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Abstract: In this paper, we deal with robust performance analysis problems of LTI systems
depending on uncertain parameters. By following existing scaling-based approaches, we firstly
derive computationally tractable parameter-independent LMI conditions to assess the robust
performance, which are conservative in general. What makes the present approach novel is to
take the dual of those LMIs so that we can conclude the exactness of the analysis results. More
precisely, we clarify that if the computed dual solution satisfies a certain rank condition, then
we can ensure that the robust performance is never attained. In particular, we can extract the
worst case perturbation that violates the underlying performance. Thus we provide viable tests
for the exactness verification of LMI-based robust performance analysis.
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1. INTRODUCTION

This paper is concerned with the robustness analysis
problems of linear time-invariant (LTI) systems depending
on uncertain parameters (Barmish [1994]). These problems
are naturally formulated as feasibility problems of linear
matrix inequalities (LMIs) whose coefficient matrices are
affected by the uncertain parameters. These LMIs, so
called robust LMIs, arise when we deal with whole variety
of robustness analysis and synthesis problems (see, ex.,
Scherer [2005, 2006]). Unfortunately, however, robust LMI
problems are essentially intractable NP-hard problems. In
view of these facts, main focus has been laid upon deriving
sufficient LMI conditions that are less conservative and
efficiently solved via LMI solvers.

Recently, stimulated by the theoretical advances on poly-
nomial optimization via sum-of-squares decompositions
(Lasserre [2001], Parrilo [2003]), novel contributions have
been made to deal with robust LMIs in an asymptot-
ically exact fashion (see, ex., Bliman [2004a], Henrion
et al. [2004], Scherer [2005, 2006], Scherer and Hol [2006]).
Among them, Scherer [2005, 2006] and Scherer and Hol
[2006] showed a unified way for LMI relaxation, which
enables us to obtain a hierarchy of LMIs with theoretical
guarantee of asymptotic exactness. In addition, by taking
the dual of these LMIs, viable tests for the exactness
verification have been provided (Scherer [2005, 2006]).

In Ebihara et al. [2007], the authors pursued the direction
related to but yet distinct from Scherer [2005, 2006], fo-
cusing on robustness analysis problems of continuous-time
uncertain LTI systems. More precisely, the authors pro-
vided sound rank conditions for the exactness verification
based on the particular block-moment matrix structure
of the dual solution. This result is closely related to the

LMI relaxation for polynomial matrix inequality (PMI)
problems suggested in Henrion and Lasserre [2006], which
is a genuine matrix counterpart of those in Lasserre [2001],
Henrion and Lasserre [2005]. In comparison with the direct
formulation as PMIs, one of the salient feature of the
approach in Ebihara et al. [2007] is that it exploits the
block-moment matrix structure of the dual solution so that
the associated computational burden can keep moderate.

Our primary concern in this paper is to extend the results
in Ebihara et al. [2007] so that we can deal with discrete-
time system analysis in a unified fashion. To this end, we
first analyze the generalized Lyapunov inequality (Scherer
[2005]) for matrices depending on uncertain parameters.
By following Ebihara et al. [2007], we convert this robust
LMI into a numerically verifiable LMI via (D,G)-scaling
(Meinsma et al. [1997]) and take its dual for the exactness
verification. Based on these preliminary results, we next
clarify that, if the computed dual solution satisfies a
certain rank condition, then the original robust LMI
never holds. In particular, we can extract the worst case
parameter perturbation that violates the robust LMI. We
also show that these results can readily be extended to
robust dissipative performance analysis by using the idea
of Hamiltonian eigenvalue tests (Hagiwara [2005], Zhou
and Doyle [1998]). Thus we can obtain consistent results to
our preceding results for continuous-time system analysis
(Ebihara et al. [2007]).

