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Abstract: This paper focuses on H∞ controller design for systems with a time-varying delay.
By taking the relationship among the time-varying delay, its upper bound and their difference
into account, an improved delay-dependent bounded real lemma (BRL) is proposed. The design
method for H∞ controllers is given using a modified cone complementary linearisation (CCL)
algorithm with a new stopping condition. Numerical examples are given to demonstrate the
effectiveness and the benefits of the proposed method.

1. INTRODUCTION

During the last decade, considerable attention has been
devoted to the problem of delay-dependent stability, sta-
bilization and H∞ controller design for time-delay systems
Park [1999], Moon et al. [2001], Fridman & Shaked [2003],
Gu et al. [2003], Gao & Wang [2003], Lee et al. [2004],
Han [2004], He et al. [2004a,b], Wu et al. [2004a], Jiang
& Han [2005], Lin et al. [2006], Xu et al. [2006], He et
al. [2007a,b]. For systems with time-varying delay, most
of the delay-dependent criteria are based on four model
transformations of the original system Fridman & Shaked
[2003]. Recently, a free-weighting matrix method has been
proposed to improve the delay-dependent stability results
for systems with time-varying delay He et al. [2004b], Wu
et al. [2004a], in which the bounding techniques on some
cross product terms are not involved. Xu et al. [2006] em-
ployed this method to design the H∞ controller. However,
as pointed out in He et al. [2007a,b], some useful terms
are ignored in the derivative of the Lyapunov-Krasovskii
functional in the existing literatures such as Fridman &
Shaked [2003], Han [2004], He et al. [2004b], Wu et al.
[2004a] and Xu et al. [2006]. Although He et al. [2007a,b]
retained these terms and proposed an improved delay-
dependent stability criterion for systems with time-varying
delay, there is room for further investigation. For instance,
in Fridman & Shaked [2003], Han [2004], He et al. [2004b],
Wu et al. [2004a], Xu et al. [2006] and He et al. [2007a,b],
the delay term d(t) with 0 ≤ d(t) ≤ h was often enlarged
as h. Another term h− d(t) was also regarded as h in He
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et al. [2007a,b]. That is, h = d(t)+(h−d(t)) was enlarged
as 2h, which may lead to conservativeness.

On the other hand, the obtained delay-dependent stabi-
lization and H∞ controller design conditions with memo-
ryless state feedback using some improved methods can-
not be expressed as strict LMI ones. Moon et al. [2001]
modified the cone complementary linearisation (CCL) al-
gorithm presented in Ghaoui et al. [1997] and proposed
an LMI-based iterative algorithm to solve the problem
of delay-dependent state feedback stabilization controller
design. Later, this algorithm was extended to H∞ state
feedback control design in Gao & Wang [2003], Lee et
al. [2004], Xu et al. [2006]. However, the modified CCL
algorithm employed in Moon et al. [2001], Gao & Wang
[2003], Lee et al. [2004] and Xu et al. [2006] has a drawback
that its stopping conditions for iteration are very strict.
The gain matrix and the other Lyapunov matrices derived
in the previous step of iteration must satisfy one or more
matrix inequalities in Moon et al. [2001], Gao & Wang
[2003], Lee et al. [2004], Xu et al. [2006]. In fact, once the
gain matrix is derived, the delay-dependent stabilization
conditions devised using these methods are reduced to
LMIs. Thus, the iteration can be stopped if the LMIs
with the given gain matrix are feasible, in which the other
Lyapunov matrices are the decision variables instead of
the given ones.

