
Control System Diagnosis Algorithm Optimization - the Combinatorial 

Entropy Approach  
 

Henryk Borowczyk 
 

Air Force Institute of Technology, 6 Ks. Boleslawa St., 01-494 Warsaw, Poland  

(e-mail: borowczyk@post.pl ) 

Abstract: This paper presents combinatorial measures of the system condition uncertainty (diagnostic 

entropy) and the diagnostic symptoms information. The multi-valued diagnostic model has been 

assumed. Proposed measures can be used for the diagnostic model analysis and the diagnosis algorithm 

optimization. Optimization method exploits indispensable symptoms at every stage of the optimization 

process providing minimum number of symptoms in diagnosis algorithm. 

 

1. INTRODUCTION 

One of the most important problem in technical diagnostics is 

the assessment of optimal set of symptoms. Applied 

optimization method depends on the form of diagnostic 

model (Blanke et. al., 2003, Jamsa-Jounela et. al., 2003, 

Kiencke and Nielsen, 2005) and optimization criterion. The 

diagnostic model describes relations between a system 

condition (the set of conditions and healthy condition) and 

diagnostic symptoms (Frank et. al., 2000; Iserman, 2004; 

Korbicz et. al., 2004; Lunze, 1998; Niziński and Michalski, 

2002). Recently, more attention is paid to the qualitative 

(approximate, multi-valued) models (Iserman, 2004; Korbicz 

et. al. 2004, Lunze, 1998, Borowczyk, 1984). Qualitative 

models can be applied to determine a diagnosis algorithm 

(Borowczyk, 1984), approximate inference within expert 

systems (Lee, 2000, Iserman, 2004), etc.  

One of the way of diagnosis algorithm assessment consists in 

applying the information-based analysis (Borowczyk, 1984; 

Młokosiewicz, 1985; de Kleer and Williams, 1987; 

Rosenhaus, 1996; Niziński and Michalski, 2002), i.e. 

description of the system condition uncertainty and amount 

of information delivered by means of individual symptoms 

and sets thereof. This aim can be reached with the Shannon-

introduced quantities: the entropy, and the amount of 

information (Shannon, 1948). 

There are some other kinds of entropies which can be 

considered – Renyi's entropy (Csiszár, 1974), structural α-

entropy (Havrda and Charvát, 1967), functions ( )z tα
 (Behara 

and Nath, 1973). Information measures characterization 

(from the information theory point of view) have been 

extensively discussed in (Aczél and Daròczy, 1975, Ebanks 

et al, 1998).  

This paper exploits measures developed in (Borowczyk, 

1984) – a combinatorial diagnostic entropy (.)
Bc

H  and 

combinatorial symptom information (.)
Bc

J  – which have 

been introduced taking diagnostics point of view into 

account.  

 

 

2. ASSUMPTIONS 

1. A finite set of conditions is determined: 

{ }, 1,...,
i

E e i n= =                        (1) 

2. Probabilities ( )
i

P e  of conditions 
i

e E∈  are non-zero: 

1, ,

( ) 0, ( ) 1
i

i n

P e P E
=

> =∀
…

                     (2) 

3. Determined is a finite set of symptoms 

{ }, 1,...,
r

D d r t= =                            (3) 

and a finite set of values taken by the symptoms 

{0, , 1}A λ= −…                          (4) 

Function (.)R  mapping D  and E  into A  is the λ -valued 

function 

( / ) ,
r i ir ir

R d e g g A= ∈                       (5) 

4. For all the symptoms the following holds: 

[ ( / ) ] 1
r i ir

r i ir
d D e E g A

P R d e g
∈ ∈ ∈

= =∀ ∀ ∃         (6) 

5. The multi-valued diagnostic model has been presented in 

the form of a diagnostic matrix G .  

[ ]ir n x t
G g=                                (7) 

where: ( / )
ir r i

g R d e=  

The above assumptions establish the multi-valued diagnostic 

model of wide class of technical objects (e.g. Kościelny, 

1995). 

