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Abstract: In this paper, we propose a robust Kalman filter and smoother for the errors-in-
variables (EIV) state space model subject to observation noise with outliers. We introduce the
EIV problem with outliers and then we present the minimum covariance determinant (MCD)
estimator which is highly robust estimator to detect outliers. As a result, a new statistical test
to check the existence of outliers which is based on the Kalman filter and smoother has been
formulated. Since the MCD is a combinatorial optimization problem the randomized algorithm
has been proposed in order to achieve the optimal estimate. However, the uniform sampling
method has a high computational cost and may lead to biased estimate, therefore we apply the
sub-sampling method. A Monte Carlo simulation result shows the efficiency of the proposed
algorithm.
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1. INTRODUCTION

A basic numerical routine for the classical EIV Kalman
filter Diversi et al. [2005], Markovsky et al. [2005] and
smoother computes the conditional expectation which is
a least squares (LS) estimate. Since the LS method is
rather sensitive to outliers (non Gaussian disturbances),
so is the Kalman filter and smoother. Moreover, it is well
known in real applications that most practical data contain
outliers with a low probability, so that a standard Gaussian
assumption for observation noises might fail. Following
Rousseew Rousseeuw [1984], we define the outliers to be
the observations which deviate from the pattern set of
the majority of the data. There are many reasons for
the occurrence of outliers, e.g. misplaces decimal points,
recording or transmission errors, expectational phenomena
such as earthquakes or strikes, or members of different
population slipping in the sample etc.

Several algorithms have been proposed to deal with out-
liers in the output data Bai [2003], Proietti [2003], Masere-
liez et al. [1977], Meinhold et al. [1989], Fruhwirth [1997],
however, there are some cases where the input data are
observed quantities subject to random variability. Thus,
there is no reason why gross errors would only occur in
the response data. In a certain sense it is more likely
to have outliers in the observed input data. As a tech-
nique for coping with this problem, Rousseeuw Rousseeuw
[1984] suggested the MCD estimator and Rousseeuw et al.
[2004,?] presented the fast MCD algorithm to compute the
multivariate linear regression model. Another approach
⋆ This work was supported by King Fahd University of Petroleum
and Minerals.

for the MCD estimator that is based on the covariance
matrix of the residuals instead of the multivariate location
and scatter has been proposed by Agullo et al. [2007].
Furthermore, the influence function and the efficiency of
the MCD scatter estimator has been studied in Croux et al.
[1999]. The MCD problem for the time series models, e.g.
AR and ARMA models has discussed in Maronna et al.
[2006]. However, for the EIV state space model where the
outliers acts in the observed input data to the best of our
knowledge, there is no paper that has been published in
this area.

In this paper, we consider a filtering and smoothing
problem in the presence of observation outliers with the aid
of the MCD procedure. It is well known that the MCD is a
highly robust estimator and its objective is to find a subset
from the observation data with cardinality greater than
half of the observed data and whose covariance matrix
has minimum determinant. The random search algorithm
Bai [2003] has been proposed to solve the MCD problem.
However, the high computational complexity makes the
MCD estimator impractical and may lead to bias estimate
for the EIV state space model. Hence, we propose the
sub-sampling method Heagerty [2000] which keeps the
structure of the original data, decrease the computation
time and is less sensitive to outliers. Another feature of the
proposed algorithm is that the algorithm can be applied
even if there is no outlier in the observed data. A minor
contribution of the paper is that we derive the Kalman
smoother for the EIV state space model which is required
for the new statistics.
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This note is organized as follows. Section 2, gives the
errors-in-variables problem in the presence of outliers, and
introduces the MCD estimator for the EIV state space
model. In section 3, we proposed the randomized algorithm
as a method to solve the MCD problem and discuss the
disadvantages of the algorithm. Section 4, is dedicated to
the Kalman filter and smoother with outliers and propose
the sub-sampling method. The Monte Carlo simulation
is reported in section 5 and Appendix A is devoted to
Kalman filter and smoother without outliers and proof of
the proposition.