In this paper, an improved delay-dependent bounded real
lemma (BRL) is first presented for systems with a time-
varying delay without ignoring any terms in the derivative
of Lyapunov-Krasovskii functional. The obtained result
takes the relationship between d(t), h and h − d(t) into
account. Based on the obtained BRL, the H∞ controller is
designed using a modified CCL algorithm with a new stop-
ping condition. Numerical examples are given to demon-
strate the effectiveness and the merits of the proposed
method.
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Notation: Throughout this paper, the superscripts ‘−1’
and ‘T ’ stand for the inverse and transpose of a matrix, re-
spectively; Rn denotes the n-dimensional Euclidean space;
Rn×m is the set of all n×m real matrices; P > 0 means
that the matrix P is positive definite; I is an appropriately
dimensioned identity matrix; diag{· · ·} denotes a block-
diagonal matrix; and the symmetric terms in a symmetric

matrix are denoted by ?, e.g.,
[

X Y
? Z

]
=

[
X Y
Y T Z

]
.

2. PROBLEM FORMULATION

Consider the following linear system with time-varying
delay:



ẋ(t) = Ax(t) + Adx(t− d(t)) + Bu(t) + Bωω(t), t > 0

z(t) =

[
Cx(t) + Dωω(t)
Cdx(t− d(t))

Du(t)

]

x(t) = φ(t), t ∈ [−h, 0]

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is
the controlled input, ω(t) ∈ Lq

2[0,∞) is the exogenous
disturbance signal and z(t) ∈ Rr is the controlled output.
A, Ad, B, Bω, C, Dω, Cd and D are constant matrices with
appropriate dimensions, the time delay, d(t), is a time-
varying differential function that satisfies

0 ≤ d(t) ≤ h (2)

and
ḋ(t) ≤ µ (3)

where h > 0 and µ are constants. The initial condition,
φ(t), is a continuous vector-valued initial function of t ∈
[−h, 0].

For a given scalar γ > 0, the performance of the system is
defined to be

J(ω) =

∞∫

0

(zT (t)z(t)− γ2ωT (t)ω(t))dt. (4)

We are interested in finding a state-feedback gain, K ∈
Rm×n, in the control law

u(t) = Kx(t) (5)

such that, for any delay d(t) satisfying (2) and (3),

(i) the closed-loop system of (1)
ẋ(t) = (A + BK)x(t) + Adx(t− d(t)) + Bωω(t) (6)

is asymptotically stable under the condition ω(t) = 0, ∀t ≥
0;

(ii)J(ω) < 0 for all non-zero ω(t) ∈ Lq
2[0,∞) and a

prescribed γ > 0 under the condition x(t) = 0, ∀t ∈
[−h, 0].

3. BOUNDED REAL LEMMA

In the following, the terms ignored in He et al. [2004b],
Wu et al. [2004a], Xu et al. [2006] are retained like those
in He et al. [2007a,b]. However, d(t)X with X ≥ 0 is
enlarged as hX and (h − d(t))X is enlarged as hX. In

fact, d(t)X + (h− d(t))X is exactly equal to hX. In what
follows, this characteristic is observed and a new delay-
dependent BRL is presented.
Theorem 1. Given scalars h ≥ 0, µ and γ > 0, system (1)
with u(t) = 0 and a time-varying delay d(t) satisfying (2)
and (3) is asymptotically stable and satisfies J(ω) < 0
for all non-zero ω(t) ∈ Lq

2[0,∞) under the condition
x(t) = 0, ∀t ∈ [−h, 0] if there exist matrices P = PT > 0,
Qi = QT

i ≥ 0, i = 1, 2, N , M , Z = ZT > 0 and
X = XT ≥ 0, such that the following LMIs hold,

Φ =




Φ1 + Φ2 + ΦT
2 + hX

√
hΦT

3 Z ΦT
4 ΦT

5
? −Z 0 0
? ? −I 0
? ? ? −I


 < 0 (7)

Ψ1 =
[

X N
? Z

]
≥ 0 (8)

Ψ2 =
[

X M
? Z

]
≥ 0 (9)

where

Φ1 =




PA+AT P+
2∑

i=1

Qi PAd 0 PBω

? −(1− µ)Q2 0 0
? ? −Q1 0
? ? ? −γ2I




Φ2 = [N M −N −M 0]
Φ3 = [A Ad 0 Bω]
Φ4 = [C 0 0 Dω]
Φ5 = [0 Cd 0 0].

