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Abstract: This paper deals with the problem of non-fragile observer-based vehicle control.
Vehicle dynamics are described by a 10-DOF (Degree Of Freedom) model which include
lateral, longitudinal, yaw and roll dynamics. Plant dynamics uncertainties as well as the vehicle
longitudinal velocity variation are taken into account in the controller synthesis. The controller
to be designed is assumed to be subject to gain variations, due to additive unknown noise and
environmental influence. The nonlinear vehicle model is approximated by a Takagi-Sugeno fuzzy
model with structured parametric uncertainties. Combined pole placement and H∞ algorithm
is used to satisfy performance specifications. Closed-loop stability conditions are given in the
form of LMI (Linear Matrix Inequalities).
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models, Vehicle dynamics; Uncertainty.

Nomenclature :
Vx, Vy Longitudinal velocity, lateral velocity
r, p, β Yaw rate, roll rate, side slip angle
ϕ, φ Yaw angle, roll angle
ω1, ω2 Angular velocity of front left, front right

wheel
ω3, ω4 Angular velocity of rear left, rear right

wheel
mv , ms Vehicle’s total mass, vehicle’s sprung mass
df,r Distance from (front, rear) axle to vehicle’s

gravity center
Cf,r Cornering stiffness coefficients (front,rear)
Cσf ,σr Longitudinal stiffness coefficients (front,rear)

Rt Effective wheel rolling radius
hs Height of sprung mass center gravity above

roll axis
Jxx Sprung mass roll moment of inertia
Jzz Principal yaw inertia moment
Jxz Sprung mass inertia moment about yaw

and roll axes
Jt Effective rotational inertia moment
ksf,sr Rotary compliances of steering actuators

(front, rear)
csf, sr Rotary viscous damping coefficients

(front, rear)
δf,r Steering angle (front, rear)
δsf,sr Actuators command (front, rear)
cφf ,φr Rotational damping coefficients (front,rear)

kφf ,φr Rotational stiffness coefficients (front,rear)

τb1, τb2 Brake torque of front wheels (left,right)
τb3, τb4 Brake torque of rear wheels (left,right)
g Gravity acceleration

? The authors are grateful to the Regional Council of Picardie
(Amiens, France) and the European Social Funds (FSE) for the
financial support of this work.

1. INTRODUCTION

Many safety systems have been developed and installed
in vehicles like ABS and ESP. However, in some critical
driving situations (variation of road state, emergency brak-
ing, skid in cornering), these systems are still not optimal
and can be improved using advanced control methods:
Liaw et al. [2005], B. A. Güvenç et al. [2004], Benton
et al. [2005], Ono et al. [1999],Catino et al. [2003], Ono
et al. [1993] and You et al. [1999]. However, most of these
works are based on simplified vehicle models or assume
that the vehicle longitudinal velocity is constant. Recent
research works, which take into account the variation
of the longitudinal vehicle velocity, have been based on
simplified vehicle models, see Palladino et al. [2006] and
Leith et al. [2005]. Moreover many specific information are
necessary to achieve control. However, some sensors are
still very expensive (like the side slip angle sensor). Thus,
observer-based pole placement method has been proposed
to satisfy desired control performances, see El Messoussi
et al. [2006]. Moreover, although several research works
have cope up with different control methods that take into
consideration uncertainties in the plant dynamics, they
always assume that the designed controller is precise and
exactly implemented. However, in practical applications,
controller parameters can have some variations due to
additive unknown noise and environmental influence, see
Dorato [1998] and Jadbabaie et al. [1998]. In the recent
years, non-fragile control has been proposed to design a
feedback control that will be insensitive to some errors
or variations in gains of feedback control. In Yang et al.
[2001] and Zhang et al. [2007] the authors present a the
non-fragile control but without observer. Recent results in
Lien [2007] have brought attention to observer-based non-
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fragile control, but with no consideration to uncertainty
in the plant dynamics. Thus, in this paper, we extend the
results of El Messoussi et al. [2007], in which we have devel-
oped a vehicle control method to deal with uncertainty in
the plant dynamics. In this work, controller gains which in-
clude uncertainties are considered. The paper is organized
as follows: in section 2, we present the vehicle dynamics
mathematical model. The controller design strategy is
given in section 3 whereas, in section 4, simulation results
of the developed controller, applied to the nonlinear vehicle
model, are given to show the effectiveness of our approach.