2. ERRORS-IN-VARIABLES MODEL

As depicted in Fig. 1, consider the errors-in-variables state
space model described by

[
x(t+ 1)
ŷ(t)

]
=

[
A B
C D

] [
x(t)
û(t)

]
+

[
w(t)

0

]
, (1)

where x(t) ∈ R
n, û(t) ∈ R

m and ŷ(t) ∈ R
p are

unknown state, true input and output vectors respectively.
Furthermore, w(t) is the white Gaussian noise acting on
the state whose mean is zero and has a covariance Σw. It
should be noted that the output noise has been excluded
here for the seek of simplicity, however it can be added
and our technique can be easily generalized. The measured
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Fig. 1. Errors-in-variables model

input-output signals u(t) and y(t) are modelled as

u(t) = û(t) + ũ(t), (2)

y(t) = ŷ(t) + ỹ(t), (3)

where ũ(t) ∈ R
n and ỹ(t) ∈ R

p are non-Gaussian white
noises with zero mean and finite positive definite covari-
ance matrices Σũ and Σỹ, respectively;

E

{[
ũ(t)
ỹ(t)

] [
ũT(i) ỹT(i)

]}
=

[
Σũ Σ

ũy

ΣT

ũy
Σỹ

]
δ(t, i), (4)

where δ(t, i) denotes the Kronecker delta function. We will
assume in the sequel, that ũ(t) and ỹ(t) are uncorrelated
with w(t). Furthermore, the input and output noises ũ(t)
and ỹ(t) contain outliers with a low probability, therefore
we write

ũ(t) = (Im − φ(t))ũn(t) + φ(t)ũo(t),

ỹ(t) = (Ip − γ(t))ỹn(t) + γ(t)ỹo(t),

where Is is the s × s identity matrix for s = m or
s = p, ψ(t) = diag{ψt,i} = diag{ψt,1, · · · , ψt,s} and
ψt,i = 0 or ψt,i = 1 for all i and where ψ(t) = γ(t)
or ψ(t) = φ(t). Moreover, Prob{ψt,i = 1} is small, i.e.
the minority of the observed data are outliers. The noises
{ũn(t), ũo(t), ỹn(t), ỹo(t)} are Gaussian white noises with

ũn(t) ∈ N(0,Σn
ũ), ũo(t) ∈ N(0,Σo

ũ), (5)

ỹn(t) ∈ N(0,Σn
ũ), ỹo(t) ∈ N(0,Σo

ỹ), (6)

where {Σn
ũ,Σ

o
ũ,Σ

n
ỹ ,Σ

o
ũ} are positive definite covariance

matrices. Furthermore, Σo
ũ(i, i) and Σo

ỹ(i, i) are much

larger than Σn
ũ(i, i) and Σn

ỹ (i, i) respectively. Then, the
problem of interest is to find a robust Kalman filter and
smoother estimate û∗(t), ŷ∗(t) and x̂(t) for the input-
output data û(t), ŷ(t) and the state vector x(t) given
that the observed input-output data are contaminated
with outliers. The fact that we account for the possibility
that the input signal is not exactly known and it may
contain outliers, makes the problem difficult, and is often
referred to as an outlier-errors-in-variables (OEIV) prob-
lem Maronna et al. [2006].

2.1 Minimum covariance determinant for the EIV models

The MCD technique has been introduced by Rousseeuw
[1984] to detect the outliers for the high dimen-
sional data set. In order to define the MCD for
EIV state space model, consider a data set Ω(N) ={
ω(i) =

[
u(i)
y(i)

]
: i = 1, · · · , N

}
, and let S = {S ⊆

{1, · · · , N} : #S = M} 1 be the collection of all sub-
sets with cardinality M from the set {1, · · · , N}, where
[N/2] ≤ M ≤ N 2 . If the variable M equals to N , then
we do not have any outlier. Moreover, the smallest possible
value for M is N