We use the following notations in this paper. The symbol
Sn denotes the set of real symmetric matrices of the size
n. For a matrix A ∈ Rn×n, we denote by λ(A) the set
of its eigenvalues. For matrices A,B ∈ Rn×n, the symbol
λ(A,B) denotes the set of their generalized eigenvalues,
i.e, the set of λ ∈ C satisfying Ax = λBx for x ∈ Cn \
0. For A ∈ Sn, we denote by λk(A) (k = 1, · · · , n)
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its k-th eigenvalue. In addition, we use the notation
In(A) = (p, ν, ζ) to indicate that the number of the
positive, negative and zero eigenvalues of A are p, ν and
ζ, respectively. For a matrix A ∈ Rn×m, we denote its
Moore-Penrose generalized inverse by A†. For a matrix A
with partition

A =
[

A11 A12
A21 A22

]
, A11 ∈ Rn1×m1 , A22 ∈ Rn2×m2 ,

we define �A�n1 := [ A11 A12 ] and �A�n2 := [ A21 A22 ].
In particular, if A is square and ni = mi (i = 1, 2), we
define 〈A〉n1 := A11 and 〈A〉n2 := A22. Finally, for given
q, r, s ∈ R satisfying qr − s2 < 0, we define D(q, r, s) and
∂D(q, r, s) as follows:

D(q, r, s) :=
{

λ ∈ C :
[

1
λ

]∗ [
r s
s q

] [
1
λ

]
< 0
}

,

∂D(q, r, s) :=
{

λ ∈ C :
[

1
λ

]∗ [
r s
s q

] [
1
λ

]
= 0
}

.

2. PROBLEM FORMULATION AND GENERALIZED
LYAPUNOV INEQUALITY

Let us consider the rational functions M(θ) : RL → Rn×n

and J(θ) : RL → Rn×n represented by

M(θ) = M11 + M12(Il − ∆l(θ)M22)−1∆l(θ)M21,
J(θ) = J11 + J12(Il − ∆l(θ)J22)−1∆l(θ)J21,

∆l(θ) =
L∑

i=1

θiEl,i.

(1)

Here, the uncertain parameter θ varies over Θδ := [−δ, δ]L.
The matrices El,i ∈ Rl×l (i = 1, · · · , L) are nonzero
diagonal matrices whose diagonal entries are zero or one
and satisfy

∑L
i=1 El,i = Il. We assume that the LFTs in

(1) are well-posed, i.e.,

det(Il − ∆l(θ)M22) �= 0, det(Il − ∆l(θ)J22) �= 0, ∀θ ∈ ΘL
δ .

Under these preparations, in this paper, we consider the
next problem which is basically motivated from the robust
D-stability analysis problem discussed in Barmish [1994].
Problem 1. For given q, r, s ∈ R with qr − s2 < 0,
determine whether the following condition holds or not:
{λ(M(θ), J(θ)) ∩ ∂D(q, r, s)} = ∅ ∀θ ∈ ΘL

δ . (2)

The next Lemma shows that Problem 1 can be reduced
into a feasibility test of a robust LMI. This result read-
ily follows from the generalized Lyapunov inequality for
uncertainty-free matrices (Scherer [2005]).
Lemma 1. For given q, r, s ∈ R satisfying qr − s2 < 0,
the condition (2) holds if and only if there exists P (θ) :
RL → Sn such that[

rP (θ) sP (θ)
sP (θ) qP (θ)

]
−
[

M(θ)T

−J(θ)T

][
M(θ)T

−J(θ)T

]T

≺ 0 ∀θ ∈ ΘL
δ . (3)

The matrix-valued function P (θ) is often referred to as a
parameter-dependent multiplier (Chen and Sugie [1996]).
From the facts that (i) M(θ) and J(θ) are continuous
with respect to θ ∈ ΘL

δ , (ii) the set ΘL
δ is compact, (iii)

the inequality (3) is strict, the multiplier P (θ) can be
restricted to be a polynomial without loss of generality
(Bliman [2004b]). Nevertheless, the robust LMI (3) is still
intractable mainly due to the following reasons:

1. The explicit degree of the polynomial P (θ) that
enables us to achieve exact analysis is not known
a priori, even though several results were obtained
for robust D-stability analysis cases (Henrion et al.
[2004], Zhang et al. [2003]).

