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Abstract: RobotiCad is a user-friendly Matlab/Simulink toolbox for the modeling and simula-
tion of robotic manipulators. With RobotiCad, starting from Denavit-Hartenberg parameters,
it is possible to create the kinematic and dynamic models of any serial mechanical structure,
together with its 3D graphical model. When a robot is created, it can be exported in a dedicated
file that can be loaded in a Simulink scheme and easily interfaced with other block-sets. A robot,
then, can be simulated and, eventually, an AV file of the simulation can be obtained. Moreover,
a rich collection of Matlab functions properly developed in order to study industrial robots is
included in RobotiCad, e.g. functions for trajectory generation, manipulability analysis, control,

and so on.
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1. INTRODUCTION

Because of the complexity of robotic systems, several
simulation tools devoted to robotics have been developed
and proposed for solving problems ranging from control,
trajectory planning, design, programming and so on. Some
of these tools are oriented to professional /industrial appli-
cations, while others are more specifically suitable for ed-
ucational purposes. Many of them have been implemented
for well defined problems and for defined classes of robots
only, such as e.g. RoboOp (Gourdeau [2006]), RoboWorks
(Newtonium®© [2005]), or Easy-Rob (Anton [2005]). Some
of them are stand-alone packages, while others have been
created as open source tools, see e.g. Grasplt (Miller and
Allen [2004]), or RoboMosp (Jaramillo-Boter et al. [2007]).
Among the open source packages, several Matlab toolboxes
have been developed, such as SimMechanics (Babuska
[2005]), or the Robotics Toolbox (Corke [1996]), to our
knowledge the first tool of this type.

The Robotics Toolbox, basically, provides a set of Matlab
functions and Simulink blocks for the simulation of the
direct and inverse kinematics and of the dynamic model
of user-defined robots. Although it can be probably con-
sidered as the most popular robotics toolbox, it reveals
some limits:

e the Corke’s Simulink blocks are related to the current
Matlab workspace;

e only a type of trajectory is implemented, that repre-
sents the only manner to move a robot;

e a graphical user interface (GUI) is not available, and
robots are represented as a collection of segments;

e the inverse kinematic function does not take into
account singularity points;

e a robot is simulated without any other object in its
environment;

e a robot cannot interact with external objects (e.g.
grasped objects).

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

In particular, the last point is critical if the simulation of a
robot within an industrial environment is required. These
limitations were the main motivations for the development
of RobotiCad, the Matlab/Simulink toolbox described in
this paper.

[ Robotics Toolbox [ RobotiCad ]
Text line interface User friendly 3D dedicated in-
terface

Create dedicate object classes

Compatible with Corke’s tool-
box

No workspace object

Several different workspace ob-
jects

Workspace simulation without
objects

Workspace objects included in
Simulink model

Fifth order polynomial trajec-
tories

Twelve different types of tra-
jectories; dedicated script tool
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Table 1. Comparison between Robotics Tool-
box and RobotiCad.

The main differences between the Robotics Toolbox and
RobotiCad are summarized in Table 1. It’s worth to notice
that some of the Corke’s Matlab functions have been
implemented and expanded in RobotiCad. Among them,
all the functions allowing the definition of the robot and of
the link object classes. This requirement was fundamental
as we decided to keep software compatibility between
models created in Robotics Toolbox and RobotiCad.

This paper is organized as follows. In Section 2 the main
features of RobotiCad are introduced (the fundamental
Matlab functions, the graphic user interface, the algo-
rithms for the study of kinematics and dynamics, the
RobotiCad Simulink Blockset library). An example of con-
trol implemented using RobotiCad features for an 8-DOF
robot welding two perpendicular intersecting cylinders is
discussed in Section 3. Section 4 concludes with final
comments and plans for future activity.
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2. ROBOTICAD

As shown in Fig. 1, the RobotiCad environment is com-
posed of three fundamental modules:

e RobotiCad Matlab Functions.
e RobotiCad GUI.
e RobotiCad Blockset.

