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Abstract:
The question of finding the best technology for software-based controller deployment is still open.
One of the main problems is that computing infrastructures for controllers are composed by
heterogeneous hardware and software platforms scattered over a set of heterogeneous networkig
infrastructures. The standardised object-oriented efforts done around the the OMG specifica-
tions try to overcome some of the difficulties raised by this heterogeneity. Inside the Distributed
Object Computing (DOC) landscape, CORBA is a well known framework for the construction
of modularised, object oriented, distributed applications. The CORBA object model, however, is
not enough when confronting the problems related to deplyment, configuration and evolutionary
maintenance of systems. This paper describes the ECF component technology specifically built
for the construction of component-based, distributed embedded systems.
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1. INTRODUCTION

Control systems are bassically built using software tech-
nology. Specialized in the past, in recent years the domain
of embedded software is turing into the use of tools and as-
sets that come from the mainstream software engineering
domain.

This movement is motivated by the continuous increase in
complexity (Sanz et al., 1998) and the changes happened
in the embedded systems domain: but the question of
finding the best technology for software-based controller
deployment is still open. One of the main problems is that
computing infrastructures for controllers are composed by
heterogeneous hardware and software platforms scattered
over a set of heterogeneous networkig infrastructures.

The standardised object-oriented efforts done around the
the OMG specifications try to overcome some of the diffi-
culties raised by this heterogeneity. Inside the Distributed
Object Computing (DOC) landscape, CORBA is a well
known framework for the construction of modularised, ob-
ject oriented, distributed applications. The CORBA object
model, however, is not enough when confronting the prob-
lems related to deplyment, configuration and evolutionary
maintencae of systems. This paper describes the ECF
component technology oriented towards the construction
of component-based embedded systems.

In the last years, the embedded systems domain is trying
to incorporate a component-based approach to systematise
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software development. This is mostly notable given that
the traditional engineering approach to developing embed-
ded applications has been driven by the primary goal of
maximizing performance whilst absorbing the minimum
of resources like memory or power consumption. This
conventional approach is usually adopted by compromis-
ing software engineering productivity desiderata, such as
reusability or maintainability, sacrificing modularization
to achieve reduced size and/or complexity.

However, even in the most constrained class of embedded
applications —as those designed for deployment on DSP
devices— software processes are supported by toolchains
based on component models that are usually tailored to
such devices.

This paper describes the technological products of the IST
COMPARE project funded by the European Commission
IST Programme. The main objective of the COMPARE
project was the provision of models and technology to
fulfill real-time requirements in component-based, real-
time embedded applications (RT/E). The approach of
COMPARE that makes a bigger difference from other
real-time component models like Pecos, ACCORD, AOCS,
OBS (e.g. et al. (2002)) is the focus on standardisation of
the technology following an open process.

2. EMBEDDED COMPONENTS LANDSCAPE

One seemingly unavoidalbe trend in software for real-
time embedded systems is towards complexity. This raising
complexity is due to the increased functionality these sys-
tems are required to to provide in an increased uncertainty
environment thay may include other interacting systems.
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Real-time software architectures commonly used in em-
bedded systems were primarily meant to fulfil just real-
time performance issues and are not suitably structured to
support this evolutionary increase in complexity. One big
challenge in complex embedded systems is thus to reframe
the design process from a performance-centric approach
to a complexity-centric approach, whithout loosing the
temporal performance so critical for these systems.

Fig. 1. The ECF Component-Container model for embed-
ded real-time systems.

This movement toward increased complexity is not exclu-
sive of the embedded systems domain but is also happening
in conventional software. Non real-time applications are
also facing this increase in complexity and have produced
some relevant paradigms of interest in the embedded com-
munity.

The paradigm we are exploring in the work described
in this paper is that of the very promising compo-
nent/container model. However current models (e.g. Sun’s
EJB 3 or OMG’s CCM 4 ) were originated and targetted
to enterprise information systems. Therefore, the services
they specify (e.g. persistence or transactions) are not
mainstream necessities of real-time and embedded systems
engineering.

Perhaps motivated by losing the enterprise role it had
due to HTML-based SOA 5 CORBA-related efforts have
moved towards real-time and embedded areas (cf. most of
the recent adopted specifications at www.omg.org).

The recently adopted Lightweight CCM, CCM-based com-
ponent technology has started a move in this very same
direction by defining a minimum profile upon which it is
now possible to build a model dedicated to real-time and
embedded.

This paper The purpose of this project is to study a
framework based on this model (CCM for real-time and
embedded), to realise a reference implementation of it, to
test it on two different application cases (one based on RT-
CORBA, the second on OSEK-VDX RTOS) and to push
the results at OMG for standardisation.

