

syntactical transformation

mathematical transformation

straight forward transformation

Fig. 5 Design Process (Greifeneder and Frey, 2007a).

In Fig. 6 the DesLaNAS-model of a network transmission is
shown. This automaton consists of two states: Initially, it
waits in the state “idle” until a packet to be transmitted ar-
rives. The corresponding event is named “send” which is
written on the arc of the state transition. If such an event oc-
curs, the automaton changes into the “deliver”-state. There, it
stays for a stochastic time period dnet(x) which abstracts the
network transmission towards a stochastic process. This ab-
straction is feasible, as networks in NAS are quite fast and
seldom crowded. As soon as this period has elapsed, the
automaton returns into the “idle” state. Thereby the output
event “deliver” is produced, which can be used by other
automata in the system.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5116

dnet(x)

x:
=

0 idle
dx
dt = 0 send

deliver
dx
dt = 1

deliver
Fig. 6 DesLaNAS-Model of the network transmission.

In the time discretization step this becomes transformed to an
automaton with n+1 states, where n is given by the maximum
network delay (given by dnet(x)) divided by the discretisation
step width (rounded towards the next integer). That is, the
automaton has n states deliver, each of them associated with a
specific time, and the idle state which does not have any time
information and therefore is not influenced by the discretisa-
tion.

The corresponding PRISM-module-code is shown in Fig. 7.
The state “idle” got coded as Net=0. If the (now discrete!)
overall system’s automaton is in a state, labeled with „send“,
an integer value between 1 and n is assigned to the variable
Net using the probabilities pN1 for Net=1 and pN2 for Net=2
and so on. Net=n equals the maximum network delay,
Net=1corresponds to the minimum. Obviously the probabili-
ties pN1 to pNn must sum up to one. Finally, [t] and [p] rep-
resent synchronization variables which force this automaton
to act synchronously to a clock wide synchronization impulse.

Note: The output event deliver must be set to true when the
variable Net changes from 1 to 0. In this simple case however,
this can be done by a logical representation that maps deliver
to Net=1 without generating an additional variable.

module Network

 Net : [0..Net1Max] init 0;

 [t] Net=0 & !send -> Net’=0;
 [t] Net=0 & send -> pN1:(Net’=1)+...+ pNn:(Net’=n);
 [t] Net>0 -> Net’=Net-1;
 [p] true -> Net’=0;

endmodule

Fig. 7: PRISM-Code of the network transmission.

5. METHODS COMPARISON

Table 1 gives a comparison on the distinguishing aspects of
both approaches: It is not possible to model continuous and
closed-loop processes using PMC/PRISM at present. Fur-
thermore, the modeling costs and complexity are relative high
because of missing graphical tool support. The Modelica-
based simulation approach in comparison has drawbacks in
accuracy and resource consumption.

Table 1 Comparison of the methods

 Modelica PMC
Closed-loop + -
Modeling costs + -
Complexity + -
Accuracy - +
Resource consumption - +

6. CASE STUDY

In order to validate the results from both proposed ap-
proaches, a NAS laboratory test-bed was designed (Fig. 8).
One highlight of the test-bed is that the cycle times of PLC
and PLC-I/O can be configured by software and thus various
system configurations can be emulated on the same hardware.
PLC and PLC-I/O are implemented on separate microcontrol-
ler boards (ATMEGA32). Moreover, the sensor, actuator and
the evaluation module are also implemented individually on
microcontrollers. The evaluation module takes charge of sen-
sor signal generation and response time registration. The
WLAN-based communication between these components is
realized by WiPorts from Lantronix. WiPort is a compact
network processor module which enables to build wireless
communication over serial interfaces. The communication
between PLC and PLC-I/O is realized by SPI-bus.

WLAN

se
ns

or

ac
tu

at
or

P
LC

-I/
O

P
LC

evaluation

ATMEGA32

legend

WiPort

RS 232 comm.

SPI-bus

directly wired
Fig. 8 Laboratory measuring setup.

The key point to guarantee stochastically independent meas-
urements is to choose a proper random signal generation. The
presented method is composed of two steps (Fig. 9).

≈

n⋅340ms

triggering sensor‘s signal wait

(1+n)⋅340ms(0,5+n)⋅340ms

t

Fig. 9 Triggering the sensor’s signal.

An event is triggered cyclically every 340 ms. Secondly, the
sensor signal is generated after a random waiting time (0 to
170 ms). The evaluation of response time begins with the
occurrence of the sensor signal and elapses until the activa-
tion of the actuator. After each measuring procedure, the ob-
tained value is transmitted to a PC connected to the evalua-
tion module through a RS 232 interface. The PC logs all the
measured values in a text file for further evaluation. This way
simplifies the logging of measured values and allows a long
time measurement without considering storage limitations on
the evaluation module. The chosen values (170 respectively
340 ms) are the multiples of the cycle times of 10 and 17 ms.
Thereby it is ensured that all the possible shifts of cycles are
taken into consideration.