Simulink

RobotiCad RobotiCad
Matlab functions Blockset
RobotiCad Load
GUI Workspace
Log window
Homogeneus
World Trajectory Script Tranform.
Navigator Planning Editor
\¢ Dynamics
D-H Robot ol Teach
Tool nllg Design | = Pendant
A i Trajectory
Q
)
S
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Editor Design S
=
3
Lights %
|S)
3
E
Tools I

Fig. 1. RobotiCad functional blocks.

2.1 RobotiCad Matlab Functions

This module can be considered the core of RobotiCad.
Many functions used by the RobotiCad GUI (see Sect.
2.2) and by the RobotiCad Simulink Blockset (see Sect.
2.3) are implemented as m-functions and can be used at
the Matlab prompt. This module allows the user to handle
homogeneous transformation and rotation matrices, the
creation of robot objects, and the study of its forward and
inverse kinematics and dynamics. Moreover, this module
allows to study singularity configurations and to han-
dle robot’s Jacobian matrices. Although many of these
functions are improvements of Corke’s Robotics Toolbox
functions, the real innovation introduced in this module
is the possibility of generating workspace and joint-space
trajectories.

2.2 RobotiCad Graphic User Interface

The GUI (Graphic User Interface) is probably the most
important module of RobotiCad. By using it, the user
can create a workspace, e.g. an industrial working cell,
with many robots and objects to interact with. By typing
“>> RobotiCad” at the Matlab prompt, the toolbox is
started. The environment, shown in Fig. 2, is composed
of three main windows, that are:

Log Window (a): this window contains a single text
field that is automatically updated every time the user
executes an action on the workspace or on an object in
the scene. By means of the Log Window, an history of
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Fig. 2. RobotiCad main windows: a) Log Window. b)
World Tree. ¢) RobotiCad Workspace.

the executed actions in the current workspace is then
available to the user.

World-Tree Window (b): the World Navigator Win-
dow presents the hierarchical structure of the objects in
the workspace, automatically updated when objects are
created or modified. As example, in Fig. 3 the structure
of a Puma 560 robot is shown.

Workspace Window (c): robots, workspace trajecto-
ries and other objects can be created in this window.
The user can also insert lights and cameras to improve
the representation of the scene. An absolute reference
frame Fog = Opxoyozo is present in the center of the new
workspace.
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Fig. 3. Example of World Navigator Window: Unimation
Puma 560 and its subtrees.

In the RobotiCad Workspace Window the user can create
its workspace with objects, robots, 3D workspace trajec-
tories, lights and cameras.

In order to create a mew robot, the user can use the
Denavit-Hartenberg (DH) parameters or load a Corke-
robot model if saved in a Matlab file. After defining the
DH parameters, the user can fix the position and the orien-
tation of the base of the robot base w.r.t. Fy. Once all the
parameters have been defined, the robot can be exported
in the RobotiCad workspace. As a new robot is created, it
is characterized by four categories of objects: base, joint,
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link, and endeffector. Each category may contain several
objects, and their dynamic properties (i.e. mass and inertia
matrix) can then be specified. As default, each category
contains an object with default properties. By using the
World-Tree Window, a workspace object can be moved
to a robot’s category and viceversa. In Fig. 4 a crane
manipulator moving a box along a workspace trajectory
is shown. Once the robot is created, all its properties can
be analyzed (i.e.: Jacobian matrix, manipulability mea-
sures, force and velocity ellipsoids). Moreover, it can be
programmed by using a virtual teach pendant (for joint-
space trajectories), by using the Seript Editor tool, or by
assigning to the manipulator a workspace trajectory previ-
ously created. The Trajectory Planning module allows to

15

Fig. 4. A Crane moving a box along a 3D workspace
trajectory.

define both Cartesian and Joint-Space trajectories. Many
of the trajectories available for joint space motions can be
found in Melchiorri [2000]. Cartesian trajectories can be
specified in three ways:

e by using one of the predefined trajectories imple-
mented in RobotiCad, such as circle and straight line;

e by the definition of a collection of via-points with
specified position and orientation;

e by loading a collection of via-points from a text file
*trt containing the trajectory description.