2 , because if more than half of the data
were outliers, it would be unclear which data were from
the main distribution and which were outliers. For any

S ∈ S, let Ω(S) =

{
ω(i) =

[
u(i)
y(i)

]
: i ∈ S

}
, and define

the covariance as cov(S) = 1
M

∑
i∈S(ω(i)−TS)(ω(i)−TS)T

where TS = 1
M

∑
i∈S

[
ū(i)
ȳ(i)

]
and where ū(i) and ȳ(i) are

the estimates based on the observations in Ω(S) to be
obtained in section 4. The MCD estimator consist of two
steps; the first step is to

J(S) = Minimize det(cov(S)), (7)

i.e. the MCD searches for a subset S ∈ S of size M whose
covariance matrix has the smallest determinant. It is clear
that the variables in the objective function (7) are the
subset S and the estimates ȳ(i) and ū(i). The second step
is to detect outliers by using the squared Mahalanobis
distance d(i)2 = (ω(i) − TS)Tcov(S)−1(ω(i) − TS), where
TS and cov(S), are computed by using the observed data
in Ω(S) only. Furthermore consider the null hypothesis

H0(t) : ω(t) is not an outlier,

against the alternative hypothesis

H1(t) : ω(t) is an outlier.

Since cov(S)−1/2(ω(i) − TS) has a standard Gaussian
distribution function, therefore the squared Mahalanobis
distance d(t)2 has χ2 distribution and a decision rule δ(t)
can be found as

δ(t) :=




H0(t) if d(t) ≤

√
χ2

p+m

H1(t) if d(t) >
√
χ2

p+m,

where p+m is the degrees of freedom of the χ2 distribution.
It is clear that if the observation ω(t) does not belong to
the best subset S, then the Mahalanobis distance is greater

1 # := cardinality of the subset S.
2 [·] is the greatest integer number.
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than the rejection point
√
χ2

p+m,ν , so that δ(t) declared as

H1(t).

In most cases, it is not feasible to generate all possible
subsets provided that N is large due to computational
cost. In the next section, we will generate finite number
of subsets which will lead to a feasible solution that will
converge with probability one to the true solution by using
the randomized algorithm.

3. THE RANDOM SEARCH ALGORITHM

It is obvious that the minimum value for the objective
function J(S) in (7) can be found by searching for a subset
S ∈ S that minimizes the value of det cov(S). In fact

there are
(

N
M

)
subsets in S, so that finding a subset that

minimizes the value of the objective function is a very
difficult combinatorial problem. However, we can easily
calculate the value of det cov(S), for each subset S ∈ S
and then sort det cov(S) in increasing order, i.e.

det cov(S)[1] = min
S∈S

det cov(S) ≤ · · · ≤ det cov(S)[(N

M)]

= max
S∈S

det cov(S).

Now we think of S ∈ S as a random variable that
is uniformly distributed, and hence det cov(S) is also
a random variable depending on S. Let F (det cov(S))
denote the unknown cumulative distribution function of
det cov(S) for i = 1, · · · , L be L, independently generated
samples of S ∈ S. Furthermore, let S̄ ∈ {S}L

r=1 be such
that det cov(S̄) = min1≤r≤L det cov(Sr). We can derive
the following theorem by using the result of Bai Bai [2003].
The theorem finds the sample size L so that det cov(S̄)
converges to the true solution with probability close to
one.

Theorem 1. For the EIV model (1), the following (i) ∼ (ii)
hold:

(i) For all 0 < F (minS∈S det cov(S)) < ǫ < 1 and for all
0 < δ < 1, if

L ≥ ln(1/δ)

ln(1/(1 − ǫ))
, (8)

then

Prob

{
F

(
min

1≤r≤L
det cov(Sr)

)
≤ ǫ

}
≥ 1 − δ.

