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Abstract: A reduction of the computational complexity of bank of Kalman filters is proposed.
The algorithm is focused in fault detection and isolation problems. It is shown that the orders
of individual filters in the bank can be lower than the respective filtered process model order.
The original model state variables are not estimated. Linear functions of noise samples are the
newly estimated variables.
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1. INTRODUCTION

1.1 Bank of Kalman filters

The bank of Kalman filters is the standard solution to
the hybrid linear system state estimation problem, see
bar-Shalom et al. [2001]. Such system state consists of
a vector of continuous real state variables x(t), which are
governed by a system of differential equations linear in
x(t). In addition, the other system state variable includes
an integer-valued parameter µ(t), which can be understood
as the system mode. Some applications do not require the
system state variables x(t) to be estimated. Occasionally,
only the mode estimate µ̂(t|t) may be of interest. Our
approach focuses in these particular problems.

A linear process subject to failures can often be described
by a quadruple of matrices Aµ, Bµ, Cµ, Dµ for each
mode, see Venkatasubramanian [2003] or Basseville et al.
[2003] or Simon and Kobayashi [2006]. The model has
both manipulated and random Gaussian inputs. We will
refer to the latter as unknown inputs. Then µ(t) is often
modelled as Markov process changing its value randomly
based on its current value. The Bayesian solution to this
filtering problem has been developed in Bar-Shalom et al.
[1988].

The algorithm presented in this text is confined to sit-
uations that only those columns of Bµ and Dµ which
correspond to the unknown inputs are functions of µ.
The remaining state space model parameters are the same
irrespective µ. The sensor and actuator faults can often be
modelled in this way, see Basseville et al. [2003].

1.2 Notation

Real column vectors will be distinguished by bold roman
lowercase font, e.g. v. The length of that vector v will
be denoted as n(v). A real matrix Z will be written in
uppercase using roman bold face. The matrix Z′ is Z
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transposed, the vector v′ is the row vector. The discrete
vector time series v(t) sampled on an interval of time
0, 1, . . . , t will be denoted as v{0, . . . , t}. The same time
series understood as the column vector will be denoted as
v0

t . Vector of all zeros will be denoted as o, the n × n
identity matrix will be denoted as In. The m × n matrix
of all zeros will be denoted Om×n. Let p(x|y) be the
probability density function of x conditioned on y. x̂(t|k)
is the estimate of x(t) conditioned on all data available at
time k.

2. MOTIVATION PROBLEM

2.1 Formulation

Let us suppose the following problem: A random vector
v ∈ R

n(v) has normal probability distribution with zero
mean and unit variance, i.e. v ∼ N (o, I). The vector v is
hidden. Only the value of certain linear function y = Zµu,

y ∈ R
n(y) can be observed.

We will suppose the matrices Zµ have full row rank. There-
fore, it holds n(y) ≤ n(v), the observed vector is a projec-
tion of v to a subspace. The statistical decision problem
concerns hypotheses about the matrix Zµ. Suppose there
is a number of competing values for Zµ; µ ∈ {0, 1, . . . ,M};
M ≥ 1.

To decide about the hypotheses it is necessary to evaluate
p(y|µ) for all µ. Then the likelihood of the hypotheses
together with their priors p(µ) define the posterior proba-
bility distribution according to the Bayes rule:

p(µ|y) = p(y|µ)p(µ)/

M∑

µ=1

(p(y|µ)p(µ)) (1)

The posterior probability distribution (1) may be consid-
ered to be the solution to the problem in the Bayes sense.
Because the observed vector y has normal distribution
of probability with zero mean and the variance matrix
(ZµZ

′

µ)−1, the quadratic forms ρµ defined by (2)

ρµ = y′(ZµZ
′

µ)−1y (2)
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are sufficient statistics. The information in the original
data y and the information in ρµ for all µ are equivalent
as long as the decision problem is concerned. Using (3)
and the fact C is independent on y, one can verify the
sufficiency condition is satisfied.