2. Suppose we fix the multiplier P (θ) to be a polynomial
of finite-degree. Then, in the single parameter case,
we can reduce the robust LMI (3) into a parameter-
independent LMI in an exact fashion via (D,G)-
scaling (Meinsma et al. [1997]). However, this is not
straightforwardly achieved in the multiple uncertain
parameter cases, and those LMIs resulting from LMI
relaxations are expected to be conservative in general.

In view of these current state of the art, all we can do
amounts to resorting to LMI conditions that are conserva-
tive in general. To obtain exactness certificates even under
these difficult situation, in this paper, we follow the idea in
Ebihara et al. [2007] and consider the dual LMI problem.
This enables us to derive viable tests for the exactness
verification as we see in the next two sections. We note that
the discussion in Ebihara et al. [2007] is restricted to the
case where J(θ) = I and (q, r, s) = (0, 0, 1) in Problem 1.

3. ROBUST ∂D-NONSINGULARITY ANALYSIS

3.1 Single Uncertain Parameter Case

Let us first consider the single parameter case. In this case,
we can state the next result.
Theorem 1. For given odd number N and δ > 0, let us
consider the following LMI-LME conditions with respect
to H ∈ S(N+3)nb

(nb := n + l):
Find H ∈ S(N+3)nb

\ {0} such that

H =


H0 H1 · · · H(N+1)/2

H1 . .. . ..
...

... . .. . .. HN
H(N+1)/2 · · · HN HN+1

 � 0,

δ2〈H〉(N+1)nb − 〈H〉(N+1)nb
� 0,[

02n,2l
−I2l
V

]T [
H0 H1
H1 H2

] [ 02n,2l
−I2l
V

]
= 0, WTH0W = 0,

〈
[

rIn sIn
sIn qIn

]
〈Hj〉2n〉n + 〈

[
rIn sIn
sIn qIn

]
〈Hj〉2n〉n = 0

(j = 0, · · · , N)

(4)

where

V :=
[
M21 0 M22 0
0 J21 0 J22

]T

, W := [M11 −J11 M12 −J12 ]T.

Then, the following two assertions hold:
(i) If (4) is infeasible, then the condition (2) holds.
(ii) Suppose (4) is feasible and has a solution H. Let us
denote the full-rank factorization of H by

H =

 H0
...

H(N+1)/2

 H0
...

H(N+1)/2

T

(Hj ∈ R2nb×m) (5)

and define

H :=
[
(�H0�n)T · · · (�H(N−1)/2�n)T

]T ∈ R(N+1)n/2×m,

H :=
[
(�H1�n)T · · · (�H(N+1)/2�n)T

]T ∈ R(N+1)n/2×m.
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Then, if

rank(H) = rank(H), (6)

the condition (2) never holds. More precisely, if we define
Ω := H

†
H, then this matrix Ω satisfies Ω ∈ Sm and

λ(Ω) ⊂ Θδ. In addition, we have {λ(M(λk(Ω)), J(λk(Ω)))∩
∂D(q, r, s)} �= ∅ for all k = 1, · · · ,m.

Due to limited space, we omit the proof of this theorem.
It should be noted that, in the case where we have only
one uncertain parameter, we can apply those results in
(Ebihara and Hagiwara [2005], Meinsma et al. [1997]) so
that we can obtain an LMI that ensures the existence of
N -th degree polynomial PN (θ) satisfying (3) in an exact
fashion. The LMI (4) corresponds to the dual of this
LMI, which follows immediately from the convex duality
theory (Balakrishnan and Vandenberghe [2003]). From
this procedure, we see that the LMI (4) is infeasible if
and only if (3) is feasible via P (θ) = PN (θ). Thus, the
assertion (i) in Theorem 1 readily follows.

The importance of the theorem lies in the assertion (ii),
which provides a viable tests for the exactness verification.
Namely, if the dual LMI (4) is feasible and if the computed
dual solution satisfies the rank condition (6), then we can
conclude that (2) never holds. In addition, the worst case
parameter perturbation θw such that {λ(M(θw), J(θw)) ∩
∂D(q, r, s)} �= ∅ can be obtained as eigenvalues of the
matrix Ω ∈ Sm, which can be readily computed by
constructing Ω from the dual solution H. This result
surely goes beyond the standard primal LMI approach that
allows us to conclude the assertion (i) only. We note that
the key to derive the result (ii) lies on the particular block-
Hankel matrix structure of the dual solution H.