Proof. Choose a Lyapunov-Krasovskii functional candi-
date to be

V (xt) = xT (t)Px(t) +

t∫

t−h

xT (s)Q1x(s)ds

+

t∫

t−d(t)

xT (s)Q2x(s)ds

+

0∫

−h

t∫

t+θ

ẋT (s)Zẋ(s)dsdθ

(10)

where P = PT > 0, Qi = QT
i ≥ 0, i = 1, 2 and

Z = ZT > 0, are to be determined.

Calculating the derivative of V (xt) along the solutions of
system (1) yields

V̇ (xt) ≤ 2xT (t)Pẋ(t) + xT (t)(Q1 + Q2)x(t)
−xT (t− h)Q1x(t− h)
−(1− µ)xT (t− d(t))Q2x(t− d(t))

+hẋT (t)Zẋ(t)−
t∫

t−h

ẋT (s)Zẋ(s)ds.

(11)

From the Leibniz-Newton formula, the following equations
are true for any matrices N and M , with appropriate
dimensions,
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0 = 2ζT (t)N


x(t)− x(t− d(t))−

t∫

t−d(t)

ẋ(s)ds


 (12)

0 = 2ζT (t)M


x(t− d(t))− x(t− h)−

t−d(t)∫

t−h

ẋ(s)ds


 (13)

where

ζ(t)(t) = [xT (t) xT (t− d(t)) xT (t− h) ωT (t)]T .

On the other hand, for any appropriately dimensioned
matrix X = XT ≥ 0, the following equality is true:

0 =

t∫

t−h

ζT (t)Xζ(t)ds−
t∫

t−h

ζT (t)Xζ(t)ds

= hζT (t)Xζ(t)−
t−d(t)∫

t−h

ζT (t)Xζ(t)ds

−
t∫

t−d(t)

ζT (t)Xζ(t)ds

(14)

In addition, the following equations are also true:

−
t∫

t−h

ẋT (s)Zẋ(s)ds

= −
t∫

t−d(t)

ẋT (s)Zẋ(s)ds−
t−d(t)∫

t−h

ẋT (s)Zẋ(s)ds

(15)

Adding the right sides of (12)-(14) into V̇ (xt) and using
(15) yield

V̇ (xt) + zT (t)z(t)− γ2ωT (t)ω(t)
≤ ζT (t)

[
Φ1+Φ2+ΦT

2 +hX+hΦT
3 ZΦ3+ΦT

4 Φ4+ΦT
5 Φ5

]
ζ(t)

−
t∫

t−d(t)

ξT (t, s)Ψ1ξ(t, s)ds−
t−d(t)∫

t−h

ξT (t, s)Ψ2ξ(t, s)ds
(16)

where

ξ(t, s) = [ζT (t) ẋT (s)]T .

Thus, if Ψi ≥ 0, i = 1, 2, and Φ1 + Φ2 + ΦT
2 + hX +

hΦT
3 ZΦ3+ΦT

4 Φ4+ΦT
5 < 0, which is equivalent to (7) by

Schur complements, V̇ (xt) + zT (t)z(t)− γ2ωT (t)ω(t) < 0,
which ensures J(ω) < 0.

On the other hand, (7)-(9) imply that the following LMIs
(17)-(19) hold, which guarantee V̇ (xt) < −ε‖x(t)‖2 for a
sufficiently small ε > 0 such that system (1) with u(t) = 0
and ω(t) = 0 is asymptotically stable,[

Φ̂1 + Φ̂2 + Φ̂T
2 + hX̂

√
hΦ̂T

3 Z
? −Z

]
< 0 (17)

Ψ̂1 =
[

X̂ N̂
? Z

]
≥ 0 (18)

Ψ̂2 =
[

X̂ M̂
? Z

]
≥ 0 (19)

where

Φ̂1 =




PA + AT P +
2∑

i=1

Qi PAd 0

? −(1− µ)Q2 0
? ? −Q1




Φ̂2 =
[
N̂ M̂ − N̂ − M̂

]