3 Enterprise Java Beans.
4 CORBA Component Model.
5 Service Oriented Architecture.

3. PROJECT RESULTS

The COMPARE project ended in December 2006 after
two years and a half and the results obtained can be
summarized in the following five items:

• The definition of a RT/E framework for component-
based embedded systems: this framework is called
ECF - Embedded Component Framework.

• A reference implementation of the ECF based on RT-
CORBA [1].

• A first technology demonstration in the field of Soft-
ware Defined Radio [5] built with the CORBA [7]
reference implementation.

• A derived partial implementation on OSEK-VDX [2].
• A second demonstration on the field of Electricity

Management Systems built with the OSEK-VDX
partial implementation.

The global objective of the separation of concerns ap-
proach in component-based systems is the segregation of
business logic from underlying RT platforms to maximize
component reusability. This reusability was demonstrated
by the mapping of the general ECF model into two quite
different deployment platforms: RT-CORBA and OSEK-
VDX.

OSEK-VDX and RT-CORBA differ enormously in the
level of services they provide and hence it is therefore un-
realistic to plan to support the full range of functionalities
as the reference implementation does. The intention is to
port to OSEK-VDX all that can be ported at a reasonable
cost. Obviously it will comprise, as a minimum, what is
needed to support the related electricity management use-
case.

4. APPROACH

The main technological goals of this work are three-fold:

• full separation of concerns between system functions
and enabling software platform technologies (middle-
ware and RTOS), so as to maximize deployability of
reusable components across an heterogeneous plat-
form base,

• enabling the use of a variety of architectural styles for
embedded systems (including distributed, real-time
and deeply embedded devices)

• facilitate tool-supported construction by interface-
level composition of reusable modules following stan-
dard component models (see Figure ??).

These directions were identified as necessary by a domain
analysis of current common concerns in the domain of real-
time and embedded systems design and implementation
[3].

The separation of concerns between system functions and
enabling software technologies aspect is recognized as an
important technological lever to treat portability because
in this approach, the system functions implementation are
underlying technology free.

Separation of concerns is also natural in the scope of
component orientation, which is all about placing the
component as the unit of architectural decomposition:
traditional approaches for real-time systems focusing first
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Fig. 2. The ECF is based on a Component/Connector model that enables the definition of the port type needed for
specific interaction models and the connector required for interaction between entities having some extended ports
and attributes.

on tasks and synchronisation characteristics often resulted
in systems shaped by these aspects, implying important
coupling between systems functions, complex mapping of
functions to tasks, and intricate tasks collaboration.

Supporting a variety of architectural styles is also impor-
tant in the real-time embedded domain, in which fun-
damentally different execution models and architectures
(most of the time engineering domain oriented) are in-
volved. The motivation for putting emphasis on a clean
integration of custom interaction patterns is to avoid rele-
gating these aspects to component programmer themselves
in case the component model would have been found
limitative. Another key motivation in this regard stems
from the fact that intermediate-granularity components
(i.e. not too coarse) can reveal the candidates for reuse,
and often exhibit between them complex interactions.

Tool-supported composition is also important, as compos-
ing and configuring complex systems by hand reveals very
difficult and error prone. The basis for the automated
composition is an architecture description in the form of a
component assembly descriptor. Automated composition
is at the heart of component-oriented approaches. It can
also be thought as a particular type of separation of con-
cerns, also reducing the complexity to setup and configure
a system.

The technical approach, in order to achieve the goals
explained above, is based on extending and profiling the
Lightweight CCM (LwCCM) specification [4] and COM-
PARE contributions come in three forms:

• Integration of new features in the CCM component
model and deployment facilities.

• Definition of profiles from Lightweight CCM and
OMG deployment and configuration.

• Adaptation of the LwCCM specification: some minor
needs for modification in the specification.

5. CORE GUIDELINES OF THE ECF APPROACH

Component-based applications are built by component
interconnection. Components provide services to other
components and require services from other components

through provided (facets) and required ports (receptacles)
(see Figure ??). To perform their function, components
may use services from the underlying platform (e.g. com-
puting or timing events).

In order to maximise reusability of component business
logic the ECF model isolates the component from the
execution platform by means of a container that provides
a set of technical services that are used by the component.
The ECF implementation is open and extensible and these
technical services are provided by means of container-level
pluggable elements [6].

Many services are under development in the context of the
COMPARE project in order to provide some basic func-
tionality required by the demonstrators. These services
include for example distributed state machines, timers,
clock synchronisation, transactional memory, distributed
logging, etc.