Remark 1. The size of the LMI (3) and the rank condi-
tion for the exactness verification (6) of course depend on
N , the degree of the employed multiplier. By increasing N ,
we can show that the condition (6) becomes more likely to
be satisfied in the sense that if there exists a dual solution
satisfying (3) and (6) for N = N1, then there always exists
a dual solution satisfying (3) and (6) for N ≥ N1.

Remark 2. The exactness test (6) should be compared
with those reported in the literature (Scherer [2005, 2006]).
To this end, for simplicity, let us consider the robust D-
stability analysis case where J(θ) = I. In this case, we can
confirm that the existence of the worst case parameter is
also ensured if the following condition holds:

∃θ ∈ Θδ such that Hk = θkH0 (k = 1, · · · , N + 1). (7)

It is also true that if rank(H) = 1, the above condition is
automatically satisfied. Namely, the exactness verification
test (7) goes beyond the common rank-one exactness
principle rank(H) = 1.

On the other hand, from the form of the equality con-
straints in (4), we can readily prove that if (7) holds, then
(6) holds. Here, we note that, even though the discussion
in Scherer [2005, 2006] does not clearly mention the block-
Hankel matrix structure of the dual solution, we can con-
firm that the exactness verification test to (4), in the spirit
of Scherer [2005, 2006], can be given as (7). It follows that,
at least in the case where we deal with robust D-stability
analysis problems, the suggested exactness test (6) is more
general than those in Scherer [2005, 2006].

3.2 Multiple Uncertain Parameter Case

Let us next consider the case where we have L-multiple
uncertain parameters in Problem 1. To tackle this problem,
we consider an affine multiplier of the form P (θ) = P0 +∑L

i=1 θiPi in (3). Then, by following a close argument to
Ebihara et al. [2007], we are led to the next result.
Theorem 2. Let us consider the following LMI-LME
conditions with respect to H ∈ S2(L+1)nb

:
Find H ∈ S2(L+1)nb

\ {0} such that

H =


H00 H01 · · · H0L

H01 H11

...
...

. . . HL−1,L
H0L · · · HL−1,L HL,L

 � 0,

δ2H00 −Hii � 0 (i = 1, · · · , L) ,
02n,2l
−I2l
V1
...
VL


T

H


02n,2l
−I2l
V1
...
VL

 = 0, WTH00W = 0,

(8)

〈
[

rIn sIn
sIn qIn

]
〈H0j〉2n〉n + 〈

[
rIn sIn
sIn qIn

]
〈H0j〉2n〉n = 0

(j = 0, · · · , L)
where

Vi :=
[

El,iM21 0 El,iM22 0
0 El,iJ21 0 El,iJ22

]T

(i = 1, · · · , L).

Then, the following two assertions hold:
(i) If (8) is infeasible, then condition (2) holds.
(ii) Suppose (8) is feasible and has a solution H. Then, if

rank(〈H00〉n) = rank(H), (9)

the condition (2) never holds. More precisely, if we denote
the full-rank factorization of H by

H=

H0
...

HL

H0
...

HL

T

, Hj ∈ R2nb×m (j = 0, · · · , L) (10)

and define Ωi := (�H0�n)†�Hi�n (i = 1, · · · , L), then these
matrices satisfy Ωi ∈ Sm, λ(Ωi) ⊂ ΘL