2. VEHICLE DYNAMICS DESCRIPTION

In this section, we describe a four-wheel steering (4WS)
vehicle by a 10-DOF model including lateral, longitudinal,
yaw and roll dynamics.We suppose that front and rear
cornering forces are given as follows:

Fyfi = −Cfαf , Fyri = −Crαr, i = l, r

Where αf ,αr are front and rear tire slip angles given by:

αf = −β − df

Vx
r + δf + Rfφ, αr = −β +

df

Vx
r + δr + Rrφ.

And front and rear longitudinal forces are given by:

Fxfi = Cσfσxfj , Fxri = Cσrσxrj , i = l, r.

Where σf , σr are front and rear longitudinal slip ratio
given by:

σxfj =
Rtωj − Vx

Vx
, j = 1, 2. σxrj =

Rtωj − Vx

Vx
, j = 3, 4.

During braking maneuver, and by considering small an-
gles, the following dynamic equations are obtained:

• Longitudinal dynamics

mvV̇x = mvVyr − 2Cσf − 2Cσr

+
Cσf

Vx
Rt (ω1 + ω2)

+
Cσr

Vx
Rt (ω3 + ω4)

(1)

• Lateral dynamics

mvV̇y = −mvVxr −mshsṗ + (2Cf + 2Cr)
Vy

Vx

+
(

2Cf
df

Vx
− 2Cr

dr

Vx

)
r

−2Cfδf − 2Crδr − (2CfRf + 2CrRr)φ

(2)

• Yaw dynamics

Jzz ṙ − Jxz ṗ = (2dfCf − 2drCr)
Vy

Vx

+

(
2Cf

d2
f

Vx
+ 2Cr

d2
r

Vx

)
r

−2dfCfδf + 2drCrδr

+2 (drCrRr − dfCfRf ) φ

+
dtCσfreff

Vx
(ω1 − ω2)

+
dtCσrreff

Vx
(ω3 − ω4) .

(3)

• Roll dynamics

Jxxṗ− Jxz ṙ = −mshsV̇y −mshsVxr
−Cφp− (kφ −msghs) φ

φ̇ = p.
(4)

• Wheel dynamics

Jtω̇i = −τbi + RtCσf −
CσfR2

t

Vx
ωi, i = 1, 2, 3, 4. (5)

• Actuator dynamics

δ̇f =
−ksf

csf
δf +

ksf

csf
δsf −

ksf

csf
δc

δ̇r =
−ksr

csr
δr +

ksr

csr
δsr.

(6)

Where Cφ = cφf +cφr, kφ = kφf + kφr and δc is the driver
action. Let us consider the state vector:

x = [ Vy r p φ δf δr ω1 ω2 ω3 ω4 ]t

And the control input:

u = [ δsf δsr τb1 τb2 τb3 τb4 ]t

Then, from (1), (2), (3), (4), (5) and (6), we can describe
the nonlinear vehicle model as follows:

ẋ (t) = A (Vx (t))x (t) + Bu (t) + Bcδc (t) + Bdud (7)

Where

A(Vx (t)) =


a17 a18 a19 a110

< ℵ a27 a28 a29 a210

a37 a38 a39 a310

02×3 = 03×2 03×2

02×3 02×3 If 02×2

02×3 02×3 02×2 Ir

 ,

< =

(
a11 a12 a13

a21 a22 a23

a31 a32 a33

)
, ℵ =

(
a14 a15 a16

a24 a25 a26

a34 a35 a36

)