p(µ|y, ρµ) = C(µ) exp

(

−
1

2
ρµ

)

= p(µ|ρµ) (3)

Thus, to solve this decision problem, one can evaluate the
ρµ statistics, which are sufficient information to evaluate
likelihood of all the particular hypotheses. A way alter-
native to (2), how ρµ can be evaluated is based on the
maximum a posteriori (MAP) v̂µ estimates. Because the
vector v has the N (o, I) distribution of probability, its
max. a posteriori estimate is defined by (4).

v̂µ = arg min
v

v′v, subject to y = Zµv (4)

We will show that ρµ = v̂′

µv̂µ. To show this we will use
two orthonormal matrices: Nµ = null{Zµ} and Rµ =
null{null{Zµ}

′}. The columns of Nµ span the null space
of Zµ, the columns of Rµ span a complementary perpen-
dicular linear subspace; it is an orthonormal basis of the
row space of Zµ. Note that the matrix Rµ is n(y) × n(y)
because we supposed n(y) is the rank of Zµ.

Now the vector v can be decomposed into the two perpen-
dicular components: v = vN

µ + vR
µ . The component vN

µ

is in the column space of Nµ and the component vR
µ is

in the column space of Rµ. Both components have zero
mean and unit variance matrix and they are independent.
The MAP criterion can be rewritten to (5) to become a
minimization with respect to both components.

min
vR

µ ,vN
µ

v′R
µ vR

µ + v′N
µ vN

µ , subject to y = Zµv
R
µ (5)

Looking at the minimization (5) it is clear the minimizing
vN

µ = o. In other words, the MAP estimate v̂µ is within
the column space of the matrix Rµ. Thus, it is correct to

write v̂µ = Rµŵµ, where ŵµ ∈ R
n(y). Hence (6) follows

(index µ omitted in this equation for brevity).

ρ = v̂′Z′(ZZ′)−1Zv̂

= ŵ′R′Z′(ZRR′Z′)−1ZRŵ

= ŵ′R′Z′(R′Z′)−1(ZR)−1ZRŵ

= ŵ′ŵ

= ŵ′R′Rŵ

= v̂′v̂

for all µ, index µ omitted

(6)

Note that the matrix ZµRµ has full rank because the
column space of Rµ is perpendicular to the null space of
Zµ by definition. The inverse (ZµRµ)−1 exists therefore.

The conclusion drawn from this example is the following:
To evaluate the likelihood of the hypotheses on µ, one can
either (a) substitute the observed y to the probability den-
sity functions p(y|µ) or (b) to find the minimum quadratic

norm of the unobserved random vector v satisfying the
equality y = Zµv.

2.2 Dynamic problem

The two solutions (a) and (b) developed in the previous
section for the static case shall be examined considering
the linear dynamic hybrid system mode estimation. Here,
the dynamic hybrid system will be represented as a set of
linear competing state space models differing only in the
unknown input related matrices Fµ, Gµ as in the state
space model (7).

x(t+1) = Ax(t) + Bu(t) + Fµv(t)

y(t) = Cx(t) + Du(t) + Gµv(t) + e(t)
(7)

Each mode is characterized by particular values of the
two matrices. This special problem structure is often
encountered when solving fault detection problems.

Again, the likelihood p(y0
t |µ,u0

t ) is sought. The vector
u(t) ∈ R

n(u) represents the manipulated inputs, the vector
v(t) ∈ R

n(v) represents the random phenomena. Without
loosing generality v(t) can be considered to be a white
Gaussian noise process with unit variance matrix. An
appropriate model augmentation can add correlation and
autocorrelation phenomena.

The structure of this decision problem resembles the linear
problem solved in the previous section. The observed data
represent a projection of the unknown random series v(t).
Unless n(v) ≥ n(y), i.e. there are more or the same
number of unknown inputs than the number of measured
outputs, the model may happen not to be able to match
the observed data. To avoid such singularity we add a
measurement errors to the measured output: e(t). In the
following development, we will consider In(e) ≫ var {e(t)}.
To simplify the situation, we will also suppose µ is time
invariant.

