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Abstract: River power plants are important contributors to the over 19% of world electricity
produced by hydro-electric plants. Built in the natural course of a river, they produce energy by
manipulating the water discharge through their facilities. They therefore introduce fluctuations
in the river’s natural water level and flow, which might conflict with various constraints imposed
for environmental and operational purposes. Motivated by these issues, we present in this
paper the application of Model Predictive Control for regulating the turbine discharge of river
power plants, taking into account environmental, navigational and economical constraints and
limitations. Large disturbances caused by the operation of locks are particularly investigated, as
well as the issue of reducing abrasion by keeping the frequency of turbine discharge adjustments
modest.
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1. INTRODUCTION

Hydroelectric power plants are constructions built into
the natural course of a river to generate electrical energy.
By manipulating the water flow through their facilities
(turbines and weirs), the power plants affect the river’s
natural water level and flow. Unless the power plants are
controlled properly, excessive variations in flow and level
can result, which may have an adverse impact on the
flora and fauna within the river and at the riverbank.
Additionally, water discharge variations are unfavorable
for navigation. The authorities thus require the turbines to
be manipulated such that a specified water level upstream
each power plant – the so-called concession level – is kept
close to a predefined reference value and within specified
bounds while keeping the changes in the discharge modest.

If a river is used for navigation, it is usually equipped with
locks for the ships to by-pass the power plants. When the
locks are in operation, up to 50% of the water by-passes
the turbines and flows through the lock branches. Lock
operations thus induce significant discharge variations and
water level deviations that have to be compensated for by
adjusting the water flow through the turbines of the power
plants appropriately. However, frequent altering of the
turbine discharges leads to turbine wear out and increases
the risk of damaging the turbine blades.

Currently, the most common control scheme employed
in practise to cope with these challenges comprises a PI
controller with disturbance feed-forward installed on each
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individual power plant. Often, a dead band is added at
the output of each controller to reduce the amount of
control moves executed by the power plant equipment. The
parameter tuning of the PI controllers is demanding due
to the contradictory control objectives, and furthermore,
since there is little or even no coordination and exchange of
information between the power plants, natural discharge
fluctuations are often amplified considerably as they prop-
agate through the cascade.

In the literature, a number of different approaches have
been investigated, see v. Siebenthal et al. (2005) for a
thorough overview of similar control problems and the
solutions considered. In the latter work, Model Predictive
Control (MPC) was applied to a cascade of five hydroelec-
tric power plants situated in the river Aare, Switzerland.
The supervisory MPC controller achieved significantly
better damping of discharge variations than the local PI
controllers used in practice and demonstrated the benefits
of coordination between the control actions of the different
power plants.

In the paper at hand, we extend this method and apply
MPC to a cascade of power plants situated along a river
that is heavily used for navigation. The latter fact implies
that additional (and frequent) disturbances are introduced
in the control problem due to the significant amount
of water that is drawn out of or into the river every
time the locks are in operation. The problem is further
complicated by the scarcity of available measurements and
the slow dynamics of the river flow. Here, we analyze the
effects of these disturbances on the control performance
and demonstrate potential benefits that could be achieved
if information regarding anticipated lock operations were
made available to such a supervisory control scheme.

Furthermore, the restriction of the amount of applied
control moves is also considered explicitly as a control ob-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 11978 10.3182/20080706-5-KR-1001.3011



z

W (z, t)

P (z, t)

S(z, t)

H(z, t)

Q(z, t)

W (z, t): width at river surface

P (z, t): wetted perimeter

S(z, t): wetted cross section area

H(z, t): water depth

Q(z, t): discharge

Fig. 1. River cross section parameters

jective in the controller design. This constraint requires the
inclusion of logic statements in the control model. Binary
variables are introduced in the model equations, rendering
the resulting control problem even more challenging. In
the sequel, we investigate the complexity introduced by
such an extension and present solution heuristics that
can provide the desired performance while maintaining an
affordable computational complexity.

2. MODELING

2.1 Physical Model

The nonlinear, first-order system of partial differential
equations of de Saint-Venant (1871) represent the state of
the art for modeling one-dimensional river hydraulics with
constant fluid density, see Hervouet (2007). The hydraulic
state of the river is described by two variables: the water
depth H(z, t) and the discharge Q(z, t), both varying as
a function of space z and time t. The river dynamics are
expressed by

∂Q

∂z
+

∂S

∂t
= 0. (1a)
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The first Saint Venant equation (1a) originates from
the conservation of mass principle while the second equa-
tion (1b) results from the conservation of momentum. The
gravitational constant is denoted by g, I0 is the slope of
the river bottom along z and If refers to the so-called
friction slope. All other parameters are derived from the
river geometry as shown in Figure 1.