With this approach the ECF can separate the func-
tional aspects provided by the component from the non-
functional aspects concerning its use in a particular ap-
plication that are provided by the container (see Figure
2).

Detailed specifications about the framework including
the proposed extensions to LwCCM specifications are
provided in the framework design documentation from the
COMPARE project [10].

6. DEVELOPMENT PROCESS

The development process proposed by COMPARE and
outlined outlined in Figure ?? is obviously focused on
component-based reuse, separating the engineering activ-
ity in three major phases:

(1) Production of components
(2) Application design
(3) Component deployment

The developed approach not only focuses on an optimised
and fully modular realisation of the needed software fea-
tures, but also to a development process enjoying the
following properties:
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Fig. 3. The ECF engineering process for embedded real-time systems.

• traceability of the software architecture (description
of the breakdown of the application into components)
all along the development process,

• separation of concerns in the implementation phase:
realising the decided execution semantic on an RTOS
or middleware platform, versus implementing and
capitalising on domain functional blocks integratable
in fundamentally different target platforms in a guar-
anteed a priori manner,

• ease and agility in the final integration phase of the
system, by allowing to relocate lately components
from one device to another.

A critical aspect in this engineering process is component
selection (see Figure ??).

The current implementation of the Embedded Compo-
nent Framework includes software for infrastructure and
containers — the latter comprising building support
(toolchain) and the provision of various component ad-
ministration functions.

The testbed employed in the development of the ECF and
the evaluation of its real-time properties is comprised of
a General Purpose Processor (GPP) and a Digital Signal
Processor (DSP) device. They represent the hardware used
as part of the signal processing chain of a Software Defined
Radio (SDR), one of the demonstrators of the project.

The application software is built following a functional
decomposition of an SDR waveform, represented as gen-
erated components, and distributed across the GPP and
DSP devices using the ECF framework.

The framework hence shows the following capabilities of
the component architecture,

• Support for the composition of an application by
the assembly and deployment of components onto
resource-constrained devices.

• Realize a real-time capability by use of the COM-
PARE component execution environment and the
underlying real-time Operating System (RTOS) and
appropriate middleware infrastructure for distributed
communications.

• Demonstrate a level of adaptability such that compo-
nents can be developed for diverse platform RTOS,
communications data transport, and programming
languages.

7. ADVANTAGES OF THE ECF TECHNOLOGY

The advantages of using component-based technology in
the RT/E domain, are founded in the core architecture
of the component model, and are realized using various
development and productivity tools specifically adapted
to this class of application.

Portability : RT/E applications are developed for a wide
diversity of operating systems (OS) and hardware plat-
forms. One commonly adopted approach to providing
more portable solutions is to incorporate an application
layer that abstracts the required underlying platform
functionality. Unfortunately, this approach presents par-
ticular difficulties when defining an API having common
semantics across widely diverse architectures, and it
may be the case that useful (often proprietary) functions
needed to support a particular business goal may be
unavailable on some supported platforms. The com-
plexity of the abstraction layer will also increase with
the diversity of platform support required, therefore the
solution will not scale well when introducing new OS and
hardware variants. The core abstractions in the compo-
nent model on the other hand, provides the opportunity
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to develop specialized (fit-for-purpose) containers, and
allows the re-deployment of components from one RT/E
device to another without the need for source-code mod-
ification.

Reusability : The reuse of software units within the
scope of an organisation or collaborating parties is a
practice known to increase cost-effectiveness in software
development (see Figure ??). However, in order to ex-
ploit such advantages, an appropriate level of granular-
ity is necessary for the decomposition of application code
into re-usable units needs to be identified. In an Object
Oriented programming model, difficulties can arise due
to the assumption that different entities in a software
system/archive have interfaces that are amenable to in-
heritance and aggregation — also that these are written
using the same programming language. Thus, connect-
ing large numbers of relatively homogeneous units using
specialised coding conventions and styles can be error-
prone and expensive. In a component model, formal defi-
nitions strengthen the visibility of component dependen-
cies and therefore enforce rules for application assembly.
This has the overall effect of minimizing ambiguity when
selecting software units for re-use, thereby increasing
cost-effectiveness in development, and reducing time-to-
market.