(ii) Let Sr for r = 1, · · · , k be k-th disjoint sub-samples
such that ∪k

r=1Sr = {1, · · · , N} and run the randomized
algorithm in each sub-sample. Then the overall probability
that the confidence statement are simultaneously true is

1 − ∑k
i=1 δi.

Proof:

(ii) Assume that Si ⊂ Sr and let Eg =
F

(
min1≤i≤L,Si⊂Sg

det cov(Si)
)

≤ ǫ, (g = 1, · · · , k)
be the gth statement corresponds to the subset Si, and
assume that the gth statement Eg, (g = 1, · · · , k) is
correct, i.e.

Prob[Eg] ≥ 1 − δg,

and let Ēg be the complementary event of Eg, then the
overall probability that the statements are simultaneously
true

Prob[∩Eg] =1 − Prob[∩gEg] = 1 − Prob[∪gĒg]

≥ 1 −
k∑

g=1

Prob[Ēg] = 1 −
k∑

g=1

δg,

if δg = δ for g = 1, · · · , k. Then

Prob[∩Eg] ≥ 1 − kδ.

Theorem 1 means that, whenever we generate L inde-
pendent random subsets SL = {Si}L

i=1 and compute the
covariance for each subset Si ∈ SL, a subset S̄ ∈ SL with
minimum covariance determinant J(S) will improve our
estimate. However, it may be noted that in the worst case
this improvement is not considerable comparing to the LS
estimate by using all observed data. In fact, if the number
of the observed data is very large, then the probability of
finding a subset S ∈ S with cardinality equal to M that
does not contain any outlier approaches zero, i.e.

PI =

(
I

M

)
(

N
M

) =
I!(N −M)!

(I −M)!N !
=

M−1∏

j=0

I − j

N − j
, (9)

where I stands for the number of clean data. According
to (9) the random search algorithm can be improved by
taking S with small cardinality and by finding the smallest
M relative Mahalanobis distances di. This will increase
the probability of finding a subset Si from S that does not
contain any outliers.

Part 2 of Theorem 1, means that even though we can
attach a probability of (1−δ) to each separate sub-sample,
the overall probability that the statements are simultane-
ously true is greater than (1− kδ). More discussion about
the sub-samples will be given in section 4.1. It should
be noted, that this result is known in statistics as the
Bonferroni correction Seber [1977].

At this stage, we will derive the optimal estimate for the
true input-output and the associated error covariances for
the OEIV model using the Kalman filter and smoother.

4. KALMAN FILTER FOR THE
ERRORS-IN-VARIABLES MODEL WITH OUTLIERS

Substituting (2) and (3) into (1) yields

[
x(t+ 1)
y(t)

]
=

[
A B
C D

] [
x(t)
u(t)

]
+

[
nx(t)
ny(t)

]
, (10)

where nx(t) = −Bũ(t) + w(t) and ny(t) = −Dũ(t) + ỹ(t).
Let z(t) = y(t) −Du(t), then (10) can be written as

[
x(t+ 1)
z(t)

]
=

[
A B
C 0

] [
x(t)
u(t)

]
+

[
nx(t)
ny(t)

]
. (11)

In addition, let Z(t) = {z(0), · · · , z(t)}, Φ(t) =
{φ(0), · · · , φ(t)} and Γ(t) = {γ(0), · · · , γ(t)} and define
3

3 The Kalman filter and smoother without outliers is given in
Appendix A.
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x(t | t) ≡ E[x(t) | Z(t), Φ(t), Γ(t)], (12)

x(t + 1 | t) ≡ E[x(t + 1) | Z(t), Φ(t), Γ(t)], (13)

y(t + 1 | t) ≡ E[y(t + 1) | Z(t), Φ(t), Γ(t)], (14)

P (t | t) ≡ E[(x(t) − x(t | t))(x(t) − x(t | t))T | Z(t), Φ(t), Γ(t)],
(15)

P (t + 1 | t) ≡ E[(x(t + 1) − x(t + 1 | t))(x(t + 1)