= =


1 0 0

0 −
ksf

csf
0

0 0 −
ksr

csr

 , Bc =

(
0 0 0 0 −

ksf

csf
0 0 0 0 0

)t

,

B =


04×2 04×4

ksf

csf
0 01×4

0
ksr

csr
01×4

04×2
−1

Jt
× I4×4

 , If,r =
−Cσf,σrR2

t
VxJt

×I2×2,

Bd =

(
06×4

1

Jt
× I4×4

)
, ud =

(
RtCsf RtCsf RtCsr RtCsr

)t

With I the identity matrix of appropiate dimension.

Remark 1. Note that the nonlinear vehicle model given by
(7) depends on the longitudinal vehicle velocity. During
braking maneuver, the latter parameter greatly influences
the vehicle dynamics. In the following, the idea is to
describe the nonlinear vehicle model by a T-S fuzzy model.

Let as define Vx(t) as the premise variable of the T-S fuzzy
model, where Vx(t) ∈ [Vmin, Vmax], and Mi, i = 1, 2 the
linguistic variables of Vx(t). By applying the least-square

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7099



method, the membership functions hi (Vx (t)) are given as
follows:(

h1 (Vx (t))
h2 (Vx (t))

)
=

((
Ωt × Ω

)−1
× Ωt

)
×

 1

Vx (t)
Vx (t)

1

 ,

Ω =

 1

Vmin

1

Vmax
Vmax Vmin

1 1

 , hi (Vx (t)) ≥ 0, i = 1, 2.

Then, the T-S fuzzy model can be given by the following
rules:

Model rule i: If Vx(t) Is Mi Then{
ẋ (t) = Aix (t) + Bu (t) + Bcδc (t) + Bdud

y = Cx (t) (8)

Thus, the vehicle model can be approximated by the
following T-S fuzzy model :

ẋ (t) =
2∑

i=1

hi (Vx (t)) {Aix (t) + Bu (t) + Bcδc (t)

+Bdud}
y = Cx (t)

(9)

See El Messoussi et al. [2007] for more details. On the
other hand, we know that the road adhesion greatly influ-
ences the vehicle dynamics. The cornering stiffness coeffi-
cients Cf , Cr and also the longitudinal stiffness coefficients
Cσf , Cσr vary according to the road type. Thus, to take
this fact into account, we consider that this coefficients are
uncertain and can be given by Ck = Ck0(1 + e∆), k =
f, r, σf, σr where Ck0, k = f, r, σf, σr are the nominal co-
efficients values, |∆| ≤ 1 and e is the magnitude deviation
of the different coefficients from their nominal values. After
development, we can write the equation (9) as follows:

ẋ (t) =
2∑

i=1

hi (Vx (t)) {(Ai0 + ∆Ai0)x (t) + Bu (t)

+Bcδc (t) + Bdud}
y = Cx (t)

(10)

Where Ai0 is the nominal state space matrix and ∆Ai0 =
Hai∆ai (t)Eai. ∆ai (t) is an unknown function satisfying:
∆T

ai (t) ∆ai (t) ≤ I. Hai are constant matrices given as
follows: Hai = ei × I10×10.

Remark 2. Due to the lack of space, the coefficient
aij , i, j = 1, ..., 10, the matrices Ai, Ai0 and Eai, i = 1, 2
are not given in this paper.

Remark 3. The model given by (10) is non linear with re-
spect to the speed and the uncertainties take into account
the different road types.

