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Abstract: We study a special beam that is made up of smart material. We show that the
beam possesses a number of unusual properties that makes its stability analysis very difficult.
However, it does have a nice property that its eigenfunctions form a Riesz basis.

1. INTRODUCTION

Due to the requirements of the light weight, faster opera-
tional speed, lower energy consumption in the engineering
applications of space technology and robotics (see [4, 5]),
smart materials has been widely used in the suppression of
vibration of elastic structures. In a lot of applications, such
smart materials are used as passive or active controllers
([3]). The model of the smart-material beam that we
shall study comes from H.T. Banks [1, 2], who had used
finite element approach to study the problem. In [4, 5],
a combination of a boundary feedback and an internal
damping were used to achieve stability. In this paper,
we are aiming at a more subtle investigation. We shall
show that even in the simplest case where the external
force is null, the smart beam behaves quite different from
an ordinary beam. First, its spectrum has two branches
and contains a continuous spectrum. Second, its resolvents
are not necessarily compact operators. Third, the system
operator is not closed under the conventional state space
and hence does not generate a semigroup of operators.
Fourth, despite all these, the associated eigenfunctions still
form a Riesz basis. The model that we shall use is the one
after taking the external force away from the beam in [1, 2]:











utt(t, x) + αuxx(t, x)xx + βuxxt(t, x)xx = 0,
u(t, 0) = ux(t, 0) = 0,
αuxx(t, 1) + βuxxt(t, 1) = 0,
αuxxx(t, 1) + βuxxxt(t, 1) = 0.

(1)

Here, u(t, x) denotes the transverse displacement of the
beam at the position x and time t, and α and β are positive
numbers. This system is usually called an Euler-Bernoulli
equation with Kelvin-Voigt damping.

The stability of an elastic system with various kind of
dampings deplotted over the whole region or just at the
boundary of the region have been studied extensively

⋆ This research is supported by the Natural Science Foundation of
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during the past two decades ([10]). Several methods have
become very effective in applications. One is the classical
multiplier method, see for instance [8], in the early 1980’s.
A frequency domain method has also been developed,
see Gearhart [6] and Huang [7]. Recently, a Riesz basis
approach has evolved to yield the spectrum-determined
growth condition together with the stability all in one
strike (see [11]-[13]).

For Kelvin-Voigt dampings, either locally or globally dis-
tributed on Rayleigh and Euler-Bernoulli beams, were
studied in [3], [9] and [10], where well-posedness, regularity
and stabilities of the system on the energy space were
investigated using a frequency domain method as well as
a contrapositive argument with the multiplier method.

In this paper, we shall see that the eigenfunctions do form a
Riesz basis but the system operator may not generate a C0-
semigroup of operators, that affect the well-posedness of
the problem. We shall also carry out a spectral analysis for
system and reveal the complicated nature of its spectrum.

2. A SMART-MATERIAL BEAM

As we have mentioned, the model of the smart-material
beam that we shall study comes from H.T. Banks [1] who
had used finite element approach to study the problem. In
[2], a combination of a boundary feedback and an internal
damping were used to achieve stability. Here we take the
external force away and show that this simple system is
far more complicated than people think:



















utt(t, x) + αuxxxx(t, x) + βuxxxxt(t, x) = 0
u(t, 0) = 0
ux(t, 0) = 0
αuxx(t, 1) + βuxxt(t, 1) = 0
αuxxx(t, 1) + βuxxxt(t, 1) = 0

(2)

where α and β are positive numbers. We shall see that the
spectrum of this beam has an accumulation point and its
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resolvents are not compact. To begin, we set the Hilbert
space H to be

H :=

{(

f
g

)∣

∣

∣

∣

f ∈ H2[0, 1], g ∈ L2[0, 1], f(0) = f ′(0) = 0

}

(3)

with the norm on (f g) to be

[

1
∫

0

|f ′′(x)|2 + |g(x)|2 dx] 1

2 .