For this problem the substitution of the observed time
series y0

t to its probability density function alike in (2)
is not possible algorithmically. As the time goes on and
more data from the process are collected, the dimension of
the series y0

t grows and the ρµ evaluation would require a
manipulation with vectors and matrices of growing dimen-
sion. That is why Kalman filter is normally used to evalu-
ate the µ likelihood. Kalman filter calculates its prediction
errors which are mutually independent. This makes the
likelihood a product of simpler functions of those errors.
Each factor in the product is than characterized by a
prediction covariance matrix of fixed dimension. Thus, no
dimension growth occurs. One can see the Kalman filter
as a mechanism removing serial correlation from the data
to make the likelihood evaluation easy.

In the following, we will use the quadratic norm of the
MAP estimate of v{0, . . . , t} as the sufficient statistics.
This approach differs from that of the Kalman filter
approach. To evaluate the likelihood of µ, we propose to
calculate the minimum quadratic norm of the time series
v{0, . . . , t} directly using the dynamic programming
mechanism. Though it is very closely related to Kalman
filtering, it may be simpler as the process state x(t)
estimation is not a part of this problem formulation.
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The sum of squares defined below has the χ2 distribution
of probability with n(v)(t+1) degrees of freedom.

t∑

k=0

v′(k)v(k) ∼ χ2
n(v) (t+1) (8)

We will define the statistics ρ(t, µ) as the minimum value
of the sum of squares (8). The minimization has to be
done respecting the data observed and for each system
mode (9). The values of v(k) which result from the
minimization must satisfy the input output relationship
for the respective mode µ and the u0

t , y0
t data measured.

ρ(t, µ) = min
v(k)

w.r. µ,y0

t ,u0

t

t∑

k=0

v′(k)v(k) ∼ χ2
n(y) (t+1) (9)

This statistics (9) also has the χ2 distribution of probabil-
ity, but with fewer degrees of freedom. This probability is
the likelihood of the mode.

To evaluate the marginal probability distribution of the
system mode µ for the model (7) it is sufficient to evaluate
the minimum value of the sum of squares (8) for each
mode. The optimization is subject to a set of linear
constraints. This set contains all data samples observed
satisfying (7). Note that we have neglected e(t) at this
point.

3. ALGORITHM

3.1 Minimization

To calculate ρ(t, µ), it is necessary to minimize the sum
of squares subject to different sets of linear constraints,
one set per system mode. The standard bank of Kalman
filters actually minimizes the sum of squares M times
as it solves M Riccati equations in parallel. The Ricatti
equation appears in many minimization problems where a
quadratic form is minimized recursively.

We propose to solve this optimization problem recursively
via the dynamic programming technique not directly but
after a convenient linear transform. The set of linear
constraints is (10).







y(0)
y(1)
...
y(t)







=







C
CA
...
CAt







x(0)+

+







Gµ O . . . O
CFµ Gµ . . . O
...

...
...

CAt−1Fµ CAtFµ . . . Gµ













v(0)
v(1)
...
v(t)







+

+







D O . . . O
CB D . . . O
...

...
...

CAt−1B CAtB . . . D













u(0)
u(1)
...
u(t)







(10)

We propose to transform the linear system of constraints
(10) to a simpler system by means of a deadbeat observer
O used as a u(t), y(t) data prefilter. The deadbeat state
observer processes the u(t), y(t) data to produce residuals
r(t) on its output. The residuals will be a moving average
of certain number of the previous v(t) values as in (11).

r(t) =

m∑

k=0

Hkv(t−k) (11)

The dead-beat observer O is designed for the original state
space model (7) not considering the inputs v(t), e(t). Thus,
the observer O is the same for all modes, it is independent
on µ. Neglecting the unknown initial condition (its effect
on r(t) vanishes after a number of samples) the linear
system of constraints for the filtered data will have the
band matrix form (12).







r(m)
r(m+1)
...
r(t)







=







Hm Hm−1 . . . H0

O Hm . . . O
...