Separation of Concerns : In conventional software de-
velopment, there is often an inherent need to understand
the broader issues associated with non-functional sys-
tems - enabling technologies, software integration, global
system architecture etc. Domain experts therefore, can
rarely invest their energy exclusively into the design
development of business solutions. This problem is also
exacerbated where the complexity of non-functional sys-
tems increases — as is the case with RT/E applications.
Here, detailed (specialist) knowledge of non-functional
systems is tightly coupled with application development
concerns. The separation of concerns evident in the
COMPARE approach provides the opportunity for do-
main experts to focus exclusively on the design devel-
opment of business solutions, resulting in a more cost-
effective use of development resources.

Visibility : Software development practices that re-use
in-house coding styles — naming conventions, layout,
modularization, and language specific productivity tech-
niques, make it difficult for external parties to engage in
collaborative development projects. Where new prod-
ucts are developed, this situation would likely impact to
a greater extent on time-to-market. In a standards-based
component model, coding styles/patterns are formally
specified - usually public domain. This arrangement
fosters cleaner integration and encourages closer part-
nerships between collaborating parties.

Quality in Development : When the use of conven-
tional programming leads to the creation of monolithic
systems, additional complexity is introduced into testing
and validation systems. Consequently, these are rela-
tively expensive to produce and are often not re-usable.
The de-composition in component-model architectures,
allows software units (components) to be naturally iso-
lated for testing and validation. This provides the oppor-
tunity to adopt an evolutionary approach to test devel-
opment that can be integrated throughout the software
development life cycle.

Quality in Production: Strategies for self-management
that ensure high system availability can be applied more
systematically using components than with other more
conventional systems. A component could for example,
validate that an input value is within an acceptable
range and provide a response that is non-intrusive to
the component. Similar self-management strategies can
improve system reliability by safeguarding component
integrity in production.

8. A NOT SO SIMPLE EXAMPLE

Martinez [11] demonstrates the advantages of the ECF
approach in the implementation of a component-based
simple —demonstration-class— adaptive controller.

The extended component technology provided by the
COMPARE ECF makes possible the minimally intrusive
interception of component calls to exploit the access to
call/return values for the implementation of added func-
tionality to preexisting systems.

Using this approach only latency and jitter are introduced;
there maximizing reusability as there is no need of com-
ponent code instrumentation. This makes possible the use
of this container-level interception technology for exter-
nally sourced, binary distributed components (or even for
the reuse on non-compoanes-based controller implementa-
tions).

This transparent access to interaction flows can be used
for component introspection or reflection, hence increasing
the flexibility and reusability of of the codebase by means
of standardised design patterns.

a)

ControllerSensor Actuator

Identificator ContainerContainer

b)

Fig. 4. A block diagram (a) of a simple adaptive
controller to be built using three ECF compo-
nents (controller, sensor and actuator) and a
container-pluggable service (the identificator).
In (b) we can see a component diagram of
the three ECF components and the container-
pluggable service (the identificator) that uses
container level interception to perform non-
intrusive control system monitorisation.

The simple adaptive controller of this example [11] uses
three full-fledged real-time ECF components: controller,
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sensor and actuator and employs a pluggable service in
the controller container —the identificator– (see Figure 5)
to implement an adaptive controller. This controller uses
container level interception —in the controller container
because this is the component that fixates the control
period— to perform non-intrusive control monitorisation.

This same structure —a design pattern— can be used
to implement a plant-adptive controller (e.g. a classical
model-reference adaptive controller) or an infrastructure-
adaptive one (e.g. to exploit processor feedback schedul-
ing).

9. CONCLUSIONS

By the end of the project the COMPARE Embedded
Component Framework and the two implementations (the
RT-CORBA reference implementation and the OSEK-
VDX reduced implementation) were available for test in
the embedded systems community. Two demonstrations
based on both implementations were built in the fields
of Software Defined Radio and Electricity Management
Systems.

For each demonstration, the work was separated in i)
integration of the base software platform on the selected
hardware (to properly interface application components to
the hardware capabilities of the target) and ii) architecture
and realization of the applications themselves.

In the software defined radio, the ECF technology has been
experimented from voice and data input-output down to
the radio transceiver (interface with the analog RF part
of the radio) to implement a public test waveform having
hard real-time constraints. It has been implemented using
the component framework implementation based on RT-
CORBA.

The second use-case has consisted in the realisation of
a software electrical breaker system prototype, incorpo-
rating power-line metering, signal anomaly detection, and
smart-I/O for reaction. It has been implemented using the
component framework implementation based on OSEK /
OSEK-Com.

Two additional proofs-of-concept in the field of distributed
process control systems and mobile robotics continue un-
der development in our own laboratory.

As of the time of this writing there exists an alpha
version of the framework and some of the services that
can be requested for experimentation from the COMPARE
Consortium Dissemination Team. More information can be
found in the project website www.ist-compare.org.
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