δ (i = 1, · · · , L) and
share all eigenvectors uk ∈ Cm(k = 1, · · · ,m) in common.
In addition, if we denote by λk(Ωi) (i = 1, · · · , L) the
eigenvalue of Ωi corresponding to the common eigenvector
uk, we have {λ(M(θw,k), J(θw,k))∩ ∂D(q, r, s)} �= ∅ for all
k = 1, · · · ,m where θw,k = [ λk(Ω1) · · · λk(ΩL) ]T .
We also omit the proof for this theorem. Again, the
assertion (ii) is important in this theorem, which indicates
that if the dual LMI (8) is feasible and the computed
dual solution satisfies the rank condition (9), then we
can conclude that (2) never holds. In addition, the worst
case parameter perturbations can readily be extracted as
eigenvalues of Ωi ∈ Sm (i = 1, · · · , L) corresponding to the
common eigenvector uk (k = 1, · · · ,m).
Remark 3. Even though we have restricted our attention
to the affine multiplier in Theorem 2, it is possible to
employ higher-degree polynomial multipliers and derive
corresponding rank conditions for the exactness verifica-
tion. However, extensive numerical experiments indicate
that, for most of problem instances, we can obtain exact
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results via the affine multiplier. Thus, we do not pursue
the direction of higher-degree polynomial multipliers in
this paper.

3.3 Numerical Example

Let us consider the discrete-time system described by

x(t + 1) = A(θ)x(t), A(θ) = A0 + θ1E1 + θ2E2. (11)

Here, the matrices A0, E1 and E2 are given in Exam-
ple 3 of Ramos [2001] and θ1 ∈ [−0.0615, 0.8822 ] , θ2 ∈
[−0.0793, 0.7977 ] . The problem we posed here is to ana-
lyze the robust stability of this discrete-time system.

Since the parameter variation is asymmetrical with respect
to the origin, our method cannot be applied directly to this
problem. To get around this difficulty, we first determine
the nominal parameter θc = [ 0.41035 0.35920 ]T by taking
the center of each parameter’s variation. This allows us to
represent the parameter variation as θi ∈ [ θci − θri , θci +
θri ] (i = 1, 2) where θr = [ 0.47185 0.43850 ]T . It follows
that we can describe A(θ) as an LFT form (1) where
M11 = A0 + θc1E1 + θc2E2, M12 = [ I4 I4 ] , M22 = 0,

M21 =
[

θr1E1

θr2E2

]
, ∆8(θ̂)=

[
θ̂1I4 0

0 θ̂2I4

]
(θ̂ ∈ Θ̂2

1 = [−1, 1]2).

Through this equivalent problem reformulation, we solved
the dual LMI (8) in Theorem 2. It turns out that (8) is
infeasible and thus we can readily conclude this system is
robustly stable.

We next seek for the robust stability margin δmax, which is
defined by the maximal value such that the system remains
stable for all θ̂ ∈ Θ̂2

δ = [−δ, δ]2. To this end, we carried
out a bisection search over δ by regarding the parameter
range as Θ̂2

δ. At the minimal value of δ such that (8)
is feasible, we examined whether the rank condition (9)
holds. It turns out that rank(〈H00〉4) = rank(H) = 2 and
thus the suggested rank condition is satisfied. The worst
case parameter that destabilizes this system was obtained
as θw = [−0.0616 − 0.0794 ]T . We can confirm that

λ(A(θw)) = {0.4066 ± 0.9136i, −0.1473 ± 0.3345i} ,

whose absolute values are 1.0000, 1.0000, 0.3655 and
0.3655, respectively.

4. ROBUST DISSIPATION PERFORMANCE
ANALYSIS

Based on the preceding detailed analysis on the generalized
Lyapunov inequality, we next move on to the robust
dissipation performance analysis of uncertain LTI systems.
For simplicity, we focus our attention on the discrete-time
robust H∞ performance analysis problem described below.
Problem 2. Let us given rational functions A(θ) : RL →
Rn×n, B(θ) : RL → Rn×p1 , C(θ) : RL → Rp2×n, D(θ) :
RL → Rp2×p1 with no poles over ΘL

δ . We assume that
A(θ) is Schur stable for all θ ∈ ΘL

δ . With these matrices,
let us consider the discrete-time LTI system described by

P (z, θ) =
[

A(θ) B(θ)
C(θ) D(θ)

]
. (12)

Then, for given γ > 0, determine whether
‖P (z, θ)‖∞ < γ ∀θ ∈ ΘL

δ (13)
holds or not.