− x(t + 1 | t))T | Z(t), Φ(t), Γ(t)], (16)

then the Kalman filter is given by

z(t+ 1 | t) = Cx(t+ 1 | t), (17)

x(t+ 1 | t) = Ax(t | t) +Bu(t), (18)

and we could compute the covariance of the errors as

E{(z(t+ 1) − z(t+ 1 | t))(x(t+ 1) − x(t+ 1 | t))T}
= CP (t+ 1 | t), (19)

and

E{(z(t+ 1) − z(t+ 1 | t))(z(t+ 1) − z(t+ 1 | t))T}
= CP (t+ 1 | t)CT + (Ip − γ(t))Σn

ỹ + γ(t)Σo
ỹ

+D[(Im − φ(t))Σn
ũ + φ(t)Σo

ũ]DT −DΣ
ũy

− ΣT

ũy
DT,

(20)

where

P (t + 1 | t) = E[(x(t + 1) − x(t + 1 | t))(x(t + 1) − x(t + 1 | t))T]

= APt|tA
T + Σw + B(Im − φ(t))Σn

ũBT + Bφ(t)Σo
ũBT.

(21)

The optimal Kalman filter estimate for the state x(t) is
given by

x(t+ 1 | t+ 1) = x(t+ 1 | t) + P (t+ 1 | t)CTΣǫ(t)
−1ǫ(t),

(22)

while ǫ(t) and Σǫ(t) denote the innovation of z(t) and its
covariance matrix given by

ǫ(t) = z(t) − Cx(t | t− 1)

= Cx(t) + ny(t) − Cx(t | t− 1) (23)

Σǫ(t) = E[ǫ(t)ǫ(t)T]

= CP (t | t− 1)CT + (Ip − γ(t))Σn
ỹ + γ(t)Σo

ỹ

+D[(Im − φ(t))Σn
ũ + φ(t)Σo

ũ]DT −DΣ
ũy

− ΣT

ũy
DT.

(24)

The optimal smooth estimates û(t | N), ŷ(t |
N) of û(t), ŷ(t) that can be obtained from
{u(0), y(0), · · · , u(N), y(N)}, under constraints (1)-
(3) are given by

û(t | N) = u(t) − ũ(t | N) = u(t) − E{ũ(t) | z(0), · · · , z(N)}, (25)

ŷ(t | N) = y(t) − ỹ(t | N) = y(t) − E{ỹ(t) | z(0), · · · , z(N)}, (26)

where ũ(t | N) = E{ũ(t) | z(0), · · · , z(N)} and ỹ(t | N) =
E{ỹ(t) | z(0), · · · , z(N)} are the optimal estimate for ũ(t)
and ỹ(t) respectively. To compute ũ(t | N) and ỹ(t | N)
we replace z(t) by its innovation

ũ(t | N) = E[ũ(t) | z(0), · · · , z(t), ǫ(t+ 1), · · · , ǫ(N)]

= E[ũ(t) | z(0), · · · , z(t)] + E[ũ(t) | ǫ(t+ 1), · · · , ǫ(N)]

= ũ(t | t) +

N∑

s=t+1

cov{ũ(t), ǫ(s)}Σǫ(s)
−1ǫ(s) (27)

ỹ(t | N) = E[ỹ(t) | z(0), · · · , z(t), ǫ(t+ 1), · · · , ǫ(N)]

= E[ỹ(t) | z(0), · · · , z(t)] + E[ỹ(t) | ǫ(t+ 1), · · · , ǫ(N)]

