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Abstract: This paper deals with the optimal and safe operation of jacketed tubular reactors.
Despite the existence of advanced distributed controllers, optimal steady-state reference profiles
to be tracked are often unknown. In Logist et al. [2008], a procedure which combines analytical
and numerical optimal control techniques, has been proposed for deriving optimal analytical
(and thus generic) references, and it has been illustrated for plug flow reactors. The aim of
this paper is to illustrate the general applicability of this procedure by allowing dispersion. As
dispersion significantly complicates a possible solution process (due to second-order derivatives
and split boundary conditions), hardly any generic results are known. Nevertheless, the
dispersive plug flow reactor model is important for practice, since varying the dispersion level
allows to mimic an entire reactor range, i.e., from plug flow to perfectly mixed reactors. As an
example a jacketed tubular reactor in which an exothermic irreversible first-order reaction takes
place is adopted. It is shown that the procedure yields generic reference solutions for (i) three
different cost criteria, and (ii) different dispersion levels.

1. INTRODUCTION

Although advanced, distributed tracking controllers for
tubular reactors exist (e.g., Christofides and Daoutidis
[1998], Christofides [1998], Dubljevic and Christofides
[2006]), the optimal steady-state references that have to be
followed are often unknown. Optimal control techniques
have shown to be able to provide such references (e.g.,
Ramagopal et al. [1983], Szwast and Sieniutycz [2001]).
However, most references are computed solely numerically,
i.e., without extracting generic and case independent infor-
mation. Moreover, plug flow reactors have mainly been fo-
cussed on, and dispersion has been neglected. This scarcity
of generic results for dispersive reactors is not surprising
since the second-order terms and split boundary conditions
significantly complicate the situation.

The generic analytical results obtained by Smets et al.
[2002] for plug flow reactors have lead to a general pro-
cedure (Logist et al. [2008]), which allows the derivation
of generic profiles based on a combination of analytical
and numerical optimal control techniques. First, the set of
possible arcs is calculated analytically. Second, an approx-
imate solution is computed based on a piecewise constant
representation. Afterwards, the optimal sequence of arcs
is identified. Finally, the analytical arcs and the optimal
sequence are combined in an analytical parameterisation
of which only the switching positions have to be optimised.

The aim of the current paper is to illustrate the general
character of the procedure by determining optimal and
generic reference profiles for (i) an entire range of reac-

Fig. 1. Schematic view of a jacketed tubular reactor.

tors with dispersion, and (ii) for different cost criteria.
Section 2 formulates the optimisation problem mathemat-
ically. Section 3 briefly recalls the general procedure by
Logist et al. [2008], while Section 4 presents the results.
Section 5 finally summarises the main conclusions.

2. PROBLEM FORMULATION

2.1 Reactor model

The reactor under study is a classic tubular reactor (Fig. 1)
in which an exothermic, irreversible, first-order reaction
takes place. To remove the heat a surrounding jacket is
present. When assuming (i) axial dispersion, (ii) steady-
state conditions, and (iii) an Arrhenius law dependence
of the reaction rate on the temperature, the reactor
is described by the following second-order differential
equations with respect to the spatial coordinate z [m]:

d2x1

dz2
=

v

DC

dx1

dz
−

α

DC

(1 − x1)e
γx2
1+x2 (1)

d2x2

dz2
=

v

DT

dx2

dz
−
αδ

DT

(1 − x1)e
γx2
1+x2 −

β

DT

(u− x2) (2)
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subject to the Danckwerts boundary conditions (Danckw-
erts [1953]):

DC

dx1

dz
= vx1 and DT

dx2

dz
= vx2 at z = 0

dx1

dz
= 0 and

dx2

dz
= 0 at z = L

(3)

with x1 = (Cin −C)/Cin, the dimensionless concentration
C [mole · L−1], x2 = (T − Tin)/Tin, the dimensionless
reactor temperature T [K], and u = (Tw − Tin)/Tin,
the dimensionless jacket temperature Tw [K], respectively.
Since the jacket temperature Tw is not only often used
in practice to control the reactor, but has also been
shown to yield to most accurate references (Logist et al.
[2008]), this variable is selected as the control profile u(z)
to be optimised. v [m/s] represents the fluid superficial
velocity, while DC [m2/s] and DT [m2/s] are the mass and
energy dispersion coefficients. By varying the dispersion
coefficients from 0 to ∞ in this dispersive plug flow
reactor (DPFR) model, behaviour ranging from a pure
plug flow reactor (PFR) to a perfectly mixed continuous
stirred tank reactor (CSTR) can be induced. In practice
however, the level of dispersion is most often indicated by
the dimensionless mass and energy Peclet numbers, i.e.,
PeC = vL/DC [-], and PeT = vL/DT [-]. The constants
α, β, γ, and δ are defined as follows:

α = k0e
−E

RTin , β =
4h

ρCpd
, γ =

E

RTin

, δ = −
∆H

ρCp

Cin

Tin

,

with ∆H [J · kmole−1] the heat of reaction (∆H < 0 for
an exothermic reaction), and ρ [kg · m−3], Cp [J · kg−1

· K−1], k0 [s−1], E [J · mole−1], R [J · mole−1 · K−1], h
[W · m−2 · K−1], and d [m], the fluid density, the specific
heat, the kinetic constant, the activation energy, the ideal
gas constant, the heat transfer coefficient, and the reactor
diameter, respectively.

2.2 Cost criteria

Three different cost criteria are investigated which all
involve a trade-off between a conversion cost and an energy
cost. The conversion cost is measured by the reactant
concentration at the outlet Cin(1 − x1(L)). The different
energy costs correspond to (i) the terminal heat loss,
(ii) the penalisation of excessive reactor temperatures
or hot-spots (which may cause side-reactions or catalyst
decay), and (iii) the amount of heat exchanged between
the reactor and its jacket, respectively. This yields the
following three possible cost criteria:

JTC = (1 −A)Cin(1 − x1(L)) +A
T 2

in

K1
x2

2(L) (4)

JTIC1 = (1 −A)Cin(1 − x1(L)) +A

L∫

0

T 2
in

K2
x2

2dz (5)

JTIC2 = (1 −A)Cin(1 − x1(L)) +A

L∫

0

β

K3L
(u− x2)dz (6)

with A [-] a trade-off coefficient ranging from zero to one,
and K1 [K2 L/mole], K2 [K2 L/mole], and K3 [L/mole]

scaling factors, equal to 250000, 250000, and 30, respec-
tively. The first two criteria originate from Smets et al.
[2002], where they have been optimised for a plug flow
reactor. The third criterion is new, and has a significant
real-life value since it accounts for the reactor’s net energy
consumption.

2.3 Constraints

In order to avoid hazardous situations explicit bounds are
imposed on the reactor and the jacket temperature.

x2,min ≤ x2(z)≤ x2,max (7)

umin ≤ u(z) ≤ umax (8)

3. GENERAL PROCEDURE

3.1 Optimal control formulation

To derive optimal profiles the problem is cast into the
optimal control framework (e.g., Kirk [1970]).

min
u(z), z∈[0,L]

J = h[x(L)]
︸ ︷︷ ︸

Terminal cost

+

L∫

0

g[x(z), u(z)]dz

︸ ︷︷ ︸

Integral cost

, (9)

subject to the system equations for the states x:

dx

dz
= f [x(z), u(z)] (10)

the boundary conditions:

0 = I[x(0)] (11)

0 = S[x(L)], (12)

and the path constraints on the states and control:

0≥C1[x(z)] (13)

0≥C2[u(z)]. (14)

The first-order necessary conditions for optimality are
known as Pontryagin’s Minimum Principle (e.g., Kirk
[1970]), and involve the minimisation of a Hamiltonian:

min
u(z), z∈[0,L]

H= λT f [x(z), u(z)] + g[x(z), u(z)]

+µT
1 C1[x(z)] + µT

2 C2[u(z)] (15)

where λ(z) 6= 0, µ1(z) ≥ 0, and µ2(z) ≥ 0 are vectors of
Lagrange multipliers for the state equations and the path
constraints, respectively. In literature, the vector λ is often
called the vector of costates. The Lagrange multipliers
µ1 and µ2 are strictly positive when the corresponding
inequality constraint is active, and zero otherwise.

Typically, an optimal solution consists of one or more dif-
ferent intervals (or arcs). Within each interval the control
is continuous and differentiable, whereas discontinuities
are allowed at the interval borders or switching points.
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3.2 Solution procedure

The solution procedure presented in Logist et al. [2008],
allows to obtain analytical and generic profiles. Hereto,
both analytical and numerical optimal control techniques
are combined in four successive steps.