3. NON-FRAGILE VEHICLE CONTROL STRATEGY

In this work, we assume that the lateral vehicle velocity
is not measurable. Then, an observer is used to estimate
this parameter. The structure of the considered vehicle
control system is given in (Fig. 1). Fuzzy state observer is
formulated as follows:

Observer rule i: If Vx(t) Is Mi Then
̂̇x = Ai0x̂ (t) + Bu (t)

−Gi (y (t)− ŷ (t)) ,
ŷ (t) = Cx̂ (t) , i = 1, 2

(11)

The fuzzy observer design is to determine the local gains
Gi, i = 1, 2. The output of (11) is given as follows:

̂̇x =
2∑

i=1

hi (z (t)) {Ai0x̂ (t) + Bu (t)

−Gi (y (t)− ŷ (t))}
ŷ (t) = Cx̂ (t)

(12)

To stabilize this class of systems given by (10), we use the
Parallel Distributed Compensation (PDC) observer-based
controller, see Tanaka et al. [1998], defined as follows:

Controller rule i : If z(t) Is Mi Then
u (t) = Kix̂ (t) , i = 1, 2 (13)

Where Ki, i = 1, 2 are the controller gains to be deter-
mined. The overall observer-based controller is given by:

u (t) =
2∑

i=1

hi (Vx (t))Kix̂ (t) (14)

The controller in the form of (14) does not involve uncer-
tainties. However, uncertainties always appear in control
systems for many reasons such as imprecision inherent in
analog systems and the need for additional tuning of the
controller parameters in the final implementation. Thus,
in the following, we study the design of fuzzy controller
with respect to parametric controller gains perturbations.
By considering that Ki = Ki0(1 + ek∆), i = 1, 2 where
Ki0, i = 1, 2 are the nominal controller gains, |∆| ≤ 1 and
ek is the magnitude deviation from the nominal values, An
observer-based non-fragile controller can be given by:

u (t) =
2∑

i=1

hi(Vx(t)) (Ki0 + ∆Ki0)x̂(t) (15)

Where ∆Ki0 = Hki0∆ki0 (t) Eki0. ∆ki0 (t) is an unknown
function satisfying: ∆T

ki0 (t) ∆ki0 (t) ≤ I. Eki0 = Ki0, i =
1, 2 and Hki0 are constant matrices given as follows:
Hki0 = ek × I6×6. Let us denote the estimation error by:
e (t) = x (t)−x̂ (t). The augmented system containing both
the controller and the observer is represented as follows:(

ẋ (t)
ė (t)

)
= Āi (Vx (t))

(
x (t)
e (t)

)
+
(

Bc

Bc

)
δc (t)

+
(

Bd

0

)
ud

(16)

Where

Āi (Vx (t)) =

2∑
i=1

hi (Vx (t)) Aas
i ,

Aas
i =

[
Ai + BKi0 + ∆Ai + B∆Ki0 −BKi0 −B∆Ki0

∆Ai Ai + GiC

]
The main goal is to find the sets of matrices Ki0, i = 1, 2
and Gi, i = 1, 2 in order to guarantee the global asymptotic
stability of the equilibrium point of (16) with performance
specifications using a combined H∞ and pole placement
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approach in order to guarantee that the error between
the state and its estimation converges faster to zero even
if the plant dynamics is subject to uncertainties, see El
Messoussi et al. [2006]. The control system has to be able
to tolerate some uncertainty in the controller as well as
in the plant dynamics . In lemma 1, we give sufficient
conditions for the global asymptotic stability of the closed-
loop augmented system given by (16):
Lemma 1. The equilibrium point of the augmented system
described by (16) is globally asymptotically stable if there
exist common positive definite matrices P and Q, matrices
Wi, matrices Vi and positive scalars εi � 0 such as

Di B BHki0 PEt
ai V t

i

Bt −εiI 0 0 0
Ht

ki0B
t 0 −εiI 0 0

EaiP 0 0 −0.5εiI 0
Vi 0 0 0 −εiI

 ≤ 0, i = 1, 2, (17)

And
QAi + WiC + At

iQ + CtW t
i + εiHaiH

t
ai

+2εiK
t
i0Ki0 ≤ 0, i = 1, 2,

(18)

Where
Di = AiP + BVi + PAt

i + V t
i Bt + εiBHki0H

t
ki0B

t

+εiHaiH
t
ai,

Vi = Ki0P, Wi = QGi.