2.2 Model of a Single River Reach

The complete system to be modeled is a river containing
five river power plants which divide the river into four
reaches. The connections between the reaches are the
discharges through the turbines and the locks. Apart from
these connections, the hydraulic state of each river reach
is independent from the state of the others and each river
reach can therefore be modeled separately. For modeling,
the inputs of the system are the discharges through up
and downstream turbines and locks while its output is the
concession level. The Saint Venant equations are simplified
to obtain a linear discrete-time state space model for each
single river reach. We mainly follow Chapuis (1998). A
detailed description of the modeling approach can also be
found in v. Siebenthal and Glanzmann (2004).
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Fig. 2. Division of the river into level and discharge cross
sections, lock disturbances modeled as lateral flows

Linearization and Discretization: The system (1a) and
(1b) is linearized around an operating point H0(z) and
Q0(z) and discretized in time and space. The result is
a discrete-time model for each river reach i (with lock
disturbances still disregarded) of the form

x[i] (k + 1) = A[i]x[i](k) + B[i]u[i](k) + B
[i]
d d[i](k)

y[i](k) = Cx[i](k) = h[i]
c (k) (2)

with the state vector x[i], the input vector u[i] and the
disturbance vector d[i] according to
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,

u[i](k) = [qout(k)] ,

d[i](k) = [qin(k)] ,

for i = 1 . . . 4.

(3)

The matrices A[i], B[i] and B
[i]
d are obtained from topo-

graphic river data as well as from the considered operating
point. The state vector x[i] consists of alternating water
levels and discharges (hj and qj+1 respectively) at different
cross sections j, shown in Figure 2. For each river reach,
C [i] selects the water level at the cross section closest to
the measured level, i.e. the concession level h

[i]
c .

Incorporating Lateral Flows: In this work, not only
disturbances coming from power plants further upstream
need to be considered, but also additional disturbances due
to lock operations. Since the time delay until a disturbance
caused by a lock operation reaches the natural river is
short, the lock disturbances are incorporated as instanta-
neous lateral in- and outflows qlat,1 and qlat,2, as depicted
in Figure 2. To add lateral in- and outflows, the model
(2) is augmented by changing the state update equation
for the cross sections in the neighbourhood of a junction
of a lock branch and the natural river accordingly (see
v. Siebenthal and Glanzmann (2004)) and by adding the
lateral in- and outflows qlat,1 and qlat,2 to the disturbance

vector d[i].

2.3 Model of the Entire Cascade

Figure 3 shows the segmentation of the power plant cas-
cade into four reaches. For each reach, an affine discrete-
time state space model (2) is derived as described above.
Since one of the control objectives consists in minimizing
the changes in the turbine discharges, we rewrite the state
space representation into a ∆u-formulation. The concate-
nation of the four models leads to a model for the entire
power plant cascade
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Fig. 3. States and inputs for the power plant cascade

x (k + 1) = Ax (k) + B∆u (k) + Bdd(k),

= Ax (k) + B∆u (k) + f(k), (4)

y (k) = Cx (k) =
[

h[1]
c (k) h[2]

c (k) h[3]
c (k) h[4]

c (k)
]T

,

with h
[i]
c denoting the deviations of the concession levels

from their reference values and f being the affine part
of the system. The vector ∆u contains the changes in the
turbine discharges of the four controlled power plants. The
disturbance vector d consists of the lateral in- and outflows
caused by lock operations q

[1]
lat,1, . . . , q

[4]
lat,2 as well as of the

uncontrolled turbine discharge qin of the upstream power
plant P0. The state vector of the entire cascade is defined
as
x(k) =

[

x[1](k), q
[1]
turb

(k − 1), x[2](k), . . . , x[4](k), q
[4]
turb

(k − 1)
]T

with x[i] being the state vector of the river reach i contain-
ing water levels and discharges, as denoted in 3. The tur-
bine discharges of the controlled power plants are denoted

by q
[i]
turb.

3. CONTROL

3.1 Control Problem

The inflow and lock disturbances affect the water levels
and the discharges of the river. By changing the turbine
discharges at the end of each of the four reaches, the wa-
ter levels are regulated. Hence, the manipulated variables
comprise the turbine discharge changes of the four power
plants P1 - P4. As indicated in (4), the controlled variables
are the four concession level deviations.
The control objectives for the controller design problem
are threefold. We aim at minimizing a) the deviations
of the concession levels from their reference values, b)
the turbine discharge variations and c) the amount of
control moves, i.e. the number of applied turbine discharge
changes. Due to the contradictory nature of the control
objectives - e.g. a certain deviation of the concession
levels has to be accepted so that the fluctuation in the
discharges is kept modest and the amount of control moves
small - the plant behavior will result from a compromise
between the performance of the concession levels and the
turbine discharge variations. Furthermore, constraints on
the concession level deviations and the turbine discharges
must be respected. These are time-invariant environmental
and navigational constraints on the concession level devi-
ations, economical restrictions on the lower boundary and
physical constraints on the upper boundary of the turbine
discharges. Additionally, the rate of change in the turbine
discharges is limited.

