
Flood forecasting for heteroscedastic

streamflow processes

Francesca Pianosi
∗

Luciano Raso
∗∗

∗ Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Milan, Italy (Tel: +39-2-2399.9630; e-mail: pianosi@elet.polimi.it).

∗∗ Politecnico di Milano, Milan, Italy (e-mail: raso@asp-poli.it).

Abstract: The paper presents a nonlinear heteroscedastic model for flow forecasting. The model
is composed of two submodels: the former provides the expected value of the flow, conditional on
available information, e.g. past flow and precipitation records; the latter provides the variance
of the prediction error as a function of past values of the prediction error itself and precipitation
measures. The proposed model is tested on a real world case study, the inflow to Lake Verbano,
Italy, where the inflow forecast is used for optimizing release decisions from the lake. Results are
discussed and compared with those obtained with conventional modelling approach, where the
flow is estimated based on a linear model of the flow logarithm, and the variance is not given a
dynamical description but is assumed to be a time-varying parameter.

1. INTRODUCTION

Most of the methods in conventional prediction theory are
based on the assumption that the model residual has a
constant variance. As pointed out by Engle (1982), mainly
with regards to econometric applications, often this as-
sumption is not satisfied: on the contrary, large errors are
more likely to be followed by large errors and small errors
by small errors. In brief, an autoregressive effect can be
revealed in the variance of the model residual. These con-
siderations led Engle to propose an AutoRegressive Condi-
tional Heteroscedasticity (arch) model for a discrete-time
stochastic process y = {y0, y1, . . .}. According to the arch

model, the expected value E[yt+1|It], conditional on infor-
mation It at time t, is a linear combination of past records
of the variable itself and possibly of other measures, as
in conventional regression analysis, while the conditional
variance V [yy+1|It] is not constant but it is given by a
linear combination of past values of the squared predic-
tion error. Bollerslev (1986) generalized this approach by
using an arma model to describe the conditional variance,
and called the global model a Generalized AutoRegressive
Conditional Heteroscedasticity (garch) model.

In environmental systems modelling, a typical example
of stochastic process that shows non-uniform conditional
variance is the outflow process from an uncontrolled catch-
ment. However, to the author’s knowledge, few attention
is paid to this specificity in the literature, even if, to the
purpose of flood forecasting and control, improving the
accuracy in the estimation of the conditional variance is
almost as crucial as improving the prediction ability. In the
case study that will be discussed in this paper, the goal is
to identify an inflow model to be used in an on-line control
scheme for the management of a regulated lake. Since
the control scheme is based on stochastic optimization,
the performances of the closed-loop system depend on the
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accuracy of the estimate of both the expected value and
the variance of the inflow.

The paper is organized as follows. The next section is
devoted to a review of the conventional approach for mod-
elling flow processes and accounting for heteroscedasticity.
The limit of this approach when exogenous input (e.g.
precipitation) is introduced in the model is discussed in
section 3. To overcome the difficulty, a nonlinear model is
introduced and its prediction ability tested on to a real
world case study. Then, in section 4 a dynamical model
of the variance of the prediction error is presented and
compared with conventional static models. Final remarks
and issues for future research are presented in the last
section.

2. MODELLING AUTONOMOUS FLOW PROCESSES

The outflow process q from an uncontrolled catchment
can be modelled as a discrete-time stochastic process. The
probability distribution of the process, i.e. the distribution
of qt at each time t, can be approximately assumed to be
uniform and log-normal. As a consequence, the process y,
where yt = log(qt) for each t, is normal and it can be
suitably modelled as an autoregressive process. In general,
q (and thus y) is cyclostationary, due to exogenous forcing
inputs that are periodic, e.g. the contribution of snow melt
in late spring and summer. Periodicity is usually accounted
for in two ways: 1) the normal process y is first standard-
ized through its periodic mean µt and standard deviation
σt, and then the normal standard process ỹ so obtained
is modelled as an autoregressive process (deseasonalized-
arma model); 2) the process y is directly modelled as a pe-
riodic autoregressive model, i.e. with periodic parameters
(parma model) Hipel and McLeod (1994). In the example
of the snow melt contribution, the first approach seems
more suitable, since it recognizes the origin of periodicity
from exogenous inputs and not from a change in the system
dynamics. Once a model of the process y is available, at
each time t the prediction yt+1|t can be obtained based
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on the available information It = | log(qt), log(qt−1), ...|.
The prediction E[qt+1|It] of the original variable and its
conditional variance V [qt+1|It] are then given by