We now carry out a spectral analysis on the system. To
solve the eigen-problem of this beam system, we consider

A

(

φ
ψ

)

= λ

(

φ
ψ

)

,

which is


























ψ(x) = λφ(x),
−αφ′′′′(x) − βψ′′′′(x) = λψ(x),
φ(0) = 0,
φ′(0) = 0,
αφ′′(1) + αψ′′(1) = 0,
αφ′′′(1) + αψ′′′(1) = 0,

and it is equivalent to


























ψ(x) = λφ(x),
(α+ βλ)φ′′′′(x) + λ2φ(x) = 0,
φ(0) = 0,
φ′(0) = 0
(α+ βλ)φ′′(1) = 0,
(α+ βλ)φ′′′(1) = 0.

If (α + βλ) = 0, then φ(x) = ψ(x) = 0, so λ = −α
β is

not an eigenvalue. Furthermore the eigenvalue problem is
equivalent to



















(α+ βλ)φ′′′′(x) + λ2φ(x) = 0,
φ(0) = 0,
φ′(0) = 0,
φ′′(1) = 0,
φ′′′(1) = 0,

which has a nonzero solution. Let ρ be a fourth root of
λ2

α+βλ , i.e. ρ4 = λ2

α+βλ , and we look for solutions of the

form

φ(x) = C1e
ρω1x + C2e

ρω2x + C3e
ρω3x + C4e

ρω4x

with ωi (i = 1, 2, 3, 4) being the fourth roots of −1,
Substituting it into the initial conditions, the equation






1 1 1 1
ρω1 ρω2 ρω3 ρω4

(ρω1)
2eρω1 (ρω2)

2eρω2 (ρω3)
2eρω3 (ρω4)

2eρω4

(ρω1)
3eρω1 (ρω2)

3eρω2 (ρω3)
3eρω3 (ρω4)

3eρω4













C1

C2

C3

C4







=







0
0
0
0






.

would have a nonzero solution if and only if
∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ρω1 ρω2 ρω3 ρω4

(ρω1)
2eρω1 (ρω2)

2eρω2 (ρω3)
2eρω3 (ρω4)

2eρω4

(ρω1)
3eρω1 (ρω2)

3eρω2 (ρω3)
3eρω3 (ρω4)

3eρω4

∣

∣

∣

∣

∣

∣

∣

= 0.

Setting ω := ω1 and express the other roots of unity in
terms of ω, we seek to solve for ρ from

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ω iω −ω −iω
ieρω −ieiρω ie−ρω −ie−iρω

iωeρω ωeiρω −iωe−ρω −ωe−iρω

∣

∣

∣

∣

∣

∣

∣

= 0.

Since
∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ω iω −ω −iω
ieρω −ieiρω ie−ρω −ie−iρω