Proof. Using theorem 7 in Tanaka et al. [1998], the sepa-
ration lemma, see Shi et al. [1992], and the Schur’s com-
plement, see Boyd et al. [1994], conditions (17) and (18)
hold with some changes of variables.

Remark 4. Note that the controller and the observer
design is a two-step procedure. First, we solve (17) for
decision variables (P,Ki0, εi) and secondly, we solve (18)
for decision variables (Q,Gi) by using the results of the
first step.

Remark 5. The location of the poles associated with the
state dynamics and with the estimation error dynamics
is unknown. However, since the design algorithm is a
two-step procedure, we can impose two pole placements
separately, the first one for the state and the second one
for the estimation error. To ensure control performances,
in the following, we focus on robust pole placement, see El
Messoussi et al. [2005]. From (16), Let us define:

Tci =
2∑

i=1

hi (Vx (t)) (Ai + BKi0 + ∆Ai + B∆Ki0)

Toi =
2∑

i=1

hi (Vx (t)) (Ai + GiC)

Lemma 2. Matrix Tci is D-stable if and only if there exist a
symmetric matrix P > 0, matrices Vi, i = 1, 2 and positive
scalars τi, ηii = 1, 2 such that Zi

(
I ⊗XEt

ai

) (
I ⊗ V t

i

)
(I ⊗ EaiX) −τiI 0

(I ⊗ Vi) 0 −ηiI

 ≤ 0, i = 1, 2, (19)

Where
Zi = α⊗X + β ⊗AiX + βt ⊗XAt

i + β ⊗BVi

+βt ⊗ V t
i Bt + τi (β ⊗Hai)

(
βt ⊗Ht

ai

)
+ηi (β ⊗BHki)

(
βt ⊗Ht

kiB
t
)

And ⊗ denotes the Kronecker product.

Proof. The same method as in lemma 2 in El Messoussi
et al. [2006] can be used to prove this lemma.
Lemma 3. Matrix Toi is D-stable if and only if there exist
a symmetric matrix Q > 0, matrices Wi, i = 1, 2 such that

α⊗Q + β ⊗QAi + βt ⊗At
iQ

+β ⊗WiC + βt ⊗ CtW t
i ≤ 0, i = 1, 2 (20)

Where ⊗ denotes the Kronecker product and α, β deter-
mine the desired LMI region.

Proof. The same method as in lemma 3 in El Messoussi
et al. [2006] can be used to prove this lemma.

Remark 6. From (16), the estimation error dynamics
depend on the state. However, if the state dynamics are
slow, we will have a slow convergence of the estimation
error to the equilibrium point in spite of its own fast
dynamics. So in this paper, we add an algorithm using the
H∞ approach to ensure that the estimation error converges
faster to the equilibrium point, see El Messoussi et al.
[2006]. We know from (16) that:

ė(t) =
2∑

i=1

hi (z (t)) {(Ai + GiC) e(t) + ∆Aix(t)

+Bcδc (t)}
(21)

Let us denote Bwi = ( ∆Ai Bc ) and w (t) = ( x (t) δc (t) )t.
The following system can be obtained:(

ė (t)
e (t)

)
=

2∑
i=1

hi (z (t))
(

Ai + GiC Bwi

I 0

)(
e (t)
w (t)

)
(22)

The objective is to minimize the L2 gain from w(t) to e(t).
Thus, we define the following H∞ performance criterion
under zero initial conditions:

∞∫
0

{
et (t) e (t)− γ2wt (t) w (t)

}
dt ≺ 0 (23)

Where γ has to be minimized. We give the following lemma
to satisfy the H∞ performance.