Step 1: Analytical derivation. First, analytical expres-
sions for all possible optimal arcs are calculated based on
indirect optimal control techniques (Kirk [1970], Srinivasan
et al. [2003]). Analytical expressions for a control at its
lower or upper bound are readily obtained, i.e., u(z) =
umin and u(z) = umax. The control u(z) = upath to keep a
state constraint C1,i active is found by repeatedly differen-
tiating the active constraint with respect to the indepen-
dent variable z: dkC1,i[x(z)]/dzk = 0, and replacing the
derivatives by the system equations dx/dz = f [x(z), u(z)]
until the control u appears explicitly. All previous deriva-
tives (i.e., from 0 zero to k−1) constitute the tangency con-
ditions, which also have to be fulfilled. To check whether
a control inside the feasible region u(z) = uinside (i.e.,
when no state or control constraint is active) is possible,
and to obtain its analytical expression, the costates λ
have to be eliminated from the necessary conditions of
optimality. When the Hamiltonian is affine in the control
u, i.e., H = ψ+φu, this elimination can be done explicitly
by repeatedly differentiating φ = 0 with respect to z, and
each time substituting the state and the costate derivatives
by the system equations dx/dz = f [x(z), u(z), z] and the
costate equations dλ/dz = −∂H/∂x, until the control
u appears explicitly (see, e.g., Smets et al. [2002] for an
example). In this case uinside is often called a singular
control arc using. For a non-affine Hamiltonian, the costate
elimination has to be performed implicitly using a deter-
minant criterion (see, e.g., Srinivasan et al. [2003] for more
details and Logist et al. [2008] for an example), which is
more general, but involves more tedious calculations.

Step 2: Approximate numerical computation. Second,
approximate piecewise constant optimal control profiles
are determined numerically using the software package
MUSCOD-II (Leineweber et al. [2003]), which implements
a direct multiple shooting approach. Here, a uniform con-
trol parameterisation with 50 pieces is employed. Although
apparently simple, the DPFR model challenges the multi-
ple shooting algorithm due to the second-order dispersion
terms (Kub́ıček and Hlaváček [1983]).

Step 3: Arc sequence identification. In a third step,
the optimal sequence present in the numerically obtained
optimal control profile is identified by visual inspection.
This human intervention is, however, not a restriction
as an automated identification procedure (Schlegel and
Marquardt [2006]) can also be employed.

Step 4: Exact computation with an analytical parameter-
isation. Based on the identified optimal sequence, the
control parameterisation is each time refined using the
analytical expressions found in the first step. This ana-
lytical parameterisation approach then leads in a fourth
step to a low dimensional optimisation problem with the
switching positions between the different intervals as de-
cision variables. These optimisations are again solved in
MUSCOD-II. The resulting control profiles now provide

Table 1. Process parameters.

Cin = 0.02 mole · L−1 Tmax = 400 K
E = 47092.5 J · mole−1 Tw,min = 280 K
k0 = 106 s−1 Tw,min = 400 K
L = 1 m v = 0.1 m · s−1

Tin = 340 K β = 0.2 s−1

Tmin = 280 K δ = 0.25 [-]

the exact solution to the optimal control problem, since the
optimal analytical relations are exploited. Alternatively,
after having identified the optimal sequence, Schlegel and
Marquardt [2006] have optimised analytical parameterisa-
tions employing low-dimensional piecewise linear instead
of the optimal analytical expressions. This approach obvi-
ously introduces approximation errors but allows to deal
also with large-scale systems.

4. RESULTS

This section discusses the results when the general pro-
cedure is applied to the three different cost criteria for
different dispersion levels. As mass and heat dispersion are
often in the same order of magnitude, equal mass and heat
dispersion is assumed, indicated by a single Peclet number
Pe. The remaining parameter values originate from Smets
et al. [2002], and are summarised in Table 1.

To fit into the optimal control framework mentioned
above, the second-order reactor model (1) and (2) has to be
adapted by introducing the gradients of the dimensionless
concentration and temperature as additional state vari-
ables x3 = dx1/dz and x4 = dx2/dz, in order to obtain
the following system of first-order differential equations:

dx1

dz
= x3 (16)

dx2

dz
= x4 (17)

dx3

dz
=

v

DC

x3 −
α

DC

(1 − x1)e
γx2
1+x2 (18)

dx4

dz
=

v

DT

x4 −
αδ

DT

(1 − x1)e
γx2
1+x2 −

β

DT

(u− x2) (19)

and corresponding boundary conditions:

DCx3 = vx1 and DTx4 = vx2 at z = 0
x3 = 0 and x4 = 0 at z = L.

(20)

4.1 Step 1: analytical results

As mentioned, step 1 consists of deriving all possible
optimal arcs. Since the constraints (7) and (8) apply
to all three cost criteria, the arcs resulting from active
constraints are the same for all three cases: umin, umax,

and upath = x2 − αδ
β

(1 − x1)e
γx2
1+x2 . Here, the first two

originate directly from the control bounds, while the latter
is found after two differentiations of the state constraint
(7). Apart from being at a bound (x2,min or x2,max), also
the tangency condition from the first constraint derivative
has to be satisfied, i.e., x4 = 0. This condition is intuitive,
as on a maximum/minimum reactor temperature interval
the temperature gradient has to equal zero.