iωeρω ωeiρω −iωe−ρω −ωe−iρω

∣

∣

∣

∣

∣

∣

∣

= i

∣

∣

∣

∣

∣

∣

∣

1 1 1 1
ω iω −ω −iω
eρω −eiρω e−ρω −e−iρω

iωeρω ωeiρω −iωe−ρω −ωe−iρω

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

1 1
ω iω

∣

∣

∣

∣

∣

∣

∣

∣

e−ρω −e−iρω

−iωe−ρω −ωe−iρω

∣

∣

∣

∣

−
∣

∣

∣

∣

1 1
ω −ω

∣

∣

∣

∣

∣

∣

∣

∣

−eiρω −e−iρω

ωeiρω −ωe−iρω

∣

∣

∣

∣

+

∣

∣

∣

∣

1 1
ω −iω

∣

∣

∣

∣

∣

∣

∣

∣

eiρω −e−ρω

−iωeiρω −ωe−ρω

∣

∣

∣

∣

+

∣

∣

∣

∣

1 1
iω −ω

∣

∣

∣

∣

∣

∣

∣

∣

eρω −e−iρω

iωeρω −ωe−iρω

∣

∣

∣

∣

−
∣

∣

∣

∣

1 1
iω −iω

∣

∣

∣

∣

∣

∣

∣

∣

eρω −e−ρω

iωeρω −iωe−ρω

∣

∣

∣

∣

+

∣

∣

∣

∣

1 1
−ω −iω

∣

∣

∣

∣

∣

∣

∣

∣

eρω −eiρω

iωeρω ωeiρω

∣

∣

∣

∣

= (iω − ω)(−ω + iω)eρ(−ω−iω) − (−ω − ω)(ω + ω)

+(−iω − ω)(−ω + iω)eρ(−ω+iω)

+(−ω − iω)(ω + iω)eρ(ω−iω)

+(−iω − iω)(−iω − iω) + (−iω + ω)(ω + iω)eρ(ω+iω)

= 2ie−
√

2iρ + 4i+ 2ie−
√

2ρ + 2ie
√

2ρ + 4i+ 2ie
√

2iρ

= 2i(e−
√

2iρ + e−
√

2ρ + e
√

2ρ + e
√

2iρ + 4),

it follows that

e−
√

2iρ + e−
√

2ρ + e
√

2ρ + e
√

2iρ = −4.

Setting
√

2ρ := a+ bi, then
{

cosh b cosa+ cosha cos b = −2
sinh a sin b− sinh b sina = 0.

Combining the second equation with the first one, we
get a = ±b. From the first equation, we then have
cosha cos a = −1, i.e. cos a = −1/ cosha = O(e−|a|).
Hence

a = nπ +
π

2
+O(e−|n|).

Since ρ4 = λ2

α+βλ , we have

λ2

α+ βλ

= (
1√
2
a(1 ± i))4 = −a4

= −(nπ +
π

2
+O(e−|n|))4 = −(nπ +

π

2
)4 +O(n3e−|n|).

From this, we see that the eigenvalue are
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λn =
−a4β +

√

a8β2 − 4a4α

2
=

−4a4α

2(a4 +
√

a8β2 − 4a4α)

=
−2α

β +
√

β2 − 4α
a4

= −α
β

+
−2α

β +
√

β2 − 4α
a4

+
α

β

= −α
β

+
α

β





−β +
√

β2 − 4α
a4

β +
√

β2 − 4α
a4





= −α
β

+
α

β







− 4α
a4

(

β +
√

β2 − 4α
a4

)2







= −α
β

+O(
1

a4
) = −α

β
+O(

1

n4
),

(4)

or

λn =
−a4β −

√

a8β2 − 4a4α

2

= −a4β − −a4β +
√

a8β2 − 4a4α

2

= −β(nπ +
π

2
)4 +O(n3e−|n|) − α

β
+O(

1

n4
)

= −β(nπ +
π

2
)4 − α

β
+O(

1

n4
).

(5)

Summarizing these calculations, we have the following
theorem.

Theorem 1. The spectrum of system (2) consists of two
branches of eigenvalues, the one (4) has an accumulation
−α

β and the other (5) goes to infinity. All the resolvents of

A are not compact.

3. RIESZ BASIS PROPERTY

In this section we will show that the eigenvectors of this
system form a Riesz basis [14].

Lemma 3.1. Let L be as before {ρn, n ∈ N} and {φn;n ∈
N} be its spectrum and eigenfunctions respectively. Define
vectors Φn ∈ H by

Φ1,n =
1√
βρn

(

φn

λ1,nφn

)

, Φ2,n =
1

βρn

(

φn

λ2,nφn

)

, (6)

and

Ψ1,n =
1√
βρn





−α
λ1,n

φn

φn



 , Ψ2,n =





−α
λ2,n

φn

φn



 . (7)

Then we have

(Φj,m,Ψi,n) = δi,n,j,m, ∀, i, j = 1, 2, n,m ∈ N (8)

and

AΦj,n = λj,nΦj,n, j = 1, 2, ∀n ∈ N (9)

A∗Ψj,n = λj,nΨj,n, j = 1, 2, ∀n ∈ N (10)

Proof Obviously, (9)–(10) hold and we only verify
equalities (8).