3. POSTULATED PROPERTIES OF THE 

COMBINATORIAL DIAGNOSTIC ENTROPY  

A set of postulated properties of the combinatorial diagnostic 

entropy ( )
Bc

H E  can be found on the base of its ‘conceptual’ 

similarity with the Shannon entropy.  
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Therefore, reasonable seems the postulate that ( )
Bc

H E  be a 

function of ( )n card E= : 

( ) ( )
Bc

H E f n=                             (8) 

What else should be expected is the monotonic increase of 

( )
Bc

H E  with the growth of n : 

( ) ( ') 'f n f n n n≥ ⇔ ≥                     (9) 

Two other properties result from setting the uncertainty to 

zero. If it is known a priori that the set of conditions is one-

component only ( 1n = ), the system condition is then 

definitely determined and ( )
Bc

H E  should take value zero: 

1
( ) 0

Bc n
H E

=
=                            (10) 

Another extreme case takes place when the selected 

symptoms generates the conditions-set partition in the form 

of one-component subsets {{ }}, 1,
i

e i n= … . It means that all 

the pairs of conditions have been distinguished by the 

selected symptoms; hence, the uncertainty equals zero: 

( / {{ }}) 0
Bc i

H E e =                       (11) 

The last postulated property is defined with the following 

relationship  

1

1

( / { }) ( )
Bc j Bc j

j

H E E H E
λ −

=

=∑                 (12) 

where: 

( ) ( )
Bc j j

H E f n=                          (13) 

It means that if the conditions-set partition is given in the 

form  

0 1{ ( )} { ( ), , ( )}
j r r r

E d E d E dλ−= �                    (14) 

where 

0,..., 1

( ) { : ( / ) ; 1,..., , }
j jj r i r i j j

j

E d e R d e j i n j A
λ= −

= = = ∈∀ (15) 

and 

1

, 0,..., 1 0

1 1

0 0 1

a)   ( ) ( ) , ( )

b)   , 1, ( )
j

j

j

j r l r j r
j l j
j l

n

j j j i

j j i

E d E d E d E

n n p p P e

λ

λ

λ λ

−

= − =
≠

− −

= = =

∩ = ∅ =

= = =

∀

∑ ∑ ∑

∪

(16) 

the condition uncertainty is a function of , 0, , 1
j

n j λ= −… . 

4. THE COMBINATORIAL DIAGNOSTIC ENTROPY 

It follows from the above-presented considerations that 

function ( )
Bc

H E  should have the following properties: 

( ) ( )
Bc

H E f n=                         (17) 

( ) ( ') ' ,

( ), ' ( ')

Bc BcH E H E n n

n Card E n Card E

≥ ⇔ ≥

= =
            (18) 

1
( ) 0

Bc n
H E

=
=                          (19) 

1

( /{ }) ( ), ({ })
m

Bc j Bc j j

j

H E E H E Card E m
=

= =∑   (20) 

( / {{ }}) 0, 1,...,
Bc i

H E e i n= =               (21) 

 

The form of the function ( )f n  can be defined with two 

methods: a) formal deduction based on the set of postulated 

properties b) arbitrary acceptance of a certain form of the 

function and proving that it shows the postulated properties. 

In this paper the latter of the methods will be applied. Further 

considerations will be based on the following theorem: 

Theorem 1 

If a finite set of conditions { }, 1,...,
i

E e i n= = , is given then 

function 

( ) 0,5 ( 1)
2

Bc

n
H E n n

 
= = − 
 

                 (22) 

which determines the number of all unordered pairs of 

conditions shows the postulated properties (17) – (21). 

Proof (draft) 

To prove Theorem 1, a series of subsidiary theorems – 

lemmas 1 ÷ 6 (without proofs) will be used.  

Lemma 1 

Function (22) fulfils (17)  

Lemma 2  

Equivalence (18) takes place for the function (22). 

Lemma 3  

For a one-fault system, function (22) takes value equal to 

zero. 

Lemma 4 

If given is set partition { }, 1,...,
j

E j m=  then the following 

relationship takes place: 

1

( /{ }) ( )
m

Bc j Bc j

j

H E E H E
=

=∑                 (23) 

Lemma 5 

If the conditions-set partition is given in the form of one-

component subsets {{ }}, 1,...,
i

e i n= , then the system 

condition uncertainty equals to zero. 

( / {{ }}) 0
Bc i

H E e =                           (24) 

What has been proved by means of the lemmas 1 – 6 is that 

function (22) shows the postulated properties  (17) - (21), 

which completes the proof of main Theorem 1.  

5. THE COMBINATORIAL INFORMATION OF 

DIAGNOSTIC SYMPTOMS 

The initial system condition uncertainty (prior to the selection 

of any symptom) is equal to: 

( ) 0,5 ( 1)
Bc

H E n n= −                            (25) 
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If any symptom 
r

d D∈ , has been selected as the first one in 

the sequence, it generates the conditions-set partition of the 

following form: 

0 1{ ( )} { ( ), , ( )}
j r r r

E d E d E dλ−= �               (26) 

and relationships (27) are satisfied 

, 0,..., 1

1 1

00

   ( ) ( ) ,

( )    

j r l r
j l
j l

j r j

jj

E d E d

E d E n n

λ

λ λ

= −
≠

− −

==

∩ = ∅

= =

∀

∑∪

               (27) 