= ỹ(t | t) +

N∑

s=t+1

cov{ỹ(t), ǫ(s)}Σǫ(s)
−1ǫ(s), (28)

where ũ(t | t) and ỹ(t | t) are given in Appendix A. Now
the covariances can be found as follows

cov{ũ(t), ǫ(s)} = [Σũ(K(t)D − B)T − Σ
ũy

KT(t)]L(s − 1, t)TCT

(29)

cov{ỹ(t), ǫ(s)} = [ΣT

ũy
(K(t)D − B)T − ΣỹKT(t)]L(s − 1, t)TCT,

(30)

where Σũ = (Im − φ(t))Σn
ũ + φ(t)Σo

ũ and Σỹ = (Ip −
γ(t))Σn

ỹ + γ(t)Σo
ỹ and Σ

ũy
= (Im − φ(t))Σn

ũy
(Ip − γ(t)) +

φ(t)Σo

ũy
γ(t). The definition of L(s− 1, t) and the proof of

(29) and (30) are given in Proposition 4 (in Appendix A).

Proposition 2. Let πt be a random integer number from 1
to N , and formulate the set S = {πt : t = 1, · · · ,M} ∈ S,

ωπt
=

[
u(πt)
y(πt)

]
, and TS = 1

M

∑
πt∈S

[
û(πt | S)
ŷ(πt | S)

]
, where

û(πt | S) and ŷ(πt | S) can be calculated as in (25) and
(26). Then the MCD cost function can be written as

J(S) = min det
S

1

M

∑

i∈S

(ωi − TS)(ωi − TS)T. (31)

It should be noted that if t is included in the subset S, then
φ(t) and γ(t) will be the identity matrices, otherwise they
are the zero matrices. In Proposition 2, if we apply the
uniform sampling method then we will lose the structure
of the original data and consequently the estimate will
be biased. Therefore, we apply another sampling method
which is called sub-sampling method Heagerty [2000].

4.1 Sub-sampling method

Instead of generating a random subsets from the observed
input-output data we generate blocks of contiguous
observations of fixed dimension b. That is, we divide
the last (N − n) observations into k subsets, where each
subset contains the first initial data (ω(1), · · · , ω(n))
and a set of [(N − n)/k] contiguous observations. In

other words, the subsets can be described as S
(b+n)
r =

{ω(1), · · · , ω(n), ω(n+ 1 + (r − 1)b), · · · , ω(n+ br)},
where r = 1, · · · , k. Then we perform an exhaustive
search of all possible blocks and choose the one which
gives the minimum value for the objective function. It
should be noted that, if (N − n)/k is an integer then we
have exactly k subsets. In general there are k+ 1 subsets,
where the first k of size n + [(N − n)/k], and the last
of size N − [(N − n)/k]k. For the seek of simplicity and
without loss of generality we assume that b is an integer
where b = (N − n)/k.

Furthermore, if the number of the subsets k is large, then
the probability of having at least a clean subset of data
which does not contain any outlier will increase. However,
if k is large, then the cardinality of each subset will be
small, and consequently the estimate of the parameters can
be unstable. P. Heagerty and T. Lumley Heagerty [2000]

suggest that b ≈
√
N to ensure a balance between the

statistical properties of the estimated parameters and the
robustness of the method.

Theorem 3. Let | S(b+n)
1 |= M . Put
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T1 =
1

M

∑

i∈S
(b+n)
1

[
û(i)
ŷ(i)

]

cov(S
(b+n)
1 ) =

1

M

∑

i∈S
(b+n)
1

(

[
u(i)
y(i)

]
− T1)(

[
u(i)
y(i)

]
− T1)

T

if det(cov(S
(b+n)
1 )) 6= 0, define

d1(i) =

√{[
u(i)
y(i)

]
− T1

}T

(cov(S
(b+n)
1 ))−1

{[
u(i)
y(i)

]
− T1

}
,

for i = 1, · · · , N and take S
(b+n)
2 such that {d1(i); i ∈

S
(b+n)
2 } = {(d1)1:N , · · · , (d1)M :N}. Compute T2 and

cov(S
(b+n)
2 ) based on S

(b+n)
2 . Then

det(cov(S
(b+n)
2 )) ≤ det(cov(S

(b+n)
1 ))

with equality if and only if T2 = T1 and cov(S
(b+n)
2 ) =

cov(S
(b+n)
1 ).