(Φ1,m,Ψ1,n)

=
1

βρn

1
∫

0

[

φ′′m(x)

( −α
λ1,n

φ′′n(x)

)

+ λ1,mφmφn

]

dx

=
1

βρn





−α
λ1,n

1
∫

0

φm(x)φ
(4)
n (x) + λ1,m

1

βρn

1
∫

0

φmφn



 dx

=
1

βρn

( −α
λ1,n

ρn + λ1,m

)

δn,m

=
−αρn + λ1,nλ1,m

βρnλ1,n
δn,m = δ1,1δn,m.

(Φ1,m,Ψ2,n) =

1
∫

0

[

φ′′m(x)

( −α
λ2,n

φ′′n(x)

)

+ λ1,mφmφn

]

dx

=
−α
λ2,n

1
∫

0

φm(x)φ
(4)
n (x)dx+ λ1,m

1
∫

0

φmφndx

=

( −α
λ2,n

ρn + λ1,m

)

δn,m

=
−αρn + λ2,nλ1,m

λ2,n
δn,m = 0 = δ1,2δn,m.

(Φ2,m,Ψ1,n)

=
1

βρm

√
βρn

1
∫

0

[

φ′′m(x)

( −α
λ1,n

φ′′n(x)

)

+ λ2,mφmφn

]

dx

=
1

βρm

√
βρn





−α
λ1,n

1
∫

0

φm(x)φ
(4)
n (x) +

λ2,m

βρm

1
∫

0

φmφn



 dx

=
1

βρm

√
βρn

( −α
λ1,n

ρn + λ2,m

)

δn,m

=
−αρn + λ1,nλ2,m

βρmλ1,n

√
βρn

δn,m = 0 = δ2,1δn,m.

(Φ2,m,Ψ2,n)

=
1

βρm

1
∫

0

[

φ′′m(x)

( −α
λ2,n

φ′′n(x)

)

+ λ2,mφmφn

]

dx

=
1

βρm





−α
λ2,n

1
∫

0

φm(x)φ
(4)
n (x) + λ2,m

1

βρm

1
∫

0

φmφn



 dx

=
1

βρm

( −α
λ2,n

ρn + λ2,m

)

δn,m

=
−αρn + λ2,nλ2,m

βρmλ2,n
δn,m = δ2,2δn,m.

Direct calculating the norm of the vectors, we get

‖Φ1,n||2 =
1

(βρn)

1
∫

0

[φ′′n(x)φ′′n(x) + |λ1,n|2φn(x)φn(x)]dx

=
λ2

1,n + ρn

(βρn)
≈ 1

β
,

‖Φ2,n||2 =
1

(βρn)2

1
∫

0

[φ′′n(x)φ′′n(x) + |λ2,n|2φn(x)φn(x)]dx
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=
λ2

2,n + ρn

(βρn)2
≈ 1,

‖Ψ1,n||2

=
1

βρn





α2

|λ1,n|2

1
∫

0

φ′′n(x)φ′′n(x)dx +

1
∫

0

φn(x)φn(x)dx





=
1

βρn

[

α2ρn

|λ1,n|2
+ 1

]

≈ β

α
,

‖Ψ2,n||2 =





α2

|λ2,n|2

1
∫

0

φ′′n(x)φ′′n(x)dx +

1
∫

0

φn(x)φn(x)dx





=

[

α2ρn

|λ2,n|2
+ 1

]

=

[

α2ρn + λ2
2,n

|λ2,n|2

]

=
α2ρn − αρn − βρnλ2,n

|λ2,n|2
≈ 1.