As example, in Fig. 5 some workspace trajectories are
shown.

For planning Cartesian trajectories in RobotiCad, several
interpolation methods have been implemented (the default
is based on cubic splines). Moreover, RobotiCad allows
the user to combine together trajectories from workspace
and joint space in order to achieve complex behaviors. To
conclude, each workspace trajectory is associated with a
semi-transparent bounding box (that suggests to the user
the space covered by it) and a fixed frame positioned
in the center of the trajectory. In this manner, scaling,
rotation, and translation operations can be applied to the
whole trajectory. Independently from the method chosen
to program the robots, the obtained trajectories can be
saved in a file that can be loaded in the RobotiCad

Fig. 5. Examples of workspace trajectories.

GUI and in a Simulink model using a dedicated block
(see Section 2.3). During the execution of a movement,
RobotiCad gives also the opportunity of controlling if the
moving robot collides with one or more objects in the
workspace.

Kinematic and Dynamic Algorithms  The position and
orientation in space of each object is provided by a refer-
ence frame rigidly connected with the object itself. Since
the DH parameters are used to describe robot configu-
rations, the position and orientation of each object in
space results from a proper multiplication of homogeneous
matrices. For the i-th joint (and related objects), the
matrix providing position and orientation in a specified
configuration is:

B AY@) - AL = |y, ]

000 1
where B is the homogeneous matrix used to define the

position and the orientation of the base of the manipulator
w.r.t. Fo, R is a rotation matrix and p is a vector.

SaC) |-
Tin T)\ q Gout
O R S e
. §
Jrine(+)

Fig. 6. Scheme of the inverse kinematic algorithm.

The inverse kinematic algorithm is based on a modified
calculus of the pseudo-inverse of the Jacobian matrix
(see Kelmar and Khosla [1988]). The general scheme to
compute the robot’s joint configuration starting from an
homogeneous matrix or from a sextuple of elements like
[Xpos, Yposs Zpos, Roll, Pitch, Yaw] is shown in Fig. 6,
where:
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e T;, is the homogeneous matrix for the desired end-
effector position and orientation, and ¢,,; is corre-
sponding joints configuration;

e K is a matrix gain that can be set by the user, whose
value is critical for the convergence of the algorithm;
the Inverse Kinematic block (see Section 2.3) allows
to set the value of K¢ (the default value is 1) during
simulation;

° J;V is the weighted pseudo-inverse of the Jacobian
matrix computed as

T =JT (I =N,
where J is the Jacobian matrix of the manipulator
in the current configuration and X is a weight matrix
defined in Kelmar and Khosla [1988];

e Mp and Mg are two filters customable by the user
in order to mask some positions or directions in the
workspace (Mr) or to lock some joints to a defined
value (Mg). In particular, the first filter can be
used to improve algorithm performances for under-
actuated robots (i.e.: for a planar robot, we can mask
[Zpos, Pitch, Yaw)]); the second filter can be used
to select only proper subsets of the joints for the
inverse kinematic function, leaving the possibility for
the remaining joints to be programmed directly in
joint space.

The dynamic algorithm used in RobotiCad is based on the
standard Newton-Euler method and consists of a recursive
algorithm to define the torques applied to the endeffector.
For more details, see Sciavicco and Siciliano [1996].

2.3 RobotiCad Blockset

The second main part of the RobotiCad toolbox is a
Simulink blockset collection, called RobotiCad Blocks. In
Fig. 7 a snapshot of this library is shown.

[ RobotiCadBlocks

File Edit View Simulation Format Tools Help
ok - \ K ] ] 5
‘ﬁrf}ﬂ?@, RobotiCad Simulink
eI .
= | [N Library v:io
LAR. Loge RabotiCad Loga
Workspace
and Trajectory Time
Graphics
Workspace & Graphics Trajectory Time Examples
Homogeneus Robot
transform Extras torce
Motor Models Homogeneus Robot Extras Force
Transform
Ricearde Falconi Copyright () 2007
University of Bologna - ltaly

Fig. 7. RobotiCad Library for Simulink.