3.2 Model Predictive Control

The control approach employed in this work is Model
Predictive Control (MPC) (see Maciejowski (2001)). An
internal model of the plant is used to predict the evolution
of the system’s state over a prediction horizon. For the
chosen horizon, the optimal sequence of future control
moves is computed by minimizing a cost function subject
to the constraints. Thereof, only the first control move
of the optimal control sequence is applied. At the next
time step, the optimization process is repeated from the
new initial state by taking actual measurement data into
account. A new input sequence is thus determined over
the shifted prediction horizon. This process, referred to
as the Receding Horizon Policy, is repeatedly applied and
introduces feedback in the MPC scheme.

3.3 Control of the Power Plant Cascade

We start with a discussion on realizing a control scheme
considering only the first two objectives of minimizing the
concession level deviations and the turbine discharge varia-
tions. This can be achieved using optimization techniques
which only involve continuous variables. The third con-
trol objective is of a different nature and requires binary
variables rendering the control problem more complex as
shown in Section 3.4.
The internal model used in this work is an affine discrete-
time model given by (4). The control objectives are to
minimize the manipulated variables ∆u and to keep the
concession level deviations close to their reference.

The constraints on the states and the inputs are defined by
linear inequalities where the constraints on the concession
level deviations, the turbine discharges and the turbine
discharge changes per minute are given by

hc,min ≤ h[i]
c ≤ hc,max for i = 1, . . . , 4

qturb,min ≤ q
[i]
turb ≤ qturb,max

∆umin ≤∆q
[i]
turb ≤ ∆umax. (5)

Due to the presence of constraints, the optimization prob-
lem may become infeasible. Although physical constraints
cannot be relaxed, operational constraints such as the con-
straints on the concession level deviations, can be softened.
As long as the concession level deviations are within a
particular preferred zone, higher priority is given to damp-
ing the - high frequent - discharge variations. Beyond the
preferred zone, the deviation is further categorized into
the emergency zone which shall be avoided as much as
possible. By introducing slack variables for the preferred
zone, the constraints on the concession level deviations

h
[i]
c , i = 1, . . . , 4 are relaxed in the form of soft constraints,

see Heinrich and Setz (2006) for the formulation details.

The objectives of the control problem and the soft con-
straints are mathematically formulated in a quadratic cost
function calculated over the horizon N,

JN (x(0|t),∆UN ) = (6)
N

∑

k=1

xT (k|t)Qx(k|t) +

N−1
∑

k=0

∆uT (k|t)R∆u(k|t).
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Heuristic # binary variables Ht pt

per plant

Int. dead band 2N {0, . . . , N − 1} N

A ∼ log2 N ∅ 1

B 2 {0} N

C ∼ log2 N {0} 1

Table 1. Overview of the employed heuristics
and their characteristics.

The cost JN is a function of the initial state x(0|t)
at time t and the sequence of control inputs ∆UN =
[∆uT (0|t), . . . ,∆uT (N − 1|t)]T . The weight matrices Q
and R penalize the deviations of the states and inputs
from the origin. The cost function (6) is augmented appro-
priately for the incorporation of slack variables and their
weight matrices chosen such that the cost is substantially
increased when a violation of the soft constraints occurs.

The optimal input sequence is retrieved by solving the
optimization problem

J∗

N (x(0|t)) = min
∆UN

JN (x(0|t),∆UN ) (7)

subject to (4) and (5). This optimal control problem
is formulated as a standard QP (Quadratic Program)
for which efficient solvers exist. Online optimization is
used where the optimal control sequence is computed and
the first control move applied according to the receding
horizon policy.

3.4 Control of the Cascade with Reduced Number of
Control Moves

The minimization of the amount of control moves per
day and per turbine is harder to achieve without signif-
icantly deteriorating the performance. In order to lessen
the amount of controller actions, a heuristic in the form of
a dead band is employed in practice where only a discharge
variation with an absolute value above ∆qdband is allowed
to be applied to the system. By making use of the pre-
dictive feature of MPC, the dead band can be considered
within the controller and is included in the optimization
process. For the present time step ∆qturb(0|t) as well as for
the predicted system inputs ∆qturb(k|t), k = 1, . . . , N − 1,
the restrictions |∆qturb| ≥ ∆qdband or ∆qturb = 0 are taken
into account for each river reach.