Φ̂3 = [A Ad 0]

and P = PT > 0, Qi = QT
i ≥ 0, i = 1, 2, N̂ , M̂ ,

Z = ZT > 0 and X̂ = X̂T ≥ 0, are decision variables.
This completes the proof.
Remark 2. In many cases, the information on the deriva-
tive of delay is unknown. Regarding this circumstance,
a rate-independent bounded real lemma for a delay only
satisfying (2) can be derived by choosing Q2 = 0 in The-
orem 1. In what follows, the corresponding results for the
derivative of delay being unknown can be derived following
the similar line.

From the proof procedure of Theorem 1, we have the result
regarding the stability of system (1) with u(t) = 0 and
ω(t) = 0.
Corollary 3. Given scalars h ≥ 0 and µ, the system (1)
with u(t) = 0, ω(t) = 0 and a time-varying delay d(t)
satisfying (2) and (3) is asymptotically stable if there exist
matrices P = PT > 0, Qi = QT

i ≥ 0, i = 1, 2, N̂ , M̂ ,
Z = ZT > 0 and X̂ = X̂T ≥ 0, such that LMIs (17)-(19)
are feasible.
Remark 4. In fact, if Q2 = Q, Q1 = εI, with ε > 0 being
sufficient small scalars, M̂ = 0, and N̂ =

[
Y T TT 0

]T ,

X =

[
X11 X12 0
? X22 0
? ? 0

]
≥ 0, Corollary 3 yields Theorem 2 in

Wu et al. [2004a].

4. STATE FEEDBACK H∞ CONTROLLER DESIGN

In this section, Theorem 1 is extended to design an H∞
controller for system (1) under control law (5).
Theorem 5. Given scalars h ≥ 0, µ and γ > 0, closed-loop
system (6) with a time-varying delay d(t) satisfying (2)
and (3) is asymptotically stable and satisfies J(ω) < 0
for all non-zero ω(t) ∈ Lq

2[0,∞) under the condition
x(t) = 0, ∀t ∈ [−h, 0] if there exist matrices L = LT > 0,
Ri = RT

i ≥ 0, i = 1, 2, Y = Y T , W = WT > 0, S, T and
V , such that the following matrix inequalities hold,




Ξ1 + Ξ2 + ΞT
2 + hY

√
hΞT

3 ΞT
4 ΞT

5 ΞT
6

? −W 0 0 0
? ? −I 0 0
? ? ? −I 0
? ? ? ? −I


 < 0 (20)

[
Y S
? LW−1L

]
≥ 0 (21)

[
Y T
? LW−1L

]
≥ 0 (22)

where
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Ξ1 =




Ξ11 AdL 0 Bω

? −(1− µ)R2 0 0
? ? −R1 0
? ? ? −γ2I




Ξ11 = AL + LAT + BV + V T BT +
2∑

i=1

Ri

Ξ2 = [S T − S − T 0]
Ξ3 = [AL + BV AdL 0 Bω]
Ξ4 = [CL 0 0 Dω]
Ξ5 = [0 CdL 0 0]
Ξ6 = [DV 0 0 0].

Moreover, a stabilizing H∞ controller is given by u(t) =
V L−1x(t).

Proof. From Theorem 1, it is clear that closed-loop system
(6) with a time-varying delay d(t) satisfying (2) and (3)
is asymptotically stable and satisfies J(ω) < 0 for all
non-zero ω(t) ∈ Lq

2[0,∞) under the condition x(t) =
0, ∀t ∈ [−h, 0] if there exist matrices P = PT > 0,
Qi = QT

i ≥ 0, i = 1, 2, N , M , Z = ZT > 0 and
X = XT ≥ 0, such that matrix inequalities (8)-(9) and
(23) hold