E[qt+1|It] = exp (2yt+1|t + σ2)/2 (1a)

V [qt+1|It] = exp (2yt+1|t + 2σ2) − exp (2yt+1|t + σ2)
(1b)

where σ2 is the (constant) conditional variance of yt+1|t.
From equation (1b), it follows that the conditional vari-
ance of qt+1 changes over time and increases with the value
of the prediction, i.e. that the model is able to reproduce
heteroscedasticity of the flow process.

Wang et al. (2005) consider daily and monthly flow time
series of upper Yellow River, China, and show that the
residual of the deseasonalized-arma model is not a station-
ary homoscedastic process. Instead, the residual shows,
depending on the sample time (daily or monthly), ei-
ther cyclo-stationarity or both cyclo-stationarity and het-
eroscedasticity. For the latter case, they propose an arma-
garch model for describing the deseasonalized process ỹ,
which results in a fully dynamical description of the resid-
ual variance. To the authors’ knowledge, here the time-
variability and heteroscedasticity of the residual process
can not be given any physical interpretation, while it must
be interpreted as an evidence that the standardization of
y does not fully capture its seasonality, and that the arma

model is not completely adequate to modelling ỹ.

3. MODELLING FLOW PROCESSES WITH
EXOGENOUS INPUT

The approach based on logarithmic transformation of
the flow values presents two main limits. First, the log-
transformation results in a bias of the flow prediction to-
wards small values, which can be unsatisfactory, especially
if the model is to be used for flood forecasting (see discus-
sion in Romanowicz (2006)). Second, the model is suitable
for describing the flow formation process as an autonomous
process, while the introduction of exogenous inputs can be
critical. For example, assume that precipitation measures
are added as an exogenous information in the model of pro-
cess y, i.e. consider the following deseasonalized-armax

model

yt =
(

log(qt) − µlog q
t

)

/σlog q
t (2a)

yt =
B(z−1)

A(z−1)
pt +

C(z−1)

A(z−1)
et (2b)

where µlog q
t and σlog q

t are the a priori estimates of the
mean and standard deviation of the flow logarithm, for
time t (in general, they are time-varying periodic); pt is
the measure of average precipitation over the catchment
for the time interval [t − 1, t), et is a zero mean white
noise, and A(z−1), B(z−1) and C(z−1) are polynomials in
the backward shift operator z−1 (such that z−1qt = qt−1),
of order na, nb and nc respectively, i.e.

A(z−1) = 1 − a1z
−1 − . . . − ana

z−na

B(z−1) = b1z
−1 + . . . + bnb

z−nb

C(z−1) = 1 + c1z
−1 + . . . + cnc

z−nc

If the prediction of yt+1, based on model (2), is used to
derive the prediction of qt+1 through equation (1a), then
qt+1 turns out to be exponentially related to precipitation

pt. This is in contrast with the physical knowledge of
the flow formation process, which shows an approximately
linear relation among precipitation and flow, and worsens
the prediction ability of the model, since floods due to
precipitation peaks are overestimated. In particular, when
using the model outside of the estimation data set, flood
peaks can be dramatically overestimated whenever the
precipitation exceeds the maximum value recorded in the
estimation data set, as it will be shown when discussing
the case study.