Lemma 4. If there exist symmetric positive definite matrix
Q > 0, matrices Wi, i = 1, 2 and positive scalars ςi,γ such
as:

Fi QHai 0 QBc

HT
aiQ −ςi 0 0
0 0 −γ2I + ςiE

T
aiEai 0

Bt
cQ 0 0 −γ2I

 ≤ 0, i = 1, 2 (24)

Where
Fi = QAi + At

iQ + WiC + CtW t
i + I

Then, the system given by (22) satisfies the H∞ perfor-
mance with a L2 gain equal or less than γ.

Proof. The same method as in lemma 4 in El Messoussi
et al. [2006] can be used to prove this lemma.

In order to improve the estimation error convergence,
we obtain the following convex optimization problem:
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minimization γ under the LMI constraints (24). Finally,
from lemma 1, 2, 3 and 4 yields the following theorem:

Theorem 1. The closed-loop uncertain system given by (16)
is robustly stabilizable via the observer-based non-fragile
controller given by (15) with control performances defined
by a pole placement constraint for the state dynamics, as
well as for the estimation error dynamics in an LMI region
and a gain performance (23) as small as possible if first,
LMI conditions (17) and (19) are solvable for the decision
variables (P,Ki0, εi, τi, ηi) and secondly, LMI conditions
(18), (20) and (24) are solvable for the decision variables
(Q,Gi, ςi, γ). Furthermore, the controller and observer
gains are Ki0 = ViP

−1, i = 1, 2 and Gi = Q−1Wi, i = 1, 2
respectively.

Remark 7. The effectiveness of the combined pole place-
ment and H∞ algorithm, used in this work, has been
demonstrated in El Messoussi et al. [2006].

Fig. 1. Vehicle control system structure

4. NUMERICAL EXAMPLE

The control design purpose of this example is to design
a robust observer-based non-fragile controller in order to
improve the vehicle stability and manoeuvrability when
this latter is subject to change lane manoeuvre. The con-
trol system can tolerate presence of parametric variations
(variation of the road type) as well as controller gains
variation. To ensure good performances of the controlled
system, we place both the poles linked to the state dynam-
ics and the ones linked to the estimation error dynamics
in the LMI region defined by the half-left complex plane
given by α = −1 and β = 1 to ensure minimum settling
time less then 4s. The evolution of the control signal (15)
is given in (Fig. 3) (the controller and observer gains are
obtained from LMIs of theorem 1). A comparison between
the measured and the observed lateral vehicle velocity is
shown in (Fig. 4). Although the variation of the vehicle lon-
gitudinal speed and the front steering angle, see (Fig. 2),
we can see that the vehicle is still stable. (Fig. 5) shows the
robustness of the designed control system with respect to
plant dynamics and controller uncertainty (variation until
±25% of the plant dynamics and ±20% of the controller
gains). On the other hand, to show our control method
effectiveness, a comparison of the controlled and uncon-
trolled system outputs is given in figure (Fig. 6). Note that
the developed vehicle control system has been applied to
the nonlinear vehicle model given by (1), (2), (3), (4), (5)
and (6).

Fig. 2. a)Driver action, b)Longitudinal vehicle (solid line)
and wheels velocities (dotted line)evolution

Fig. 3. Control Signal evolution

Fig. 4. Estimation of the lateral vehicle velocity

Fig. 5. Controller robustness
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Fig. 6. Comparison of controlled (solid line) and uncon-
trolled (dotted line) outputs

5. CONCLUSION

In this paper, a robust observer-based non-fragile control
system have been proposed in order to improve vehicle
stability although the presence of plant dynamics and
controller uncertainty. A 10-DOF mathematical model has
been used to describe the vehicle dynamics. Variation of
the longitudinal vehicle velocity as well as variation of the
road adhesion was considered in the controller design. LMI
conditions have been developed using T-S multi-model
representation, H∞ approach and robust pole placement,
in order to guarantee global stability of the closed loop
system with desired performances. The effectiveness of our
approach has been demonstrated through simulations on
the nonlinear vehicle model.
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