For 1.3 millions samples, the experiment must run continu-
ously for five days. The simulation takes 24 hours for
300.000 samples. In contrast, the PMC-analysis in PRISM
takes 17 seconds. Fig. 10 shows the convergence of meas-
urements and simulations against an increasing number of
samples. The comparison of the results against those of PMC
(Fig. 11) demonstrates that correct results are attainable by
both approaches. However, it is noticeable that the (relatively
large) PMC-step width of 1 ms leads to a less appropriate

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5117

mapping of the two steps. However, decreasing the discreti-
zation step-width by a factor of 10 would not only require to
rerun the PRISM-Code-generation shown in Fig. 5 but also
lead to an increase in resource consumption (storage and time)
that is definitely remarkable larger than a factor of 10.

0%

1%

2%

3%

4%

5%

6%

0 5 10 15 20 25 30 35 40 45 50 55

1.000
10.000
1 Million

response
time (ms)

probability

,
,

0%

1%

2%

3%

4%

5%

6%

0 5 10 15 20 25 30 35 40 45 50 55

1000
10000
300000

response
time (ms)

probability

Fig. 10 Convergence of measurement (top) and simulation
(bottom).

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

0 10 20 30 40 50

measurements
analysis
simulation

1.65%

1.70%

1.75%

1.80%

20 22 24 26 28 30 32 34

measurements
analysis
simulation

probability

response
time (ms)

Fig. 11 Relative frequency distribution of 1.3 millions meas-
ured response times with 300000 simulated ones and the ana-
lytic ones. (Parameters: PLC: 10 ms and PLC-I/O: 17 ms).

7. SUMMARY AND OUTLOOK

In the presented work, two approaches for the analysis of
response times in Networked Automation Systems are com-
pared: the simulation by Dymola/Modelica and the formal
analysis by Probabilistic Model Checking (PMC). It is dem-

onstrated that both methods have their own specific charac-
teristics and are therefore differently well-suitable depending
upon the aim of the analysis. The Modelica-model is notably
simple to handle, while the PMC is much faster for small
systems as long as discretization is not too fine. As for the
drawbacks: simulation results are only acceptable based on a
large number of samples, while for PMC the necessary dis-
cretization and the difficult implementation of queues are to
be noticed. Validation by measurements shows that good
results are retainable by both methods.

8. REFERENCES

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, K-E. Årzén
(2003). How Does Control Timing Affect Performance?
In: IEEE Control Systems Magazine, 23:3, pp. 16-30.

Greifeneder, J. and G. Frey (2006). Determination of Delay
Times in Failure Afflicted Networked Automation Sys-
tems using Probabilistic Model Checking. In: Proc. 6th
IEEE WFCS, Torino, pp. 263-272.

Greifeneder, J. and G. Frey (2007a). Probabilistic Timed
Automata for Modeling Networked Automation Sys-
tems. In: Proc. 1st IFAC DCDS, Cachan, pp. 143-148.

Greifeneder, J. and G. Frey (2007b). DesLaNAS - a language
for describing Networked Automation Systems. In: Proc.
12th IEEE ETFA, Patras, pp. 1053-1060.

Irey, P., B.L. Chappell, R.W. Hott, D.T. Marlow, K.
O'Donoghue, T.R. Plunkett (2000). Metrics, Methodolo-
gies, and Tools for Analyzing Network Fault Recovery
Performance in Real-Time Distributed Systems, IPDPS,
Mexico, Springer LNCS 1800, pp. 1248-1257.

Kwiatkowska, M., G. Norman and D. Parker (2002) PRISM:
Probabilistic symbolic model checker. In: Proc.
TOOLS’02, Springer LNCS 2324, pp. 200-204.

Liu, L. and G. Frey (2007). Simulation Approach for Evaluat-
ing Response Times in Networked Automation Systems.
In: Proc. 12th IEEE ETFA, Patras, pp. 1061-1068.

Marsal, G., B. Denis, J-M. Faure and G. Frey (2006). Evalua-
tion of Response Time in Ethernet-based Automation
Systems. In Proc. 11th IEEE ETFA, Prague, pp. 380-387.

Parrott, J., J. Moyne and D. Tilbury (2006). Experimental
Determination of Network Quality of Service in
Ethernet: UDP, OPC, and VPN, Proc. ACC, Minneapolis

Song. Y., A. Koubfia and F. Simonot (2002). Switched
Ethernet for real-time industrial communication: Model-
ling and message Buffering delay evaluation. In: Proc.
4th IEEE Int. WFCS, Vasteras, pp. 27-35.

Stanczyk, J. and A. Obuchowicz (2003). The max-plus alge-
bra approach to the prototyping of concurrent processes.
In: Proc. 9th IEEE MMAR, Miedzyzdroje, Vol. 2, pp.
857-862.

Vogel-Heuser, B., D. Witsch, J.-M. Faure, G. Marsal (2006).
Performance Analysis of industrial Ethernet networks by
means of timed model-checking. In: Proc. 12th INCOM,
Saint-Etienne, pp. 101-106.

Vojnovic, M. and J.-Y. Boudec (2002). Stochastic Analysis
of Some Expedited Forwarding Networks. In: Proc. 21st
IEEE INFOCOM, New York.

Wagner, F.; L. Liu and G. Frey (2008). Simulation of Dis-
tributed Automation Systems in Modelica. In: Proc. 6th
Int. Modelica Conference, Bielefeld, Vol. 1, pp. 113-122.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5118