3.1 Nonlinear model of the flow

In order to overcome the difficulties pointed out in the
previous section, the following model will be discussed here

yt =
1

A(z−1)
et (3a)

qt = exp{σlog q
t yt + µlog q

t } + B(z−1)pt + C(z−1)εt (3b)

where all variables are defined as in model (2) and εt is the
model residual, i.e. the difference between observed and
predicted flow, assumed to be a zero mean white noise.
The rational behind model (3) is the following. If no exoge-
nous input enters the system, the flow shows a decrease,
which is accounted for by the autoregressive model of the
flow’s logarithm. The presence of the logarithm ensures a
description of the recession phase that is consistent with
both hydrological theory and the trend revealed by data.
The residual from this autonomous logarithmic model is
linearly related to precipitation. The underlying idea is
that what can not be explained by autocorrelation, must
be due to the exogenous forcing input, i.e. the precipita-
tion. Finally, the flow prediction can be corrected based
on past errors. This moving average component can prove
to be useful for correcting the lag in the peaks prediction,
if any, as discussed below.

Model (3) is nonlinear, therefore traditional parameter
estimation techniques can not be directly applied. The
identification strategy that we propose is the following.
An initial estimate of the model parameters, namely
the coefficients of the polynomials A(z−1), B(z−1) and
C(z−1), is obtained through a sequential identification
based on ordinary least squares: first, the coefficients of
the polynomial A(z−1) are estimated, based on a sample
of the deseasonalized process y; least squares are then used
again to fit a linear regression among the residual qt −
exp{σlog q

t (1 − A(z−1)) log(qt) + µlog q
t } and precipitation,

thus obtaining the coefficient of polynomial B(z−1); the
same is repeated with the residual from the autoregressive-
exogenous model, to derive the coefficient of C(z−1). This
initial parameter estimate is sub-optimal because 1) it
is obtained sequentially while all parameters should be
estimated at once; 2) the coefficient of the moving average
component have been estimated over the deterministic
component residual, not the residual of the global model.
Therefore, this estimate is used to initialize a global
optimization of the parameter estimates performed with
Levenberg-Marquardt algorithm.

3.2 Application results

The prediction ability of model (3) is tested on a real
world case study. The output variable is the net inflow
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na nb nc

R
2

est. val.

2 1 0
0.29 -2.19 deseasonalized-armax (2)
0.68 0.73 model (3)

2 2 0
0.63 -0.01 deseasonalized-armax (2)
0.69 0.74 model (3)

Table 1. Coefficient of determination R2 over
estimation and validation data set for the
deseasonalized-armax model and model (3),
with different choices of the model order. Re-
sults obtained with higher order models (in
particular nc > 0) are not reported because

no significant improvement is obtained.

qt to the Lake Verbano, a multipurpose regulated lake in
northern Italy. This variable can not be measured but it
is derived from level and release measures by inverting the
reservoir’s mass balance equation. The input is the total
precipitation (both rainfall and snowfall undistinguished)
over the catchment. This is obtained by averaging the
values relevant to 18 meteorological stations. Time series
of these variables are available for the period 1/Jan/1992
- 30/Nov/2000. Data relevant to the period 1992-1997 are
used for the model identification, while data from the
beginning of 1998 to the end of the sample are used for
validation.

Since the lake release decision is taken daily, and the inflow
prediction is going to be used to optimize decisions, the
inflow model must be time-discrete with a sample time
∆ equal to 24 hours. As it shall be seen in the following,
the travel time of the catchment is lower than ∆ thus the
model will show a systematic error during flood events.
This is unavoidable since the decision time step can not
be changed.