Lemma 3.2. Let {Φn;n ∈ N} and {Ψn;n ∈ N} be defined
as Lemma 3.1. Then {Φn;n ∈ N} form a Riesz basis in H.

Proof For each F = (f, g) ∈ H, we have

(F,Ψ1,n)

=
1√
βρn

1
∫

0

[

f ′′(x)

( −α
λ1,n

φ′′n(x)

)

dx+ g(x)φn(x)

]

dx

=
1√
βρn

( −α
λ1,n

)

1
∫

0

f(x)φ
(4)
n (x)dx+

1√
βρn

1
∫

0

g(x)φn(x)dx

=
1√
βρn

(−αρn

λ1,n

)

1
∫

0

f(x)φn(x)dx+
1√
βρn

1
∫

0

g(x)φn(x)dx

(F,Ψ2,n) =

1
∫

0

[

f ′′(x)

( −α
λ2,n

φ′′n(x)

)

dx+ g(x)φn(x)

]

dx

=

( −α
λ2,n

)

1
∫

0

f(x)φ
(4)
n (x)dx+

1
∫

0

g(x)φn(x)dx

=

(−αρn

λ2,n

)

1
∫

0

f(x)φn(x)dx+

1
∫

0

g(x)φn(x)dx

(F,Φ1,n)

=
1√
βρn

1
∫

0

[

f ′′(x)φ′′n(x+ g(x)λ1,nφn(x)
]

dx

=
1√
βρn





1
∫

0

f(x)φ
(4)
n (x)dx+ λ1,n

1
∫

0

g(x)φn(x)dx





=
1√
βρn



ρn

1
∫

0

f(x)φn(x)dx+ λ1,n

1
∫

0

g(x)φn(x)dx





(F,Φ2,n)

=
1

βρn

1
∫

0

[

f ′′(x)φ′′n(x + g(x)λ2,nφn(x)
]

dx

=
1

βρn





1
∫

0

f(x)φ
(4)
n (x)dx+ λ2,n

1
∫

0

g(x)φn(x)dx





=
1

βρn



ρn

1
∫

0

f(x)φn(x)dx+ λ2,n

1
∫

0

g(x)φn(x)dx





If for all n ∈ N , (F,Φj,n) = 0, j = 1, 2,, then
1
∫

0

f(x)φn(x)dx = 0,

1
∫

0

g(x)φn(x)dx = 0,

and hence f = g = 0, i.e., F = 0. Similarly, if (F,Φj,n) =
0, j = 1, 2, for all n ∈ N , then we can deduce F = 0.
Therefore {Φj,n, j = 1, 2, n ∈ N} and {Ψj,n; j = 1, 2, n ∈
N} are complete in H.

Now we calculate the Gram matrix G = ((Φi,n,Φj,m))
given by

G =

(

(

(Φ1,n,Φ1,m) (Φ1,n,Φ2,m)
(Φ2,n,Φ1,m) (Φ2,n,Φ2,m)

)

n,m

)

.

(Φ1,m,Φ2,n)

=
1

βρn

√
βρm

1
∫

0

[

φ′′m(x)φ′′n(x) + λ1,mφm(x)λ2,nφn(x)
]

dx

=
1

βρn

√
βρm

[

1
∫

0

φm(x)φ
(4)
n (x)dx

+λ1,mλ2,n

1
∫

0

φm(x)φn(x)dx]

=
1

βρn

√
βρn

[

ρn + λ1,mλ2,n

]

δn,m

(Φ1,n,Φ2,n) =
1

βρn

√
βρn

[

ρn + λ1,nλ2,n

]

=
1 + α

β
√
βρn

(Φ2,m,Φ2,n)

=
1

βρnβρm

1
∫

0

[

φ′′m(x)φ′′n(x) + λ2,mφm(x)λ2,nφn(x)
]

dx

=
1

βρnβρm
[

1
∫

0

φm(x)φ
(4)
n (x)dx

+λ2,mλ2,n

1
∫

0

φm(x)φn(x)dx]