...
...

O O . . . O

. . . O O

. . . O O
...

...
. . . H1 H0













v(0)
v(1)
...
v(t)







(12)

We will suppose the two systems of constraints (10), (12)
are equivalent in the sense that for any vector v0

t satisfying
any of the two also the other is satisfied.

The deadbeat observer O impulse response can be evalu-
ated as (13).

H0 = G,

Hk = C(A − LC)k−1(F − LG), k > 0
(13)

In (13) the matrix L is a state injection matrix so that
A − LC has zero eigenvalues. Technically the eigenvalues
need not to be exactly zero, it is sufficient the observer O
had a fast impulse response which can be approximated
by a finite impulse response Hk.

Using the form (12) we will minimize the sum of squares
by the following recursion based on the dynamic program-
ming idea. First, the sum of squares will be decomposed to
two sums (14) breaking the summation at the mth sample.

t∑

k=0

v′(k)v(k) =

m∑

k=0

v′(k)v(k) +

t∑

k=m+1

v′(k)v(k)

= Σ1 + Σ2

(14)

The two sums Σ1,2 can be related to the diagonal form
of the constraints (12) as follows. The first sum Σ1 is a
function of those v(k) which affect the fist residual value
r(m). Then, the first sum in (14) has to be minimized with
respect to the v(0) regarding the linear constraint given
by r(m). The minimizing v(0) value denoted as v̂(0|m)
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will be an affine function of v(m) . . . v(1). Substituting
this affine function to Σ1 one changes its analytic form to:

ρ(m, µ) +

m∑

k=1

(v(k)−v̂(k|m))′P(m)(v(k) − v̂(k|m)) (15)

Here, P(m) is a symmetric matrix and v̂(k|m) vectors.
Their numeric values will be known at this point as they
will be defined by the minimization with respect to v(0).

Absorbing the first square from the second sum adding it
to the first sum and repeating this process recursively we
can proceed up to the point were all terms from the second
sum have already been absorbed by the first sum.

Then the minimum value of the sum of squares is ρ(t, µ)
substituting zeros for v(k) − v̂(k|t), t−m+1 ≥ k ≤ t.

An interesting question is how many variables are the
arguments to Σ1, because this define the order of a filter
which is equivalent to this recursive minimization. The
conjecture is that a Kalman filter with order n(v)m should
be sufficient.

It is interesting this filter order can be lower than the
original system order n(x). In particular for n(v) = 1 the
order is roughly n(y) times lower. This filter state is a
vector of lagged v(k).

3.2 Equivalent System

Let the system for which the filter performing the recursive
minimization is designed be called the equivalent system.
The equivalent system as described in the previous section
always has shift-register dynamics, i.e. the As matrix of its
state representation has no non-zero eigenvalues. This As

matrix is a zero matrix (1+m)n(v)×(1+m)n(v) with ones
on its n(v)th upper diagonal – thus implementing shifting
by n(v). We will examine the minimum realization of the
equivalent system in this section.

Suppose making a prediction of future r(k) residuals at
time t, i.e. predicting r(t+1), r(t+2) and further on. Using
the equivalent system we get (16).







r(t+1)
r(t+2)
...
r(t+m)







= . . .

· · · =







Hm Hm−1 . . . H1

O Hm . . . H2

...
...

...
O O . . . Hm







︸ ︷︷ ︸

W







v(t−m+1)
v(t−m + 2)
...
v(t)







· · · +







H0 O . . . O
H1 H0 . . . O
...

...
...