Table 1 provides a brief comparison of the performances
obtained with a deseasonalized-armax model of form (2)
(where an exponential relation exists among precipitation
and flow) and model (3), for two different choices of the
model order. Poor performances of the deseasonalized-
armax model are justified by the fact that the param-
eter estimation is strongly conditioned by the greatest
flood event in the estimation data set, while all other
events are misinterpreted. It must be concluded that the
deseasonalized-armax model is not robust: bad perfor-
mances on the validation data set are due to the presence
of a big flood event (142 mm of precipitation on the
14/Oct/2000, against a maximum value of 100 mm over
the estimation data set) where the model, exponential in
the precipitation, highly overestimates the flow (figure 1).
Model (3), instead, provides satisfactory results. Its per-
formances can be further improved by introducing time-
varying periodic parameters for the exogenous component,
in order to account for different effect of precipitation on
the inflow in different seasons (usually due to different
conditions of the ground). To this end, each coefficient
of the polynomials B(z−1) is replaced by a Fourier se-
ries whose coefficients are estimated through linear least
squares. With this structure, good results are obtained also
with a low order model: with na = 1, nb = 2, nc = 1 and
a 2nd order Fourier series for the two coefficients of the
polynomial B(z−1), the coefficient of determination R2 is
equal to 0.74 and 0.77 over the estimation and validation
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Fig. 1. Observed flow (black dots), prediction of the
deseasonalized-armax model (triangle) and of the
model (3) (circle) - both with na = 2, nb = 2 and
nc = 0 - over a flood event in the validation data set.
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Fig. 2. Time-varying periodic parameters (period = 1 year)
of the exogenous component of (3). Since nb = 2, the
precipitation contribution to the prediction qt+1|t is
given by (b1 + b2)pt − b2(pt − pt−1).

data set respectively. The trajectory of the parameter esti-
mates relevant to the exogenous input are consistent with
physical interpretation of the flow-formation process: in
particular, the sum b1 +b2, which weights the contribution
of the last available precipitation measure pt, is higher in
the late-spring period and in autumn, when soil moisture,
and thus the runoff, are higher (see figure 2). Finally, as for
the moving average component, the estimated value of c1

is negative (it is equal to -0.6390 with a variance of 0.0013).
This result can be interpreted as follows. Since the travel
time in the catchment is lower than ∆ (it is approximately
12-18 hours), flow peaks due to abrupt precipitation are
predicted with one-step lag; this systematic error of the
‘deterministic prediction’ can be partially corrected when
the noise term c1εt is introduced: its contribution, in fact,
is negative after a flow underestimation, since by definition
εt = qt − qt|t−1 (figure 3). Intuition is confirmed by the
fact that if this moving-average component is removed
(nc = 0), the model performances decrease to R2 = 0.72
over the estimation data set and R2 = 0.74 over the
validation data set.
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Fig. 3. Observed flow (black dots), prediction of model (3)
with nc = 0 (square) and nc = 1 (circle), over a
portion of the estimation data set. Letter A indicates
a case where the ma component helps correcting
overestimated prediction after an underestimation
due to abrupt precipitation.

4. ESTIMATION OF THE VARIANCE OF THE
PREDICTION ERROR

The prediction error εt of the nonlinear model (3) is
approximately Gaussian. Its distribution can not be con-
sidered exactly Gaussian since it shows a positive skew:
extreme underestimation errors, in fact, are larger than
extreme overestimation errors. This is because the maxi-
mum unpredictability is connected to flood peaks caused
by abrupt precipitation (when the flow qt is strongly
influenced by the precipitation pt in the same interval),
which are systematically underestimated. In the following,
however, we will neglect this skew, assume that ε be gen-
erated by a Gaussian process and exploit this assumption
to derive confidence bounds for the flow prediction.

Further analysis reveals that the prediction error can be
assumed zero mean and white noise. However the squared
error is autocorrelated, which is an evidence of the het-
eroscedasticity of the prediction error. Therefore, the vari-
ance σ2

t of εt will be described by means of a dynamical
model. In order to derive the model of the error variance,
let us first develop some considerations. Unpredictability is
mainly concentrated during flood events. Figure 4.a shows
the cross-correlation function between precipitation and
prediction error. It can be noticed that the error εt+1 in
the prediction made at time t is highly correlated with the
precipitation pt+1, because the prediction error is often
due to an ‘unconsidered’ precipitation event occurring in
the time interval of the prediction; instead, the correla-
tion between εt+1 and past precipitation records pt+1−i,
with i > 0, is almost zero, thus confirming that all the
information available at time t is correctly exploited by
the model. However, as it can be seen from figure 4.b, the
cross-correlation between precipitation pt+1−i and squared
error ε2

t+1 is high also for i > 0. Thus it can be concluded
that while the error value does not depend on past precip-
itation, the error variance does. Finally, figure 4.c shows
the cross-correlation function between precipitation and
the absolute value of the error, which is even stronger than
between precipitation and squared error. The analysis of
the autocorrelation function revealed that also the auto-
correlation of process |ε| is higher than the autocorrelation
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Fig. 4. Cross-correlation between model residual εt+1 and
precipitation pt+1−i (a), ε2

t+1 and pt+1−i (b), and
|εt+1| and pt+1−i (c), for different values of i. Dashed
lines are 95% confidence bounds.