=
1

βρnβρm

[

ρn + λ2,mλ2,n

]

δn,m
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(Φ2,n,Φ2,n) =
|λ2,n|2 + ρn

(βρn)2
≈ 1

(Φ1,m,Φ1,n)

=
1√

βρn

√
βρm

1
∫

0

[φ′′m(x)φ′′n(x)

+λ1,mφm(x)λ1,nφn(x)]dx

=

[

1√
βρn

√
βρm

]

·




1
∫

0

φm(x)φ
(4)
n (x)dx+ λ1,mλ1,n

1
∫

0

φm(x)φn(x)dx





=
1√

βρn

√
βρm

[

ρn + λ1,mλ1,n

]

δn,m

(Φ1,n,Φ1,n) =
|λ1,n|2 + ρn

(βρn)
≈ 1

β
So G is a block diagonal matrix

G = diag

((

(Φ1,n,Φ1,n) (Φ1,n,Φ2,n)
(Φ2,n,Φ1,n) (Φ2,n,Φ2,n)

)

n

)

.

∆ = (Φ1,n,Φ1,n)(Φ2,n,Φ2,n) − |(Φ1,n,Φ2,n)|2

=
|λ1,n|2 + ρn

(βρn)

|λ2,n|2 + ρn

(βρn)2
−
∣

∣

∣

∣

1 + α

β
√
βρn

∣

∣

∣

∣

2

≈ 1

β
−O(ρ−1/2

n )

Note that

(

(Φ1,n,Φ1,n) (Φ1,n,Φ2,n)
(Φ2,n,Φ1,n) (Φ2,n,Φ2,n)

)−1

=
1

∆

(

(Φ2,n,Φ2,n) −(Φ1,n,Φ2,n)
−(Φ2,n,Φ1,n) (Φ1,n,Φ1,n)

)

=
1

∆









|λ2,n|2 + ρn

(βρn)2
− 1 + α

β
√
βρn

− 1 + α

β
√
βρn

|λ1,n|2 + ρn

(βρn)









≈
(

β −O(ρ−1/2
n )

−O(ρ−1/2
n ) 1

)

Therefore

G−1 = diag

(

(

(Φ1,n,Φ1,n) (Φ1,n,Φ2,n)
(Φ2,n,Φ1,n) (Φ2,n,Φ2,n)

)−1

n

)

.

is a bounded operator in ℓ2. According to Theorem in [14,
pp32, Theorem 9], {Φj,n; j = 1, 2, n ∈ N} forms a Riesz
basis for H.

Though the eigenvectors forms a Riesz basis, the opera-
tor A cannot generate a strongly continuous semigroup
because it is not closed.

Lemma 3.3. Operator A is not closed and so it cannot
generate a strongly continuous semigroup.

Proof

See that the set H4
0 [0, 1] := {f ∈ H4[0, 1] | f(0) = f ′(0) =

0} is dense in the space H2
0 [0, 1] := {f ∈ H2[0, 1] | f(0) =

f ′(0) = 0} under the norm

‖f‖2
2 :=

1
∫

0

|f(x)|2dx.

So, we can choose a sequence fn ∈ H4
0 [0, 1] that converges

to some f ∈ H2
0 [0, 1] but f 6∈ H4

0 [0, 1]. Consider the vector

vn =

(

fn

−α
β
fn

)

.

It is easily to check that vn is in D(A) and vn converges
to v with

v =

(

f

−α
β
f

)

∈ H.

We also see that

Avn =

(

−α
β
fn

0

)

which also converges in H. But, v is not in the domain of
A. So, A is not closed, and hence, A cannot generate a
strongly continuous semigroup by the Hille-Yosida Theo-
rem.

4. CONCLUSION

We have exhibited a number of unusual properties for the
smart material beam. Despite these difficulties, this beam
system can be made into an exponentially stable system
and we leave these details to a forthcoming full version of
this paper.
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