In Ebihara et al. [2007], the continuous-time counterpart
of this problem was investigated. In particular, by using
the idea of the Hamiltonian eigenvalue tests (Hagiwara
[2005], Zhou and Doyle [1998]), the problem is first reduced
into a ∂D-nonsingularity analysis problem. Then, based on
the similar results to Theorems 1 and 2, effective analysis
methods with exactness verification have been proposed.

We follow this strategy to deal with the discrete-time
robust H∞ performance analysis problem. To this end, we
introduce the next lemma.
Lemma 2. (Hagiwara [2005]) Let us consider the discrete-
time LTI system P (z) = {A,B,C,D} with A being Schur
stable. Then, ‖P (z)‖∞ < γ holds if and only if the
following three conditions hold:

(i) The matrix D satisfies
Rγ := DT D − γ2I ≺ 0. (14)

(ii) For one z0 taken from ∂D(1,−1, 0) at one’s discretion,
In (Fγ − Fz0) = (n, n, 0) (15)
holds where

Fγ :=
[

−BR−1
γ BT A − BR−1

γ DT C

AT − CT DR−1
γ BT CT C − CT DR−1

γ DT C

]
,

Fz0 :=
[

0 z0I
z∗0I 0

]
.

(iii) The generalized eigenvalue condition
{λ(Mγ , Jγ) ∩ ∂D(1,−1, 0)} = ∅ (16)
holds where

Jγ :=
[

0 I
AT − CT DR−1

γ BT CT C − CT DR−1
γ DT C

]
,

Mγ :=
[
−BR−1

γ BT A − BR−1
γ DT C

I 0

]
.

When dealing with uncertainty-free systems, it is straight-
forward to verify the conditions (i), (ii) and (iii). How-
ever, if the system matrices are affected by the uncertain
parameters as in Problem 2, those matrices Rγ , Fγ , Jγ

and Mγ depend on the parameter θ as in Rγ(θ), Fγ(θ),
Jγ(θ) and Mγ(θ) and thus it is far from obvious to check
the corresponding conditions (i), (ii) and (iii). In addition,
the conditions (i) and (ii) particularly appear for discrete-
time system analysis and this fact makes the problem more
complicated in comparison with the continuous-time case.

To deal with Problem 2 by means of Lemma 2, we first
note that D(θ), Fγ(θ), Jγ(θ) and Mγ(θ) admit LFT
representation of the form
D(θ) = D11 + D12(Iq − ∆q(θ)D22)−1∆q(θ)D21,
Fγ(θ) = F11 + F12(Ir − ∆r(θ)F22)−1∆r(θ)F21,
Jγ(θ) = J11 + J12(Ir − ∆r(θ)J22)−1∆r(θ)J21,
Mγ(θ) = M11 + M12(Ir − ∆r(θ)M22)−1∆r(θ)M21

(17)

where ∆q(θ) =
∑L

i=1 θiEq,i, ∆r(θ) =
∑L

i=1 θiEr,i and∑L
i=1 Eq,i = Iq,

∑L
i=1 Er,i = Ir. These LFT represen-

tations are always possible since A(θ), B(θ), C(θ) and
D(θ) are rational. Then, it is apparent from Lemma 2 that
‖P (z, θ)‖∞ < γ (∀θ ∈ ΘL

δ ) holds if and only if the following
three conditions hold:
D(θ)T D(θ) − γ2I ≺ 0 ∀θ ∈ ΘL

δ , (18)

In (Fγ(θ) − Fz0) = (n, n, 0) ∀θ ∈ ΘL
δ , (19)

{λ(Mγ(θ), Jγ(θ)) ∩ ∂D(1,−1, 0)} = ∅ ∀θ ∈ ΘL
δ . (20)

Since we can apply Theorems 1 and 2 for the analysis of
(20), it remains to show how we deal with (18) and (19).
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In the sequel, we naturally assume that the nominal
performance condition ‖P (z, 0)‖∞ < γ holds. It should
be emphasized that this in particular implies
DT

11D11 − γ2I ≺ 0, (21)
In (F11 − Fz0) = (n, n, 0) . (22)
Then, from continuity arguments, we can rewrite (18) and
(19) equivalently as follows:

det(D(θ)T D(θ) − γ2I) �= 0 ∀θ ∈ ΘL
δ , (23)

det(Fγ(θ) − Fz0) �= 0 ∀θ ∈ ΘL
δ . (24)

It is also true that the above condition is equivalent to

(Fγ(θ) − Fz0)
∗(Fγ(θ) − Fz0) � 0 ∀θ ∈ ΘL

δ . (25)

With these equivalent reformulations, we can deal with
(18) and (19) very easily in the single parameter case.