The condition uncertainty after selection of symptom 
r

d  that 

generates set partition (26), equals : 

1

1

( /{ }) 0,5 ( 1)
Bc j j j

j

H E E n n
λ−

=

= −∑  

Since the set partition (26) is explicitly defined by means of 

the symptom 
r

d  generating it, the above formula can be 

written down in the form: 

1

0

( / ) 0,5 ( 1)
Bc r j j

j

H E d n n
λ −

=

= −∑                (28) 

It’s easy to notice that the condition uncertainty after the 

selection of the symptom 
r

d  is not greater than the initial 

uncertainty, i.e.: 

 ( ) ( / )
Bc Bc r

H E H E d≥                       (29) 

Equality in (29) occurs in the case described with the 

following condition 

( ) ( / ) ( )
Bc Bc r j

j A
H E H E d n n

∈
= ⇔ ∃ =           (30) 

It means that the value of the symptom 
r

d  does not depend 

on the system condition, and such a symptom should be 

removed. On the grounds of relationships (29) and (30), the 

notion of the symptom combinatorial information  can be 

defined.  

Definition 1 

The symptom 
r

d  combinatorial information  is equal to the 

difference in the condition uncertainty before this symptom 

has been selected and the uncertainty remaining after the 

selection.  

If the symptom 
r

d  is selected as the first one in the 

sequence, then, according to the Definition 1, the following 

can be written down: 

( ) ( ) ( / )
Bc r Bc Bc r

J d H E H E d= −                 (31) 

where: ( )
Bc r

J d  - the combinatorial information  of the 

symptom 
r

d D∈ . 

After substituting (25) and (28) into (31) and account taken 

of relationships (27), the information can be presented in the 

following form: 

1

0

( ) 0,5 ( )
Bc r j j

j

J d n n n
λ −

=

= −∑                    (32) 

From (29) and (31) it becomes evident that the information 

( )
Bc r

J d  can take non-negative values ( ) 0
Bc r

J d ≥ . The 

formula (31) and earlier considerations give grounds to 

formulate the conclusion - the information ( )
Bc r

J d  equals 

the number of all unordered pairs of conditions 

distinguishable due to the symptom 
r

d : 

2 1

0 1

( )
Bc r j k

j k j

J d n n
λ λ− −

= = +

=∑ ∑                (33) 

This confirms the coherence of the introduced measures of 

the system condition uncertainty and the symptoms 

information.  

If the symptom 
s

d D∈  has been selected as the second one 

in the sequence, then in each of the subsets ( )
j r

E d  of the set 

partition (26) it generates the following set partition: 

0 1
0,..., 1

{ ( , ),..., ( , )}
j r s j r s

j
E d d E d dλ

λ
−

= −
∀       (34) 

where: 

( , ) { : ( / ) ( / ) ,

1,..., ,}

jl jl jljl r s i r i s i

jl jl

E d d e R d e j R d e l

i n

= = ∧ =

=
 

The following relationships are satisfied: 

0,..., 1 , 0,..., 1

1

0,..., 1
0

1

0,..., 1
0

) ( , ) ( , )

) ( , ) ( )

)

jl r s jk r s
j l k

l k

jl r s j r
j

l

jl j
j

l

a E d d E d d

b E d d E d

c n n

λ λ

λ

λ

λ

λ

= − = −
≠

−

= −
=

−

= −
=

∀ ∀ ∩ = ∅

∀ =

∀ =∑

∪  (35) 

The uncertainty after having selected both the symptoms, i.e. 

,
r s

d d D∈ , can be written down in the following way: 

1 1

0 0

( / , ) 0,5 ( 1)
Bc r s jl jl

j l

H E d d n n
λ λ− −

= =

= −∑∑       (36) 

The symptom 
s

d  conditional information results from the 

general Definition 1 

( / ) ( / ) ( / , )
Bc s r Bc r Bc r s

J d d H E d H E d d= −     (37) 

After substituting (28) and (36) into (37), the following is 

arrived at: 

1 1

0 0

( / ) 0,5 ( )
Bc s r jl j jl

j l

J d d n n n
λ λ− −

= =

= −∑∑         (38) 

The above considerations can be generalized to the question 

of the symptom 
s

d D∈  information defining when the set of 

k  symptoms 
k

D D⊂  have been selected earlier 

(1) (2) ( ){ , ,..., }
k k

D d d d=                   (39) 
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and the set E  partition is in the form 

0 1 1{ ( )} { ( ), ( ),..., ( )}
kj k k k m k

E D E D E D E D−=     (40) 

where: 
k

m  – the power of the family of subsets  

Using general Definition 1, the conditional information of the 

symptom 
s

d , can be written down in the following form: 

 ( / ) ( / ) ( / , )
Bc s k Bc k Bc k s

J d D H E D H E D d= −           (41) 

and finaly: 

1 1

0 0

( / ) 0,5 ( )
km

Bc s k jl j jl

j l

J d D n n n
λ− −

= =

= −∑∑         (42) 

It can be easily noticed that formulas (42) are the 

generalization of (38) - they become identical when 1k =  

and 
k

m λ= . 