Hm−1 Hm−2 . . . H0













v(t+1)
v(t+2)
...
v(t+m)







(16)

Here W denotes a matrix defining the linear relationship
between future residuals rt+1

t+m and the lagged unknown

inputs vt−m+1
t . We can think W is a matrix projecting

the past unknown inputs to the future residuals. Thus,
the minimal representation of the equivalent system state
must be a set of linear functions of vt−m+1

t which form a
basis of the rows in W. These linear functions allow the
future residuals to be predicted. Thus, they can represent
the system state. It is convenient to use the singular value
decomposition of W as defined by (17) to find a suitable
basis.

W = [ U U0 ]

[
Σ O
O O

]

[ V V0 ]
′

(17)

Provided the significantly non-zero singular values in (17)
are in Σ, the equivalent system states are the following
linear functions of vt−m+1

t : ΣV′. For these state variables
the following equivalent state space system can be defined
(18).

Ae = ΣV′AsVΣ−1

Be = ΣV′

[
Om n(v)×n(v)

In(v)

]

Ce = [ Hm Hm−1 . . . H1 ]VΣ−1

De = H0

(18)

Matrix As is the shifting matrix with ones on its n(v)th
upper diagonal. The minimal equivalent system represen-
tation is (19).

xe(t+1) = Aexe(t) + Bev(t)

r(t) = Cex(t) + Dev(t) + ee(t)
(19)

Note that this equivalent system has the unknown input
v(t) as its only input, u(t) has vanished. It has the dead-
beat state observer residuals on its output. The matrix Ae

will have all eigenvalues equal to zero.

For the case the signal v(t) has not enough degrees of
freedom to satisfy the input output relationships (7), we
have added an extra random term ee(t) in (19). This term
should be understood as a white noise measurement error
with a variance much smaller than v(t).

We have changed the original white noise measurement er-
rors e(t) considered in (7) to the white noise measurement
errors ee(t) considered in (19) as errors of the equivalent
system outputs. Though this is inconsistent, we recall the
term e(t) was added to the model equation to ensure the
model can be consistent with any input/output data. This
approximation is possible provided the variance of e(t)
is negligible. Though the errors e(t) were not considered
when the equivalent system was derived, we now re-define
statistics ρ(t, µ) to (20).

ρ(t, µ) =

t∑

k=0

(
v̂′(k|t)v̂(k|t) + ê′e(k|t)var−1 {e} êe(k|t)

)

(20)

As already noted, this approximation is justified for
ê(k|t) → o.
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3.3 The Main Result

Claim 1. The minimum order of the linear filter calcu-
lating system mode likelihood cannot be greater than
n(v)m. Here, m+1 is the number of non-zero values in
the deadbeat impulse response from the unknown inputs
to the O residuals. The n(v) is the number of the unknown
inputs.

Proof: The order of the linear filter calculating the suffi-
cient statistics equals the number of non-zero singular val-
ues in the SVD decomposition (17). This number cannot
be greater than n(v)m, which the number of W columns.

The reduced bank consists of Kalman filters designed for
the equivalent system, not for the original model of the
mode. All Kalman filters accept the dead-beat observer
residuals on their inputs. Note that we have used the
dynamic programming idea to find the reduced Kalman
filter, but the manipulation (14) related to the dynamic
programming minimization is actually not a specific part
of the reduced bank as the minimization can be done by
the Kalman filters.

4. NUMERICAL EXAMPLE

4.1 System

Let us consider the state-space model (21). The system
has two possible faults a and b modelled as two unknown
inputs. The total number of fault scenarios is four: F1 =
empty matrix (no fault active), F2 = Fa (a active),
F3 = Fb (b active), F4 = [Fa, Fb] (both active). The
matrices G1,2,3,4 analogously.