These eight fundamental blocks are summarized in the
following list. Their properties are explained in the next
Section with a case study.

Workspace and Graphics This main block, shown in
Fig. 8(a), contains all the blocks that allow the user
to interface the model created in the RobotiCad GUI
with a Simulink environment. In particular, the Select

Use 'OK'to close this mask.

Robot]
Load Parameters
Wotkspacd 1%

Light Rob
i ot
Load workspace1 )
Lig i
c.
Plotwonspace

select robot

Select object Select light

Select robot |
[ Activate i
[] Create Fkine block

[] Create -KINE block
[] Create Jacobian block
[] Create F-dynanic block

e
(b) Select Robot mask

(a) Workspace and Graph-
ics

Robot (see Fig. 8(b)) block allows to choose the robot
to work with and, by a simple tick in a checkbox,
can automatically create all the blocks that implement
the fundamental functions, such as forward and inverse
kinematics and dynamics, and so on.

Trajectory Contains all the blocks dedicated to the tra-
jectory generation. The user can choose between many
kinds of trajectories, or load the *.txt files created by
the RobotiCad GUI containing workspace trajectories.
By means of these blocks, the user to combine many
different trajectories to create complex motion profiles.

Motor Models Some basic motor models, such as DC
motors and so on, are collected here. The user can add
new models.

Homogeneous Transformation Contains all the blocks
to handle homogeneous transformation.

Robot Extras Once the user selects a robot, the blocks
collected here allow the computation of the manipu-
lability values, of the Jacobian matrix, of singularity
conditions.

Force Contains two blocks to define a force vector and to
load the gravity vector.

Time Contains two blocks that can be programmed as
switches and that can be used to combine trajectories.

Examples As indicated by the block name, this block
contains some examples of robotic systems.

Fig. 8. The case study robot.
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3. CASE STUDY

In this Section, in order to show how to create and simulate
an industrial robot cell within RobotiCad, a case study
is reported. In particular, an 8 DOF robot composed by
a 2 DOF planar arm moving on the XY plane and a
Unimation Puma 560 (see Fig. 8) is considered. The DH
parameters are reported in Table 2. In the simulation, this

o

N
%

Fig. 9. Two orthogonal cylinders.

8 DOF robot is used to weld two orthogonal and inter-
secting cylinders. The robot’s tool trajectory is specified
in the workspace, and the inverse kinematic algorithm
is used to obtain the corresponding joints configurations.
The workspace trajectory is described analytically and a
subset of via-points is used and interpolated for the robot
programming. Of course, for this kind of task, it is not
necessary to use a manipulator as complex as this one.
The dynamic parameters are not reported for the sake of
brevity and because they are well known in the literature
(see Armstrong et al. [1986]). The position of the robot

Table 2. DH Welding Robot Parameters.

a; a 0; d R/P
Jointy g 0 0 di 1
Joints — % 0 % do 1
Joints % 0 03 0 0
Jointa 0 0.43 | 04 0 0
Joints —% 0.02 | 65 | 0.15 0
Jointe g 0 0 | 0.43 0
Jointy - g 0 67 0 0
Jointg 0 0 Os 0 0

base in Fy is [-1, — 1, 1.5]7, while its Tool has an offset
dy = 0.5 along the zg endeffector axis.

3.1 Trajectory Definition

The trajectory followed by the robot’s tool is shown
in Fig. 9. To obtain the requested path, one can start
from considering the locus obtained by intersecting two
orthogonal cylinders, with radii r; = 0.4 and ro = 0.75
respectively. This locus is described by:

r1 cos(t
[m(t) 1 _ r11 singt)) 7

2 — r2sin?(t)

where ¢t € [0...27].

To define the Frenet frame associated to each via-point,
p(t) is derived:

—ry sin(t)
r1 cos(t)
B 72 sin(t)-cos(t) ?

r2—r?sin?(t)

[ (1) ] —r1 cps((t))
p(t) = y(t) — ) —ry sin(t ’
s 72 (sin?(t) —cos?(t)) —r2 sin? (¢)
- Z(t) - : sin(t) cos(t) .
By normalizing p(t), p(t), §(t), one obtains p(t) = ééiiw

p(t) = %, p(t) = % that represent the unit vectors
of the Frenet frame parametrized in ¢t € [0...27].