4.1 Single Uncertain Parameter Case

Let us consider the single parameter case. In this case, we
can verify (18) and (19) exactly by computing eigenvalues
of a fixed matrix as shown in the next Lemmas.
Lemma 3. The condition (23) holds if and only ifλ


−γ2I DT

11 0 0
D11 −I 0 D12

0 0 0 −I

0 DT
12 −I 0

−1  0 0 DT
21 0

0 0 0 0
D21 0 0 D22

0 0 DT
22 0




∩{(−∞,−1
δ
] ∪ [

1
δ
,∞)}

}
= ∅.

(26)

Lemma 4. The condition (24) holds if and only if{
λ

([
F11 − Fz0 F12

0 I

]−1 [
0 0

−F21 −F22

])
∩{(−∞,−1

δ
] ∪ [

1
δ
,∞)}

}
= ∅.

(27)

With these lemmas and Theorem 1, we can obtain the next
result.
Theorem 3. Let us consider Problem 2 with L = 1.

(i) If either of the conditions (26) and (27) fails, we can
conclude that (13) never holds.

(ii) If both of the conditions (26) and (27) are satisfied
and the dual LMI (4) corresponding to (20) is infea-
sible, then we can conclude that (13) holds.

(iii) If the dual LMI (4) corresponding to (20) is feasible
and the computed dual solution satisfies the rank
condition (6), we can conclude that (13) never holds.

4.2 Multiple Uncertain Parameter Case

Problem 2 becomes much more intractable in the case of
multiple uncertain parameters. Obviously, we can apply
Theorem 2 to assess the condition (20). Thus the rest of
this subsection is devoted to the technical details how we
deal with the conditions (18) and (19).

As before, it is hard to deal with (18) and (25) exactly
since they depend on multiple uncertain parameters. To
get around this difficulty, as in Subsection 3.2, we apply
the modified (D,G)-scaling (Ebihara et al. [2007]) to these
parameter-dependent inequalities and obtain numerically
tractable but conservative in general LMI conditions. By

considering corresponding dual LMIs, it turns out that we
can obtain consistent results to Theorem 2. The results
are summarized in the next two lemmas.
Lemma 5. Let us consider the following LMI with re-
spect to G ∈ S(L+1)(p1+q) \ {0}:

G=


G00 G01 · · · G0L

G01 G11

...
...

. . . GL−1,L
G0L · · · GL−1,L GL,L

 � 0,


0p1,q
−Iq
S1
...
SL


T

G


0p1,q
−Iq
S1
...
SL

 = 0,

δ2G00 − Gii � 0 (i = 1, · · · , L) ,

trace
([

DT
11D11 − γ2Ip1 DT

11D12

DT
12D11 DT

12D12

]
G00

)
≥ 0.

(28)

Here, we defined Si := [Eq,iD21 Eq,iD22 ]T (i = 1, · · · , L).
(i) If (28) is infeasible, then the condition (18) holds.
(ii) Suppose (28) is feasible and has a solution G. Then, if

rank(G00) = rank(G), (29)

the condition (18) never holds. More precisely, if we denote
the full-rank factorization of G by

G =

 G0
...

GL

G0
...

GL

T

, Gj ∈ R(p1+q)×m (j = 0, · · · , L),

and define Ωi := G†
0Gi (i = 1, · · · , L), then these matrices

satisfy Ωi ∈ Sm, λ(Ωi) ⊂ ΘL
δ (i = 1, · · · , L) and share

all eigenvectors uk ∈ Cm(k = 1, · · · ,m) in common.
In addition, if we denote by λk(Ωi) (i = 1, · · · , L) the
eigenvalue of Ωi corresponding to the common eigenvector
uk, we have D(θw,k)T D(θw,k)−γ2I �≺ 0 for all k = 1, · · · ,m
where θw,k = [ λk(Ω1) · · · λk(ΩL) ]T .
Lemma 6. Let us consider the following LMI with re-
spect to G ∈ S(L+1)(2n+r) \ {0}:

G=


G00 G01 · · · G0L

G01 G11

...
...