A =
1

7










1 1 0 0 0 1
0 2 1 0 0 0
0 0 3 1 0 0
0 0 0 4 1 0
0 0 0 0 5 1
1 0 0 0 0 6










B =










1 0
0 1
0 0
0 0
0 0
0 0










Fa =










1
0
0
0
0
0










Fb =










0
1
0
0
0
0










(21)

C =






1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1






D =






0 0
0 0
0 0
0 0




Ga =






1
0
0
0




Gb =






0
−1

1
0






The deadbeat observer can be designed using the state
injection matrix (22). It can be verified the matrix A−LC
has zero eigenvalues; up to rounding errors.
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Fig. 1. System outputs in the left, true v(t) and v̂(t|t, µ)
estimated by two filters µ = 2, 3.

L =










0.1429 −0.0000 0 0.1429
0.2531 −0.1591 0 −0.0651
0.0432 −0.1213 0 0.0863

−0.0863 1.0997 0.1429 −0.1727
0 0 0.7143 0.1429

0.0271 0.0135 0 0.9113










(22)

The deadbeat observer residuals can be represented as a
moving average of the current unknown input value v(t)
and two lagged values, i.e. m = 2. Now the state space
representation of the reduced equivalent system for each
system mode can be calculated using (18). For example
for the mode µ = 2 equivalent system is (23).

A2=

[
−0.3010 −0.5354

0.1692 0.3010

]

B2=

[
−0.6550
−0.0413

]

C2=






−0.9333 0.1758
−0.0479 −0.2854

0 0
0.0863 −0.7144




 D2=






1
0
0
0






(23)

For the two single fault scenarios µ = 2 and µ = 3 the
equivalent systems for which the respective Kalman filters
in the bank should be designed have order two. This is a
considerable simplification as the original system order is
six.

4.2 Simulation results

The left half of Fig. 1 shows 200 samples output data
generated by the system (21) excited by a PRBS (random
binary switched) signal on the two u(t) inputs. At the
right the true fault signal v(t) is shown. It was a ramp
signal starting at the sample 100 and increasing up to level
one during 50 samples. From sample 150 up to 200 the
fault signal was 1. This Figure also shows the smoothed
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Fig. 2. ρ(t, µ) evaluated for the sixth order system (21)
using either the full order Kalman filter or the reduced
Kalman filter.

unknown input estimate estimated by two filters: for the
modes µ = 2 and µ = 3. The filters were designed taking
var {v(t)} = In(v) and var {ee(t)} = 1/25In(y).

Fig. 2 shows how the quadratic norm ρ(t, µ) had been
calculated when processing these data and the system was
in the mode µ = 3. Especially note the ρ(t, µ) values
calculated by the full order Kalman filter of the sixth order
and the reduced second order Kalman filter are the same,
up to rounding errors (e(t) were not simulated). The line
marked by squares shows the ρ(t, µ) values produced by a
first order filter obtained taking only the largest singular
value in (17). These results are no more equivalent to the
full order filter results though the true modes could still
be detected correctly.

5. CONCLUSION

This text answers a simple question related to the bank
of Kalman filters: “Is it necessary to estimate the state
variables as many times as there are process modes to
evaluate the marginal probabilities of those modes?” The
answer given here is negative (conditionally). We have
proven it is sufficient to use the Kalman filter whose order
is related to certain impulse response length (from un-
known input to the auxiliary deadbeat observer residuals).
Though we have assumed the process mode µ is constant,
the algorithm can be generalized to time varying µ(t). The
bank of reduced filters must be supplemented by a common
linear time invariant prefilter. Thus, a part of the dynamics
is factored out from the Kalman filters in the bank to be
included in the prefilter for all of them only once.

Note that the result presented in this text is of practical
importance. For a fault detection system designed for
large scale linearized model, the order reduction can lead

to substantial computational performance improvement;
especially if n(y) ≫ n(v).

Though our approach uses the dead beat observer, it is
not a deterministic approach. The dead beat observer is
not used to estimate the process state. Its use should
not exaggerate the sensitivity to the noise therefore. Our
method is a bridge between the stochastic and determinis-
tic approaches. The more the number of unknown inputs
n(v) is reduced, the simpler are the Kalman filters. If
n(v) ≥ n(x), no reduction is possible.
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