Φ̃ =




Φ̃1 + Φ2 + ΦT
2 + hX

√
hΦ̃T

3 Z ΦT
4 ΦT

5 Φ̃T
6

? −Z 0 0 0
? ? −I 0 0
? ? ? −I 0
? ? ? ? −I


 < 0(23)

where

Φ̃1 =




Φ̃11 PAd 0 PBω

? −(1− µ)Q2 0 0
? ? −Q1 0
? ? ? −γ2I




Φ̃11 = P (A + BK) + (A + BK)T P +
2∑

i=1

Qi

Φ̃3 = [A + BK Ad 0 Bω]
Φ̃6 = [DK 0 0 0]

and the other parameters are defined in Theorem 1. Define
Π = diag{P−1, P−1, P−1, I}
Θ = diag{Π, Z−1, I, I, I}.

Pre- and post-multiply Φ̃ in (23) by Θ and Θ, respectively,
and pre- and post-multiply Ψi, i = 1, 2 in (8)-(9) by
diag{Π, L} and diag{Π, L}, respectively, and make the
following changes to the variables,

L := P−1, V := KL, S := ΠNL, T := ΠML
Ri := LQiL, i = 1, 2, Y := ΠXΠ, W := Z−1.

So, (20)-(22) can be derived using Schur complement. This
completes the proof.

It is noted that the conditions in Theorem 5 are no
longer LMI ones due to the term LW−1L in (21)-(22).
An appropriate state feedback controller gain matrix K
cannot be found using a convex optimization algorithm.
However, as mentioned in Moon et al. [2001], the cone
complementary linearisation (CCL) algorithm proposed in
Ghaoui et al. [1997] can be employed to solve this non-
convex problem.

Define new variables U such that LW−1L ≥ U , and
replace conditions (21), (22) with[

Y S
? U

]
≥ 0 (24)

[
Y T
? U

]
≥ 0 (25)

and
LW−1L ≥ U. (26)

(26) is equivalent to L−1WL−1 ≤ U−1, which is expressed
as [

U−1 L−1

L−1 W−1

]
≥ 0 (27)

using Schur complements. Thus, by introducing new vari-
ables P, H, Z, the original conditions (21)-(22) are rep-
resented as (24)-(25) and[

H P
P Z

]
≥ 0, P = L−1, H = U−1, Z = W−1. (28)

Then, this non-convex problem is converted to the follow-
ing LMI-based nonlinear minimization problem:

Minimize tr{LP + UH + WZ}
subject to (20), (24), (25) and[

H P
P Z

]
≥ 0,

[
L I
I P

]
≥ 0, (29)

[
U I
I H

]
≥ 0,

[
W I
I Z

]
≥ 0. (30)

Then, the minimum H∞ performance γmin can be found
for a given h ≥ 0 through the following algorithm.
Algorithm 1. Step 1. Choose a sufficiently large initial
γ > 0 such that there exists a feasible solution to (20),
(24), (25), (29)and (30). Set γmin = γ.

Step 2. Find a feasible set (P0, L0, R10, R20, S0, T0, Y0, Z0,
W0, U0, H0, V0) satisfying (20), (24), (25), (29) and (30).
Set k = 0.

Step 3. Solve the following LMI problem for the variables
(P, L, R1, R2, S, T, Y , Z, W , U , H, V )

Minimize tr{LPk+LkP +UHk+UkH+WZk+WkZ}
subject to (20), (24), (25), (29) and (30).

Set Pk+1 = P , Lk+1 = L, Uk+1 = U , Hk+1 = H, Wk+1 =
W , Zk+1 = Z.