The internal dead band of each powerplant is modeled
by the following constraint inequalities using two binary
variables δ1 and δ2 such that

∆qturb ≥∆qdband · δ1 + ∆umin · δ2

∆qturb ≤−∆qdband · δ2 + ∆umax · δ1

1≥ δ1 + δ2. (8)

The optimal control problem is thus augmented and de-
scribed by (7) s.t. (4), (5) and (8) using the so-called MLD
formulation, Bemporad and Morari (1999).

Integrating the internal dead band into the controller
for each control move within the prediction horizon may
amount to an excessive computation time and memory re-
quirements for the optimization problem. This is due to the
introduction of new binary variables for each power plant

and control move within the horizon. In order to obtain
a relaxation of the original problem, other heuristics are
applied. Mixed-integer inequalities are implemented with
less complex logical conditions still forcing the number of
control moves to decrease.
In the following, three heuristics are introduced. Let us
denote with

Ht =
{

k ∈
{

0, . . . , N − 1
}

∣

∣

∣
|∆qturb(k|t)|

!
≥∆qdband or

∆qturb(k|t)
!
=0

}

. (9)

the set of indices of all the control moves within the horizon
N for each power plant on which the dead band constraint
is taken into account at time t. Additionally, the variable
pt is defined, denoting the number of allowed control
moves during the prediction horizon for each plant. The
characteristics of the employed heuristics are summarized
in Table 1.

In the first Heuristic A, only one control move per turbine
during the prediction horizon is permitted in order to
reduce the amount of control moves but at the same time
allowing a good performance by not restricting the input
values (thus Ht = ∅ and pt = 1). This requires the use of
a single integer variable for each power plant.
However, applying the constraint pt = 1 does not guaran-
tee only one move every N time steps due to the reced-
ing horizon policy. The computed optimal input sequence
∆qturb(k|t), k = 0, . . . , N−1, at each time step t is likely to
render the first control move ∆qturb(0|t) unequal to zero.
As a consequence, a rather high number of control moves
have been observed using Heuristic A.

In Heuristic B, the internal dead band (8) is implemented
only for the first control move of the optimal input
sequence in order to reduce the computational complexity.
By these means, the first move is selected only when
necessary. The control move restrictions are expressed as
Ht = {0} and pt = N . The first control move is expected to
be often set to zero since there is no value restriction on the
following control moves and no constraint on the amount
of control moves within the prediction horizon. This effect
drastically reduces the number of control moves, however
at the cost of a large decrease in performance.

Based on the benefits and the drawbacks of the above
heuristics, Heuristic C is derived which is a combination
of Heuristic A and Heuristic B profiting from the assets of
both. One control move is permitted during the prediction
horizon and the dead band is only applied if the first
control move within the horizon is selected. In order
to produce a lower cost when setting the first control
move ∆qturb(0|t) to zero, the dead band restrictions on
∆qturb(k|t), k = 1, . . . , N − 1 are lifted. The controller
setting is characterized by Ht = {0} and pt = 1.

For details regarding the comparison of the above heuris-
tics, see Heinrich and Setz (2006).

4. SIMULATION RESULTS

4.1 Simulation Setup

All investigated scenarios are performed at low water
flow where the mean discharge in the river is around
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40 m3/s, since the control task is most difficult in this
situation. In order to run closed-loop simulations for
different MPC controllers, the real power plant cascade is
replaced by a FLORIS 1 hydraulics software model, also
used to obtain the parameters of the internal model of
the MPC controller, as described in Section 2.3. Local PI
controllers with feed-forward and a dead band of 2.5 m3/s
are employed for comparison with MPC. The parameters
for the PI controllers are set according to the parameters
used in practice for the real power plant cascade.

An MPC sampling time of 6 minutes is chosen, and the
horizon N amounts to 25 time steps (2.5 hours). This
corresponds approximately to the propagation delay of
a disturbance traveling from the inflow of the cascade
to the last controlled power plant. A realistic scenario
of 48 hours was investigated. As disturbance entering at
the uncontrolled power plant, a sine wave with a period
of 24 hours and an amplitude of 12 m3/s, overlaid with
gaussian noise, was chosen as depicted in Figure 4. At
every controlled power plant as well as at the uncontrolled
power plant at the beginning of the cascade, locks operate
20 times a day between 5.00 a.m. and 10.00 p.m. with a
constant frequency. The discharge at a particular lock gate
during lock operation depends on the size of the lock. It
ranges from 12.8 to 23.12 m3/s.