Another issue of significance is to define the set  of k  

symptoms 
k

D D⊂  information. In order to do this, the 

earlier introduced Definition 1 should be generalised to the 

following form: 

Definition 2 

The information ( )
Bc k

J D  of the symptoms set 
k

D  is equal to 

the difference between the initial uncertainty ( )
Bc

H E  and the 

uncertainty remaining after having selected all the symptoms 

from the set 
k

D  - ( / )
Bc k

H E D : 

( ) ( ) ( / )
Bc k Bc Bc k

J D H E H E D= −           (43) 

After simple transformations the following is arrived at: 

1

0

( ) 0,5 ( )
km

Bc k j j

j

J D n n n
−

=

= −∑                (44) 

What comes out from the comparison between (32) and (44) 

is that both the formulas take identical form if 
k

D  is a one-

member set.  

Using Definition 2, the total information of the symptoms set 

k
D  and the symptom 

s k
d D∉  can be presented in the 

following form: 

( , ) ( ) ( / , )
Bc k s Bc Bc k s

J D d H E H E D d= −         (45) 

After transformations, the following is arrived at: 

1 1

0 0

( , ) 0,5 ( )
km

Bc k s jl jl

j l

J D d n n n
λ− −

= =

= −∑∑          (46) 

What results from the above-considered issues can be used to 

prove the Lemma 6 and the Theorem 2.  

Lemma 6 

The total information of the symptoms set 
k

D D⊂  and the 

symptom 
s k

d D∉  is equal to the sum of the set 
k

D  

information and conditional information of the symptom 
s

d  

( , ) ( ) ( / )
Bc k s Bc k Bc s k

J D d J D J d D= +             (47) 

Theorem 2 

The information of the symptoms set 

{ }, 1,..., ,
K k K

D d k K D D= = ⊂  equals to the sum of 

conditional information  of individual symptoms. 

( ) 1

1

( ) ( / )
K

Bc K Bc k k

k

J D J d D −

=

= ∑                (48) 

where 
0

D = ∅  

The symptom combinatorial information shows the property 

of additivity, as does information in the sense meant by 

Shannon. 

6. A PRELIMINARY ANALYSIS OF THE DIAGNOSTIC 

MODEL 

There are three significant issues which have to be analysed 

before starting optimization of diagnosis algorithm: 

• a sufficiency of symptoms set - has D  provided 

distinguishing of all pairs of object conditions? 

• a symptom pairs redundancy; 

• an existence of indispensable symptoms. 

If some pairs of conditions are not distinguishable one have 

to include some addition symptoms into set D . If such 

symptoms do not exist indistinguishable conditions form 

compound condition with probability equal the sum of 

individual probabilities. 

The problem of symptom pairs redundancy can take one of 

two forms:  

• symptoms 
r

d  and 
s

d  are equivalent - distinguish 

identical pairs of conditions (generate identical 

partitions of the set E ) 

• symptom 
s

d  is dominated by 
r

d  - set of condition 

pairs distinguished by 
s

d  is a subset of the set of 

condition pairs distinguished by 
r

d . 

The conditions of symptom pairs equivalence take the form:  

• the necessary condition 

( ) ( )
Bc r Bc r

J d J d=                          (49) 

• the sufficient condition 

( ) ( ) ( / ) 0
Bc r Bc s Bc s r

J d J d J d d= ∧ =             (50) 

The following relationship defines symptom 
s

d  dominated 

by 
r

d : 

( / ) 0 ( / ) 0
Bc s r Bc r s

J d d J d d= ∧ >                (51) 

All symptoms equivalent 
r

d  or dominated by 
r

d  have to be 

removed from the diagnostic model.  

After above mentioned operations diagnostic model does not 

contain indistinguishable conditions and equivalent or 

dominated symptoms. 
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Symptom 
i

r
d  is indispensable if the following holds: 

, \{ }

( / ) ( / ) ( / ) ( / )
i

k j s r

i i

r k r l s k s l
e e E d D d

R d e R d e R d e R d e
∈ ∈

≠ ∧ =∃ ∀

(52) 

It means that at least one pair of conditions exist which is 

distinguished only by symptom 
i

rd . All indispensable 

symptoms set up the core ( )Y D  of any diagnostic algorithm 

which can be designed using symptoms from set D  

(Parchomienko and Sogomonian, 1980, Borowczyk, 1984 ). 