To check the possibility of arcs inside the feasible region,
the Hamiltonians for all three criteria have to be con-
structed. Because the system is affine in the control u, and

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12925



Table 2. Analytical relations for the different cost criteria.

Control Criterion JTC Criterion JTIC1 Criterion JTIC2

At control bounds (8) umin(z) umin = (Tw,min − Tin)/Tin

umax(z) umax = (Tw,max − Tin)/Tin

At state bounds (7) upath(z) x2 −

αδ
β

(1 − x1)e
γx2
1+x2 with x4 = 0

@ x2,min = (Tmin − Tin)/Tin or @ x2,max = (Tmax − Tin)/Tin

Inside feasible region uinside(z) impossible Equation (21) impossible

this control appears at most affinely in an integral cost,
all Hamiltonians are also affine in this variable. Hence, the
elimination of the costates can be performed explicitly. For
brevity, the symbolic calculations have been omitted, and
only the results are presented in Table 2. Apparently, an
arc inside the feasible region is impossible for the criterion
JTC since this would require all costates to be identically
equal to zero, which is prohibited. The second criterion
JTIC1 on the other hand, does yield an explicit relation for
a control arc inside the feasible region:

uinside = x2 −
αδ

β
(1 − x1)e

γx2
1+x2 −

DT

β

{

−
v

DT

x4

+2

(
γ

(1 + x2)2
−

2

1 + x2

)

x2
4 −

v

DC

x4 − 2
x3x4

1 − x1

+

[

− 2
x2x

2
3

(1 − x1)2
− 2

v

DC

x2x3

1 − x1
+ 2

α

DC

e
γx2
1+x2 x2

+x2x
2
4

(
γ2

(1 + x2)4
−

6γ

(1 + x2)3
+

6

(1 + x2)2

) ]

·

[

1 − x2

(
γ

(1 + x2)2
−

2

1 + x2

)]−1
}

(21)

Finally, for the third criterion JTIC2, the elimination
procedure does not provide a relation for a control inside
the feasible region, since it results in the identity 0 = 0.

4.2 Step 2, 3 and 4: numerical results

In a second and a third step, the piecewise constant
control is optimised, and the optimal arc sequence is
identified. Finally, the switching positions of an analytical
parameterisation based on the analytical relations and
the optimal sequence, are optimised to yield the exact
optimal solution. With a trade-off value A equal to 0.5, the
resulting optimal concentration C, reactor temperature T ,
and jacket fluid temperature Tw profiles are each time
displayed in Figs 2, 3, and 4 for the three criteria. The
effect of dispersion is indicated by the Peclet number Pe.

Criterion JTC. When looking at the criterion JTC

(Fig 2), trapezoidal reactor temperature profiles appear
to be optimal for high Peclet values (e.g., Pe = 100). This
behaviour is similar to that of a plug flow reactor. The
generic explanation is that the reactor has to be heated as
fast as possible, until the upper temperature limit of 400 K
is reached. Then, this temperature is maintained for a
certain length, and finally it is lowered towards the outlet.
The first two phases are intended to increase conversion,
whereas the latter decreases the terminal heat loss. The

resulting control sequences are umax−umin−upath−umax−
umin. Here, the first min part is required because the
path constrained arc cannot be entered directly, since this
would require a control value beneath the lower bound.
The second max part on the other hand, induces a negative
gradient which has be brought to zero at the outlet.

Increasing the level of dispersion (i.e., decreasing the
Peclet number) has two effects. First, the profiles are
smoothed, and second, the differences between the feed
values Cin = 0.02 mole/L and Tin = 340 K, and the
inlet values C(z = 0) and T (z = 0) increase due to the
Danckwerts boundary conditions. For low Peclet numbers
(e.g., Pe = 1), the behaviour approximates that of a
perfectly mixed CSTR. For these situations the upper
reactor limit is not reached anymore, and the optimal
control is of the umax − umin type.
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Fig. 2. Criterion JTC : Optimal profiles for different Peclet
numbers: concentration C (top), reactor temperature
T (middle), and jacket temperature Tw (bottom).
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Fig. 3. Criterion JTIC1: Optimal profiles for different Peclet
numbers: concentration C (top), reactor temperature
T (middle), and jacket temperature Tw (bottom).