4.2 Control of the Power Plant Cascade

Figures 5 and 6 show a comparison between the PI
controller and three MPC controllers. Figure 5 presents
the concession levels in the reaches three and four of the
four controlled power plants while Figure 6 shows the
corresponding turbine discharges. See Heinrich and Setz
(2006) for the results of the reaches one and two. All signals
are depicted as deviation from the operating point. The
two solid lines in Figure 5 represent the boundaries of the
preferred zone for the concession levels. The solid lines
in Figure 6 indicate the lower constraint on the turbine
discharges.

The MPC controller in the second row of Figure 5 and 6
represents an ideal case. There are no restrictions on the
amount of control moves and all information regarding
future disturbances is assumed to be available within the
prediction horizon. Since in reality there is only limited
information about the lock operations, we show in the
third row the performance of an MPC controller not using
any inflow or lock disturbance information.

The deviations of the concession levels, Figure 5, for both
MPC controllers are smaller than for the PI controller.
1 SCIETEC, developer and distributor of the river simulation soft-
ware FLORIS, http://www.scietec.at
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Fig. 5. Comparison of PI and MPC, concession levels
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However, for the controller not using any disturbance
anticipation, the concession levels are not kept inside the
preferred zone of ±2 cm. One reason is the lack of lock
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information. Incorporating lock disturbance information
significantly improves the performance of the MPC con-
troller. The concession levels are now kept within the
preferred zone for reach three while in the fourth reach,
the violations of the ±2 cm bounds are reduced. The latter
is a result of the small storage capacity of the fourth river
reach (the fourth reach is the shortest reach within the
considered cascade) and the proximity of the concession
level to the lateral outflow.

Regarding the discharges in Figure 6, both MPC con-
trollers achieve a better damping of the low-frequent vari-
ations induced by the inflow disturbance than the PI
controller. The damping of the high-frequent, lock induced
variations is comparable for MPC and PI control. Further-
more, the PI controller violates the lower constraint on the
turbine discharges while the MPC controllers respect it.
The high-frequent discharge variations for the MPC con-
troller incorporating disturbance anticipation are slightly
larger than for the MPC controller without disturbance
information in order to keep the concession levels within
the preferred zone.

4.3 Control of the Cascade with Reduced Number of
Control Moves

In the following, we comment on the simulation results for
the control of the power plant cascade with the aim to
reduce the number of applied control moves. The MPC
controller is based on Heuristic C derived in Section
3.4 and is compared with the PI controller to which an
external dead band is added.

Rows one and four of Figures 5 and 6 compare the PI
controller with the MPC controller based on Heuristic C.
For reasons of computation time, the horizon is chosen as
N = 15. In addition, the dead band of the MPC controller
has been incorporated adaptively in order to achieve
smaller limit cycles. The PI controller has slightly more
control moves and performs worse, especially regarding
the violation of the preferred zone boundaries. Contrary to
the PI controller, the economical lower constraint on the
turbine discharges is always obeyed by the MPC controller.

5. CONCLUSIONS

This paper presents a supervisory MPC scheme for a
cascade of five hydroelectric power plants. The main aim
is to keep the water level deviations small by manipulating
the turbine discharges in a coordinated fashion. Locks
facilitating navigation in the river introduce additional
disturbances that need to be coped with.
The control objective of minimizing the changes in the
water discharges through the turbines, while keeping the
water levels of the river within certain prespecified toler-
ance bounds is formulated mathematically. Based on this
formulation together with a first principles model of the
river an MPC controller is derived.
Subsequently, the problem is augmented by an additional
control objective, namely that of achieving the above
mentioned performance while keeping the number of the
applied changes in the turbine discharges modest in order
to avoid the excessive use of the equipment and therefore
their wearing out.

The mathematical expression of the latter objective re-
quires the introduction of binary variables in the con-
trol problem, which significantly increases its complexity.
Three heuristics using different move blocking strategies
are developed and evaluated in terms of the trade off
between the computational complexity and the achieved
performance. As the simulation results show, the intro-
duced MPC controller can achieve a significantly better
performance than the PI controller.
Moreover, the potential benefits of utilizing additional
information of anticipated future lock disturbances are
investigated and the achieved performance compared to
the one of the currently employed control scheme.

Ongoing work comprising the actual implementation of
the controller on the river will test the behavior of the
designed MPC controller in practice. Furthermore it will
be investigated how the control scheme scales up for longer
cascades comprising a larger number of power plants.
Distributed MPC implementations and robustness issues
will be considered as well.
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