Now, by considering the 8 DOF robot, one can see that the
robot’s approach vector and z vector of the Frenet frame
differ of 7 radians. To get the via point that describe the
trajectory, one can get the Frenet frame for ¢t = ¢ - %’T,
with ¢ = 0... N, and apply a rotation about z of an angle
# = 7. In our case, the value N = 20 has been chosen
to get a low position error using cubic spline interpolation
(see Table 3). The resulting workspace trajectory is shown
in Fig. 10.

Fig. 10. Resulting trajectory with 20 via-points.

Table 3. Number of trajectory via points versus
approximation error.

Number of via points Error %
3 2.4039
5 0.0882

20 7.4488-107°

100 5.7429-10—13

3.2 Robot Control Scheme

The control scheme used in this example is the well
known PD with gravity compensation. The overall scheme
is reported in Fig. 11. In Fig. 12 the analogous scheme
created with the RobotiCad Simulink Library is shown.
Note that in this scheme, a Random Number generator
has been introduced to simulate the fact that the gravity
term computed by the control algorithm in general does
not match the real value. Moreover, note that the reference
signal is created with two different blocks: the first one
loads the *.tzt file containing the 20 via points used for
the trajectory interpolation, the second one generates a
joint space trajectory. In fact, the Inverse Kinematic Block

9115



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Joint Trajectories Generator

3n

T Cylinder_82

% 7 1
AR

Select object

Hot En.. T : .
| Trajectory Inverse kinematic 08}
T, Ke 048) Lot - Tau(8} Forward
oad Enit_Robot Fy dynamic  OD{%) — o
o =
_ - _ Gra KMt ROBOt | Robot Dynamic
Joints 1,2 Inverse kinematic_1 M d I
trajectory vy Forward dynamic_1 Terminator ode
{3}
Random 5 I:_wem? 00:8:
Humber e Tau(3) QDD(E) : zeros E) G t
Enit_Robot Gray, ravi y
Inverse dynamic_1 Compensat|0n
Robot #-1All Robot
Load_ . = Robot (3)
Workspaed®® g b LaJo  Knit_Rohot
Z bjeet (2
Light T cylinder 1 select robot2 g‘:}li) .
Load workspace1 o >
‘_ Select object »lan obj ILi i
: F"I TOht_
: Object (1) e C

Al Lights  Light (1)

Camera Plot workspace
D:

Select light

|
LAR. Loge RobotiCad Logo

Fig. 12. PD with gravity compensation control scheme implemented with RobotiCad Simulink Library.
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Fig. 11. PD with gravity compensation control scheme.

is used to get joints trajectory reference for joints 3...8,
while the first two joints are moved by a circular trajectory
specified directly in joint space. This allows to move the
Cartesian part of the structure on a circle, while the
tool of the robot is always maintained orthogonal to the
intersection of the two cylinders.

4. CONCLUSIONS AND FUTURE WORK

In this paper RobotiCad, a new robotic toolbox for Mat-
lab/Simulink, has been presented. It is based on a rich
collection of Matlab functions, and can be used as a tool for
educational purposes or industry robot prototyping and
control.

The user-friendly interface allows to model a robot by
specifying its Denavit-Hartenberg matrix and its physical
properties, and to add objects to the environment by
creating or loading them from a library. Moreover, the
manipulator can be programmed in different ways and
simulated by means of new Simulink blocks. An AVT file
can be created for each simulation session.

The RobotiCad toolbox is available on the web at:
http://www.roboticad.deis.unibo.it/

Here, several examples and a library of robots (such as
SCARA, Unimation Puma 560, Stanford Arm and so on)
can be found.

Currently, new functions are being added to RobotiCad,
such as new Simulink blocks and the possibility to include
parallel manipulators and composed robots.
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