Criterion JTIC1. A similar analysis is possible for the
criterion JTIC1. Here, for high Peclet values (e.g., Pe =
100) the reactor temperature has to be brought to an
intermediate level, which has to be kept constant for a
certain length. Then, towards the outlet the temperature
is raised again, until the upper bound is attained. The
explanation is that in the first part the temperature is
limited by the penalisation of high temperatures, whereas
towards the end, an additional temperature rise is allowed
to increase conversion. Increasing dispersion increases the
intermediate temperature level, but reduces the second
temperature rise. Finally, for low Peclet values the entire
profile levels to the constant value that is also encountered
in a CSTR. The control sequences encountered are more
complex, and exhibit an arc inside the feasible region for
high Peclet values (e,g., Pe = 100). For low Peclet values
(e.g., Pe = 1), however, this arc disappears.

Criterion JTIC2. For this criterion, similar trapezoidal
temperature profiles as for JTC are obtained. Again, the
temperature is first increased as fast as possible by supply-
ing heat in order to stimulate conversion. When the upper
temperature limit is reached, this value is maintained.
Here, conversion is increased, while the energy cost is
lowered because heat is extracted. Finally, additional heat
is extracted by cooling towards the outlet. However, when
dispersion is increased, higher reactor temperatures are
observed in order to counter the decreased conversion rate
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Fig. 4. Criterion JTIC2: Optimal profiles for different Peclet
numbers: concentration C (top), reactor temperature
T (middle), and jacket temperature Tw (bottom)

due to mixing effects. The control sequence is also similar
to that of the first criterion: umax−umin −upath−umax−
umin. Here, the first min part vanishes for low Peclet
values.

Total cost values. The above mentioned procedure has
been repeated for a range of trade-off values A, and the re-
sulting total cost values for all three criteria are depicted in
Fig. 5. Here, low A-values emphasise conversion, whereas
high A-values penalise energy costs. Clearly, for all criteria
and all trade-off values, dispersion is undesired as it causes
an increase in the total cost.

5. CONCLUSIONS

In this paper generic optimal temperature profiles have
been derived for the dispersive plug flow reactor model.
By varying the dispersion coefficient reactors ranging from
perfectly mixed CSTRs to pure PFRs have been investi-
gated. Despite the increased complexity due to the second-
order terms and split Danckwerts boundary conditions, the
four step procedure introduced in Logist et al. [2008] for
plug flow reactors, has been shown to be still applicable.
Hereto, the set of possible optimal control arcs is first
derived analytically. Second, an approximate piecewise
constant optimal profile is computed numerically. From
this approximation the optimal control arc sequence is
identified in a third step. Employing this optimal sequence

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12927



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−3

Trade−off coefficient A [−]

T
o

ta
l 
c
o

s
t 

J
T

C
 [

−
]

 

 

Pe ↑

CSTR

Pe = 0.1
Pe = 1

Pe = 2

Pe = 10
Pe = 100

PFR

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

−3

Trade−off coefficient A [−]

T
o

ta
l 
c
o

s
t 

J
T

IC
1

 [
−

]

 

 

Pe ↑

CSTR

Pe = 0.1
Pe = 1

Pe = 2

Pe = 10
Pe = 100

PFR

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

−3

Trade−off coefficient A [−]

T
o
ta

l 
c
o
s
t 

J
T

IC
2
 [

−
]

 

 

Pe ↑

CSTR

Pe = 0.1
Pe = 1

Pe = 2

Pe = 10
Pe = 100

PFR

Fig. 5. Total cost values for different trade-off values and
Peclet numbers: JTC (top), JTIC1 (middle), and JTIC2

(bottom).

and the analytical expressions, results in an analytical
parameterisation, where only the switching positions have
to be optimised.

Results for the class of reactors have been presented for
three cost criteria, which all involve a trade-off between
a conversion and an energy cost. Each time the optimal
reference profiles have been interpreted chemically, and
generic knowledge has been inferred.

For the first and the third criterion trapezoidal reactor
temperature profiles have been found to be optimal. Here,
the temperature is increased until the upper limit is
reached, then this temperature has to be kept constant
for a certain interval, before decreasing again towards the
outlet. The first two phases mainly stimulate conversion
whereas the last reduces the energy cost. For the second
criterion, it is important to maintain a more or less
constant intermediate reactor temperature, which may
be increased towards the end. This intermediate value

limits the energy cost, whereas the possible additional
temperature rise induces a conversion boost.

Although dispersion has a smoothing effect, the generic
features remain the same. Hence, all these generic profile
features can serve as references for distributed tracking
controllers. In addition, a gradual evolution of the total
cost values has been observed towards the two extremes,
i.e., the PFR and the CSTR. However, dispersion is
undesired as it induces higher cost values.
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