of process ε2. From the above, the following conclusions
can be drawn:

• precipitation measures can be helpfully used as ex-
ogenous input of the variance model, to account for
the increased unpredictability of the flow during flood
events;

• the time series of the absolute value of the residual
provides more information for identifying the variance
model than the time series of the squared residual.

Therefore the idea is to identify a dynamical model for the
residual absolute value, use it to compute the conditional
expected value of |εt+1| and from this derive an estimate of
σt+1. This is possible since, under the assumption that εt+1

be normally distributed for any t, its standard deviation
is given by

σt+1 =
√

2π/2 · E[|εt+1|] (4a)

(see Appendix for proof). The following linear model has
been identified for predicting the absolute value of the
error

E[|εt+1|] = α +

nβ
∑

i=1

βi|εt+1−i| +
nγ
∑

i=1

γipt+1−i (4b)

Parameters α, βi (with i = 1, . . . , nβ) and γj (with
j = 1, . . . , nγ) are all taken as positive, thus guaranteeing
positivity of E[|εt+1|], and they can be estimated through
constrained nonlinear least squares. Different model orders
were tested and good results were obtained also for low
orders. Results that will be shown in the following refer to
the case nα = 3 and nβ = 1.

4.1 Application results

A constant and a periodic model of the prediction error
variance will be used as benchmarks. The former assumes
that the standard deviation of the prediction error be
constant and equal to the sample standard deviation

σt+1 =

√

√

√

√

1

N − 1

N−1
∑

t=0

ε2
t+1 (5)

where N is the number of data in the estimation data set.
The latter assumes that the standard deviation be periodic
and derives it from the variance σ2

t+1, which is given by a
fifth order Fourier series
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Fig. 5. Measured flow (circle), predicted flow (cross) and
99% confidence bounds assuming that the prediction
error be Gaussian and its standard deviation be
constant (dotted line), periodic (dashed) or dynamical
(solid).

σ2
t+1 = a0 +

5
∑

n=1

an cos

(

n
2π

T
t

)

+ bn sin

(

n
2π

T
t

)

(6)

where T = 365 (days).
In figure 5, the 99% confidence intervals of the flow pre-
diction, based on the three variance models (4), (5) and
(6), are compared. At each time t, the extremes of the
confidence interval are given by qt|t−1 ± 3σt where qt|t−1

is computed based on model (3) and σt is given by one of
the three above models. If constant or periodic variance
is used, the confidence interval is too large for low water
events and too narrow for flood events. The confidence in-
terval based on a dynamical variance, instead, is narrower
for low flow values and wider in correspondence to floods,
when unpredictability increases.

Another tool that was used to assess the adequacy of the
variance model is the probability plot (Laio and Tamea
(2007)). The idea is as follows. At each time t of the
validation set, a prediction qt|t−1 based on model (3) is
available, as well as an estimate of the prediction error
variance σ2

t . Since the prediction error is Gaussian and
it enters model (3) as an additive term, we can con-
clude that the conditional probability distribution of the
flow is also Gaussian. Unfortunately, we can not evaluate
the goodness-of-fit of such distribution with conventional
statistical tests, because only one extraction from that
distribution is available, i.e. the measure qt. However, from
the probability integral transform it follows that if the
estimated cumulative distribution function (cdf) P̂qt

(·) of
the flow coincides with the true cdf P 0

qt
(·), then the value

zt = P̂qt
(qt) is an extraction from a uniform distribution

over [0, 1], i.e. zt ∼ U(0, 1). Since this is true for any
t = 1, ..., N , N being the number of flow measures in the
validation data set, we can evaluate the good-of-fit of the
N cdfs P̂qt