. . . GL−1,L
G0L · · · GL−1,L GL,L

 � 0,


02n,r
−Ir
T1
...
TL


T

G


02n,r
−Ir
T1
...
TL

 = 0,

δ2G00 − Gii � 0 (i = 1, · · · , L) ,[
FT

11 − F ∗
z0

FT
12

]∗
G00

[
FT

11 − F ∗
z0

FT
12

]
= 0.

(30)

Here, we defined Ti := [Er,iF21 Er,iF22 ]T (i = 1, · · · , L).
(i) If (30) is infeasible, then the condition (25) holds.

(ii) Suppose (30) is feasible and has a solution G. Then, if

rank(G00) = rank(G), (31)

the condition (25) never holds. More precisely, if we denote
the full-rank factorization of G by

G =

 G0
...

GL

G0
...

GL

T

, Gj ∈ R(2n+r)×m (j = 0, · · · , L),

and define Ωi := G†
0Gi (i = 1, · · · , L), then these matrices

satisfy Ωi ∈ Sm, λ(Ωi) ⊂ ΘL
δ (i = 1, · · · , L) and share

all eigenvectors uk ∈ Cm(k = 1, · · · ,m) in common.
In addition, if we denote by λk(Ωi) (i = 1, · · · , L) the
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eigenvalue of Ωi corresponding to the common eigenvector
uk, we have In (Fγ(θw,k) − Fz0) �= (n, n, 0) for all k =
1, · · · ,m where θw,k = [ λk(Ω1) · · · λk(ΩL) ]T .

We see that these results are surely consistent with The-
orem 2. With these results and Theorem 2, we are led to
the next result.
Theorem 4. Let us consider Problem 2.

(i) If all of the dual LMIs (28), (30) and (8) correspond-
ing respectively to (18), (19) and (20) are infeasible,
then (13) holds.

(ii) If the dual LMI (28) corresponding to (18) is feasible
and the computed dual solution satisfies the rank
condition (29), then (13) never holds.

(iii) If the dual LMI (30) corresponding to (19) is feasible
and the computed dual solution satisfies the rank
condition (31), then (13) never holds.

(iv) If the dual LMI (8) corresponding to (20) is feasible
and the computed dual solution satisfies the rank
condition (9), then (13) never holds.

We note that, if we resort to the standard primal-LMI-
based approaches, all we can conclude is the assertion (i)
in Theorem 4 (this corresponds to the case where all of
the primal LMIs of (28), (30) and (8) are feasible). By
investigating the dual LMIs and considering the struc-
ture of the dual solution, we have succeeded in deriving
exactness verification tests as in (ii), (iii) and (iv). More
precisely, if one of the rank conditions (29), (31) and (9) is
satisfied, we can readily extract the worst case parameter
perturbations.

5. CONCLUSION

In this paper, we considered robust performance analysis
problems of LTI systems depending on uncertain param-
eters. We extended our dual LMI approach in Ebihara
et al. [2007] so that we can deal with discrete-time system
analysis in a unified fashion. This has been achieved by the
detailed analysis on the generalized Lyapunov inequalities
depending rationally upon the uncertain parameters. In
stark contrast with the standard primal-LMI-based ap-
proaches, the suggested dual LMI approach would be effec-
tive to extract the worst case parameter perturbations and
to conclude the exactness of the computed results. From
numerical experiments, we confirmed that the suggested
method is surely effective to achieve exact analysis.

At the same time, this paper showed that the robust
dissipation performance analysis based on the Hamiltonian
eigenvalue tests becomes rather complicated particularly
for discrete-time systems. Alternative approach by means
of KYP-lemma should be promising and this topic is
currently under investigation.
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