Step 4. If LMIs (8), (9) and (23) are feasible with a given K
derived in Step 3 for the variables P, Q1, Q2, N,M , X, Z,
then set γmin = γ and return to Step 2 after decreasing
γ to some extent. If LMIs (8), (9) and (23) are infeasible
within a specified number of iterations, then exit. Other-
wise, set k = k + 1 and go to Step 3.
Remark 6. It is noted that the stopping conditions for it-
eration at the beginning of step 4 in Moon et al. [2001] and
Gao & Wang [2003] are very strict. The gain matrix K and
the other decision variables such as L,R1, R2, Y,W, S, T
obtained in the previous step must satisfy matrix inequal-
ities (20)-(22), which are equivalent to that the matrices
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Table 1. Controller gains and No. of iterations using Algorithm 1 for γ = 0.1287 in Example 7.

h Feedback gain No. of Iterations
obtained by Algorithm 1 Algorithm 1 Lee et al. [2004] Xu et al. [2006]

1.1 [-0.1718 -32.0748] 2 19 16
1.2 [-0.1228 -33.6992] 2 32 22
1.25 [-0.0905 -35.0062] 2 86 29
1.40 [0.0009 -19.0760] 7 − −

P, Q1, Q2, X, Z,N, M obtained in the previous step must
satisfy (8), (9) and (23) with the given K. In fact, once
K is derived, the conditions in Theorem 5 are reduced
to LMIs for P, Q1, Q2, X, Z,N,M . Thus, in Algorithm
1, the stopping conditions for iteration are modified to
verify whether LMIs (8), (9) and (23) are feasible, which
may provide more freedom to select the variables such as
P, Q1, Q2, X, Z,N, M .

5. NUMERICAL EXAMPLES

In this section, two numerical examples are used to show
the benefits of the proposed method.
Example 7. Consider system (1) with

A =
[

0 0
0 1

]
, Ad =

[−1 −1
0 −0.9

]
, B =

[
0
1

]
, Bω =

[
1
1

]

C = [ 0 1 ] , Dω = [ 0 ] , Cd = [ 0 0 ] , D = [ 0.1 ]

For constant delay µ = 0 and γ = 0.1287, it is reported
in Gao & Wang [2003], Lee et al. [2004] and Xu et al.
[2006] that the system can be stabilized for 0 ≤ h ≤ 1.25,
0 ≤ h ≤ 1.25 and 0 ≤ h ≤ 1.38, respectively. However, the
system can be stabilized for 0 ≤ h ≤ 1.40 using Algorithm
1. Moreover, the number of iterations for some given h and
controller gains are listed in Table 1.

As for time-varying delay, the obtained H∞ performance
γmin of the closed-loop system for some given h is listed
in Table 2. It is noted that our methods provide improved
results over those in Xu et al. [2006] because not only an
improved bounded real lemma has been established but
also a new algorithm has been presented.

Table 2. Obtained γmin for h = 1 and various
µ in Example 7.

µ Xu et al. [2006] Algorithm 1

µ = 0.5 0.117 0.111

unknown µ − 0.118

Example 8. Consider the stability of system (1) with
u(t) = 0 and ω(t) = 0 and

A =
[

0 1
−1 −2

]
, Ad =

[
0 0
−1 1

]
.

The computed upper bounds, h, which guarantee the
stability of system (1) with u(t) = 0 and ω(t) = 0 for
various µ, are listed in Table 3. It is clear that our results
have improvement over those in Fridman & Shaked [2003],
Han [2004], He et al. [2004b], Wu et al. [2004a], Jiang &
Han [2005], He et al. [2007a] and He et al. [2007b].

Table 3. Allowable upper bounds of h for
various µ in Example 8.

µ 0.5 0.9 unknown µ

Fridman & Shaked [2003]
Han [2004] 0.99 0.56 0.56

He et al. [2004b]
Wu et al. [2004a]

Jiang & Han [2005] − − 0.67

He et al. [2007a,b] 1.08 0.77 0.77

Corollary 3 1.26 1.06 1.06

6. CONCLUSIONS

A new delay-dependent BRL has been established with-
out ignoring any terms in the derivative of Lyapunov-
Krasovskii functional by considering the relationship
among the time-varying delay, its upper bound and their
difference. Based on the derived BRL, the H∞ controller
has been designed using a new CCL algorithm with a
modified stopping condition which is less strict than the
existing ones. Two numerical examples have verified the
less conservativeness.
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