The proof of Theorem 3 is a direct application of The-
orem 1 in Rousseeuw et al. [2004]. It should noted that

constructing a new subset S
(b+n)
2 from S

(b+n)
1 is called C-

step where C stands for “concentration” because the new

subset S
(b+n)
2 gives a lower value for the objective than

S
(b+n)
1 does.

Random search algorithm:

Let ∪k
i=1S

(b+n)
i = {1, 2, · · · , N},

• Step 1: Generate all subsamples of S
(b+n)
i ,

and for each sub-sample S
(b+n)
i , calculate

det cov(S
(b+n)
i ) and consequently find det cov(S̄) =

minS(b+n)∈S det cov(S
(b+n)
i ).

• Step 2: Compute di, for i = 1, · · · , N and de-
tect outliers using Chi-square distribution. Then, put
S1 = {πi : i = 1, · · · ,M}.

• Step 3: Repeat step 1 to step 2, until convergent.

5. NUMERICAL EXAMPLE

The following example is a slightly modified version of
the one used in Diversi et al. [2005]. Where the numerical
simulation is performed on two inputs two outputs time-
invariant system with N = 500 described by the following
matrices:

A =

[
0 1 0

−0.3 0.4 −0.2
−0.1 0.2 0.4

]
, B =

[
0.8 −0.8
0.17 −0.37
1.09 1.1

]
,

C =

[
1 0 0
0 0 1

]
, D =

[
1.7 1.5
0.51 −1

]
.

The noise free input sequence û(·) is a zero mean, unit vari-
ance Gaussian process, and a sample of the unmeasurable
output data ŷ(·) is shown in Fig. 2.

Furthermore, the noise sequences w(t), ỹ(t) and ũ(t) are
characterized as follows

w(t) ∼ N(03, 0.1 × I3),

ũ(t) ∼ (I2 − φ(t))N(02, 0.1 × I2) + φ(t)N(0, 2 × I2),

ỹ(t) ∼ (I2 − γ(t))N(02, 0.1 × I2) + γ(t)N(02, 2 × I2),
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2nd noiseless ouput channel

Fig. 2. Un-observed output data ŷ

where Prob(φ(t) = I2) = Prob(γ(t) = I2) = 1%. A sample
for realizations of the noises ỹ(t) and ũ(t) are shown in Fig.
3. Moreover, the initial state x(0) is a random vector and
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Fig. 3. A sample process noise ũ and ỹ

has been initialized as x(0 | −1) = 0 and P (0 | −1) = In.

In order to detect the outliers we generate all possible
subsets Sb+n

r for r = 1, · · ·N − (b + n) + 1. Then for
each subset Sb+n

r , we compute the MCD objective function
and thus choose the best subset that gives the minimum
value for the objective function. Hence the best subset has
been used to detect the outliers in all observed data and
consequently, we apply the C-step as in the Theorem 3.
The Mahalanobis distance in first attempt to detect the
outliers, i.e. before the C-step is shown Fig. 4.
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Fig. 4. Mahalanobis distance
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Fig. 5. The estimate

In Fig. 5, we show the noiseless output un-observed data,
the estimate without detecting the outliers and after de-
tecting the outliers. We see that the Kalman filter algo-
rithm based on the MCD estimator significantly improve
the estimate obtained by the EIV Kalman filter Diversi
et al. [2005]. We noted that the proposed algorithm can
deal with clean data as well as outlier problem.