7. AN OPTIMIZATION OF THE DIAGNOSIS 

ALGORITHM 

Every k th−  stage of proposed optimization method consists 

of following steps: 

• calculate symptoms information 
1

( / )
Bc r k

J d D
−

 (where 

0
D = ∅  ); 

• if 
1

( / ) 0
Bc r k

J d D
−

=  for all 
1

\
r k

d D D
−

∈  - stop; 

• remove redundant symptoms using relations (49) - (51); 

• set up the core 
1

( \ )
k k

Y D D
−

 according to (52); 

• if 
1

( \ )
k k

Y D D
−

≠ ∅  include symptoms from ( )
k

Y D  into 

the set  

1 1
( \ )

k k k k
D D Y D D

− −
= ∪                         (53) 

• if 
1

( \ )
k k

Y D D
−

= ∅  include symptom ( )kd   

1

( ) ( ) 1 1
\

: ( / ) max ( / )
r k

k k k r k
d D D

d J d D J d D
−

− −
∈

=         (54) 

into the set 1 ( )k k kD D d−= ∪ . 

An example of simple three-valued diagnostic model is 

shown in Fig. 1.  

i
e

 1
d

 2
d

 3
d

 4
d

 5
d

 

0
e

 1 1 1 1 1 

1
e

 0 1 0 1 1 

2
e

 2 1 2 1 1 

3
e

 0 0 1 1 1 

4
e

 2 2 2 1 1 

5
e

 1 1 1 2 1 

6
e

 2 2 1 1 0 

0
( / )

Bc r
J d D

 16 14 14 6 6 

Fig. 1 An example of three-valued diagnostic model – the 

first stage 

Initial condition uncertainty - ( ) 21
Bc

H E = . 

At the first stage the diagnostic model contains neither 

equivalent nor dominated symptoms. The core 

2 4
( ) { , }Y D d d=  hence 

1 2 4
{ , }D d d=  

Fig. 2 shows diagnostic model after rearrangement according 

to symptoms 
2

d  and 
4

d  values. 

i
e

 2
d

 4
d

 3
d

 1
d

 5
d

 

3
e

 0 1 1 0 1 

1
e

 1 1 0 0 1 

0
e

 1 1 1 1 1 

2
e

 1 1 2 2 1 

5
e

 1 2 1 1 1 

4
e

 2 1 2 2 1 

6
e

 2 1 1 2 0 

0
( / )

Bc r
J d D

 14 6 14 16 6 

1
( / )

Bc r
J d D

   4 3 1 

Fig. 2 A diagnostic model – the second stage 

At the second stage symptoms 
1

d  and 
5

d  are dominated by 

symptom 
3

d  and have to be removed.  

The second stage core 
1 3

( \ ) { }Y D D d= . According to (53)  

2 2 4 3
{ , , }D d d d=  

which provides conditions-set partition of the one-component 

form.  

After rearrangement according to symptoms 
2

d , 
3

d , 
4

d  

combinatorial information and logical values at each stage, 

the diagnostic model takes the form shown in Fig. 3. 

i
e

 2
d

 3
d

 4
d

 

3
e

 0 1 1 

1
e

 1 0 1 

0
e

 1 1 1 

5
e

 1 1 2 

2
e

 1 2 1 

6
e

 2 1 1 

4
e

 2 2 1 

0
( / )

Bc r
J d D

 14 14 6 

Fig. 3 A diagnostic model – the final stage 

The final diagnostic model (Fig. 3) defines the diagnosis 

algorithm: 

2 3 4
{ , , }T d d d=                                       (55) 

Algorithm (55) consists of indispensable symptoms only 

hence its cardinality is minimal. 

8. CONCLUSIONS  

A new combinatorial diagnostic entropy has been introduced. 

It describes the number of condition pairs which have to be 

distinguished during diagnosing process.  

Treating the assumed combinatorial diagnostic entropy as a 

primary notion, the information delivered by symptoms has 
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been defined. The relationships have been derived that 

facilitate explicit, quantitative assessment of the information 

of a single symptom as well as that of a symptoms set.  

It has been proved that the information (.)
Bc

J  shows the 

property of additivity. 

Proposed method exploits indispensable symptoms at every 

stage of the optimization process providing minimum number 

of symptoms in diagnosis algorithm.  
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