(·) by checking if Z = {z1, ..., zN} is a sample of
mutually independent and identically distributed U(0, 1)
observations. Independence of the sample was checked by
looking at the autocorrelation function. As for the unifor-
mity hypothesis, we compute the value of the empirical
cdf of zt as Fzt

(zt) = Rt/N , where Rt is the number of
elements in Z lower than zt, and compare it with the value
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Fig. 6. Sorted zt = P̂qt
(qt) versus their empirical cdf values

Rt/N ; the conditional cdf P̂qt
(·) is Gaussian with

parameter σt given by the dynamical model 4 (solid
line), σt constant (dotted) and σt periodic (dashed).
The bisector (thin line) is the cdf of zt if zt is uniform
over [0, 1].

of the uniform cdf, z0
t = P 0

zt
(zt) = zt. Figure 6 shows the

probability plot obtained with the three variance models
(4), (5) and (6). None of the empirical cdfs lays exactly on
the bisector, i.e. none of them coincides with the theoreti-
cal cdf P 0

zt
(·), however the empirical cdf corresponding to

the dynamical model (4) is much closer to the bisector than
the other two. In particular, the probability plots based on
constant and periodic variance are s-shaped, which means
that the zt points are concentrated towards the centre of
the interval [0, 1], i.e. the confidence interval is too wide.
The discrepancy from the bisector in the probability plot
based on the dynamical model of the variance, instead, is
not due to a systematic error in the variance estimate but
reveals an overestimation of the flow expected value.

5. FINAL REMARKS AND FUTURE RESEARCH

The paper presents a model for describing the flow forma-
tion process from an uncontrolled catchment, to be used
for one-step-ahead prediction. It is a nonlinear model that
exploits past flow and precipitation measures and past
prediction errors to predict the flow over the following 24
hours. The main advantage of this model, with respect to
conventional linear models on the flow logarithm, is that
it can efficiently handle the rainfall input, avoiding the
loss of robustness that is encountered by linear models.
However, the drawback is that the flow process does not
belong to any particular probability distribution, and thus
the model cannot be used for simulation without further
improvement.
The paper also presents a model for estimating the vari-
ance of the prediction error. It is a dynamical model
thus accounting for the heteroscedasticity of the prediction
error process. The confidence interval of the flow prediction
based on this model seems to be more adequate than
those based on a constant or periodic variance. However,
assessing the goodness-of-fit of a variance model is still
an open issue (see for example Laio and Tamea (2007))
and further research is needed for defining adequate tools
to this purpose. Finally it must be noted that the pro-
posed variance model presents a main limit in the fact
that, assuming the prediction error as a Gaussian variable,
the conditional distribution of the flow turns out to be
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Gaussian too, which is not acceptable from the physical
standpoint. The difficulty might be overcome by simply
neglecting negative predictions, i.e. by forcing the lower
bound in Figure 5 to be nonnegative, however further
research is advocated to find more satisfactory solutions.
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Appendix A. EXPECTED VALUE OF THE
ABSOLUTE VALUE OF A NORMAL VARIABLE

First it can be proved that if X ∼ N(0, σ2) and Y = |X|,
then

fY (y) = 2 · fX(x) ∀x ∈ R, y = |x|
where fY (·) and fX(·) are the pdfs of X and Y respectively.
In fact, from the definition of Y , it follows that P [Y < y] =
P [|X| < y] = P [−y < X < y] and thus

∫ y

0

fY (ξ)dξ =

∫ y

−y

fX(ξ)dξ

Since fX(·) is an even function,
∫ y

0

fY (ξ)dξ =

∫ y

0

2 · fX(ξ)dξ

from which the thesis follows.

Therefore the expected value of Y is given by

E(Y ) =

∫ ∞

0

y 2fX(y) dy

=
2√
2π

∫ ∞

0

y

σ
exp

(

− y2

2σ2

)

dy =
2√
2π

σ
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