6. CONCLUSION

In this paper, we have studied the Kalman filter and
smoother for the Error-In-Variables state space models
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with outliers. The outliers have been detected using highly
robust estimator called minimum covariance determinant
which requires the Kalman filter and smoother to be
computed. In order to achieve the robust solution of
the MCD problem, the random search algorithm has
been proposed. However, applying the uniform sampling
method to the randomized algorithm leads to complex
calculation and biased estimate. Thus, we applied the
subsampling method in order to keep the same dependence
structure as the original data. The subsampling method
leads to unbiased estimate and decrease the complexity
issue of calculations. The proposed algorithm is highly
robust to the effect of outliers.
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Appendix A. KALMAN FILTER AND SMOOTHER
WITHOUT OUTLIERS

The Kalman filter is given by

z(t+ 1 | t) = Cx(t+ 1 | t) (A.1)

x(t+ 1 | t) = Ax(t | t− 1) +Bu(t) +K(t)ǫ(t) (A.2)

K(t) = [AP (t | t− 1)CT + S(t)]Σǫ(t)
−1 (A.3)

P (t+ 1 | t) = AP (t | t− 1)AT +Q(t) − [AP (t | t− 1)CT

+ S(t)]Σǫ(t)
−1[AP (t | t− 1)CT + S(t)]T

(A.4)

and the Kalman smoother for t = N,N − 1, · · · , 1 is given
by

x(t − 1 | N) = x(t − 1 | t − 1) + J(t − 1)[x(t | N) − x(t | t − 1)]

(A.5)

P (t − 1 | N) = P (t − 1 | t − 1) + J(t − 1)[P (t | N) − P (t | t − 1)]

× J(t − 1)T (A.6)

J(t − 1) = P (t − 1 | t − 1)AP (t | t − 1)−1 (A.7)

ũ(t | t) = [Σ
ũy

(t) − ΣũDT]Σǫ(t)
−1ǫ(t) (A.8)

ỹ(t | t) = [Σỹ − ΣT

ũy
DT]Σǫ(t)

−1ǫ(t) (A.9)

By using (A.8) and (A.9), the minimal variance estimates
of ŷ(t) and û(t) can be written in the form

û(t | t) = u(t) − [Σ
ũy

− ΣũD
T]Σǫ(t)

−1ǫ(t) (A.10)

ŷ(t | t) = y(t) − [Σỹ − ΣT

ũy
DT]Σǫ(t)

−1ǫ(t) (A.11)

Proposition 4. For 1 ≤ t ≤ s, the followings hold

cov{ũ(t), ǫ(s)} = [Σũ(t)(K(t)D −B)T − Σ
ũy

(t)KT(t)]

× L(s− 1, t)TCT (A.12)

cov{ỹ(t), ǫ(s)} = [ΣT

ũy
(t)(K(t)D −B)T − Σỹ(t)KT(t)]

× L(s− 1, t)TCT, (A.13)

where L(s − 1, t) = L(s − 1) · · ·L(t) and L(s − 1) = A −
K(s− 1)C.

Proof:

x(s+ 1) − x(s+ 1 | s)
= A (x(s) − x(s | s− 1)) + nx(s) −K(s)ǫ(s)

= (A−K(s)C) (x(s) − x(s | s− 1)) + nx(s) −K(s)ny(s)

= L(s) (x(s) − x(s | s− 1)) + nx(s) −K(s)ny(s),

cov{ũ(t), ǫ(s)} = cov{ũ(t), z(s) − Cx(s | s− 1)}
=cov{ũ(t), C (x(s) − x(s | s− 1)) + ny(s)}
=cov {ũ(t), C(L(s− 1)(x(s− 1) − x(s− 1 | s− 2))

+nx(s− 1) −K(s− 1)ny(s− 1)) + ny(s)}
=cov{ũ(t), nx(t) −K(t)ny(t)}L(s− 1, t)TCT

= [Σũ(K(t)D −B)T − Σ
ũy
KT(t)]L(s− 1, t)TCT

cov{ỹ(t), ǫ(s)} = cov{ỹ(t), z(s) − Cx(s | s− 1)}
=cov{ỹ(t), Cx̃(s | s− 1) + ny(s)}
=cov{ỹ(t), nx(t) −K(t)ny(t)}L(s, t)TCT

=[ΣT

ũy
(K(t)D −B)T − ΣỹK

T(t)]L(s− 1, t)TCT,
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