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Abstract: The paper deals with the problems of robust fault detection using soft computing
techniques, in particular neural networks (Group Method of Data Handling, GMDH), multi-layer
perceptron), and neuro-fuzzy networks (Takagi-Sugeno model). The model based approach to
Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ
the bounded-error approach to determine the uncertainty of the neural and fuzzy models. It is
shown that, based on soft computing models uncertainty defined as a confidence range for the
model output, adaptive thresholds can be defined. Finally, the presented approaches are tested
on a servoactuator being an FDI benchmark in the DAMADICS project. Copyright c©2007 IFAC
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1. INTRODUCTION

Fault diagnosis becomes an important issue in modern
control systems due to the increasing complexity of such
systems. Early diagnosis of faults that might occur in the
supervised process renders it possible to perform prevent-
ing actions. Moreover, it allows avoiding heavy economic
losses involved in stopped production, the replacement
of elements, units and parts, etc. Among many known
FDI methods and approaches (Chen and Patton [1999],
Gertler [1998], Iserman [2006], Korbicz et al. [2004], Kor-
bicz [2006], Patton et al. [2000]), the most efficient fault-
diagnostic strategy is the so-called model based approach.
Model based fault detection is on the use of mathematical
or artificial intelligence models (Patton et al. [2005], Kor-
bicz and Cempel [1993], Witczak [2007]) or a combination
of both. The main difficulty with applying mathematical
models (Hui and Zak [2005]) is the fact that imprecise
models are generally available independently of identifi-
cation methods and techniques applied (Bubnicki [2004],
Nelles [2001], Walter and Pronzato [1996]).

As model uncertainty and disturbances are usually difficult
to eliminate, there is a need for developing robust fault
detection algorithms. The robustness of a fault detection
system means that it must be only sensitive to faults,
even in the presence of model-reality differences (Chen and
Patton [1999], Korbicz et al. [2004], Witczak et al. [2006],
Witczak [2007]). One of the approaches to the robustness
problem, known as the passive one, enhances the robust-
ness of the fault detection system at the decision-making
stage, mainly using an adaptive threshold (Emami-Naeini
et al. [1988], Frank [2002]). Contrary to active approaches
(Chen and Patton [1999]), the adaptive threshold based
passive approach does not rely on eliminating the effect
of model uncertainty in the residual. Indeed, adaptive
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threshold based techniques rely on propagating model un-
certainty to the residual, and then bounding the resulting
residual uncertainty.

The main objective of this paper is to present recent
developments in robust model based fault detection us-
ing soft computing methods and techniques. In order to
overcome this problem, it is necessary to describe model
uncertainty of artificial intelligence models. To solve this
problem, the so-called Bounded Error Approach (BEA)
and its extension – the Outer Bounding Ellipsoid (OBE)
algorithms (Milanese et al. [1996], Walter and Pronzato
[1996]) – are applied. The paper is organized as follows:
Section 2 describes the concept of robust model based fault
detection with model uncertainty. Section 3 outlines the
idea of robust fault detection with the Takagi-Sugeno fuzzy
model, GMDH and MLP neural networks designed with
the bounded-error parameter estimation technique. In all
cases the algorithms for computing the adaptive threshold
are presented. The final section presents a comprehensive
study regarding the application of the approaches consid-
ered to the DAMADICS benchmark problem.

2. UNCERTAINTY OF SOFT COMPUTING MODELS

A common disadvantage of analytical approaches to FDI
is the fact that a precise mathematical model of the
diagnosed system is required. An alternative solution
can be obtained with soft computing techniques (Calado
et al. [2001], Patton and Korbicz [1999], Rutkowski [2004],
Rutkowska and Zadeh [2000]). Bellow we focus on the
problem of designing selected soft computing models.

2.1 Uncertainty of the Takagi-Sugeno fuzzy model

The structure of the Takagi-Sugeno system could be pre-
sented in the form of a layered topology similar to the neu-
ral network (Brown and Harris [1994]). However, knowl-
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edge coded in this structure could be viewed in the form
of fuzzy rules (Babuska [1998], Piegat [2001]):

Ri : IF x is Ai THEN ỹi = z
T
i θi, (1)

where

• x is the vector of global network inputs
• Ai is the multivariate fuzzy set
• ỹi is the scalar output of the rule
• zi is the vector of local linear system inputs
• θi is the vector of local linear system parameters, and

i is the index of the rule.

Fuzzy sets usually have Gaussian membership functions.
The global output of the neuro-fuzzy network is a compo-
sition of the responses of all rules:

ỹ =

∑n

i=1 µkỹi
∑n

i=1 µi

, (2)

where ỹ is the global output of the network, µi is the
membership degree achieved for i-th rule, ỹi is the output
of the i-th rule (local linear system), n is the number
of rules. It is worth noticing that the number of rules
determines the number of local linear models, which are
responsible for piecewise local linear approximation of the
non-linear system. The dynamical T-S network could be
done by introducing into the input vector zi the delayed
inputs ui of the local model and the delayed output of
the local output ỹi, i.e., zi = [ui(k), ui(k − 1), . . . , ui(k −
na), ỹi(k − 1), ỹi(k − 2), . . . , ỹi(k − nb)]. To settle the
problem of parameter and model uncertainty estimation,
Kowal [2005] proposed to use the BEA approach. The
choice of such a strategy is not accidental and it is clearly
justified by a number of theoretical and practical reasons
described in Kowal and Korbicz [2007].

Let us consider the following Takagi-Sugeno fuzzy model:

ỹ(k) =

n
∑

i=1

φi(k)ỹi(k), (3)

where ỹi(k) is the output of the i-th rule and

φi(k) =
µi(k)

∑n

j=1 µj(k)
. (4)

The model described by (3) could be viewed as a system
linear in parameters:

ỹ = x
T (k)θ, (5)

where

x(k) =









φ1(k)z1(k)
φ2(k)z2(k)

...
φn(k)zn(k)









, θ =









θ1

θ2

...
θn









,

if the parameters of fuzzy sets are treated like constant
values. Let us define the output error ε(k):

ε(k) = y(k) − x
T (k)θ, (6)

where y(k) is the output of the system. In the case of the
BEA, it is assumed that errors lie between a priori given
bounds (Milanese et al. [1996]):

εm(k) ≤ ε(k) ≤ εM (k). (7)

Let us assume that

εM (k) = ε, εm(k) = −ε. (8)

Thus the feasible set of parameters for N data points is
given by the following expression

Θ =
{

θ ∈ R
nθ | y (k) + ε ≤ x

T (k)θ ≤ y (k) − ε;
k = 1, . . . , N

}

.
(9)

Then the confidence interval for the system output is
described by the inequality (Kowal and Korbicz [2007]):

x
T (k)θ

m (k) + ε ≤ y (k) ≤ x
T (k)θ

M (k) + ε, (10)

where
θ

M (k) = argmax
θ∈Θ

x
T (k)θ, (11)

θ
m (k) = arg min

θ∈Θ

x
T (k)θ. (12)

This algorithm requires to determine the set of all ver-
tices W of the convex polyhedron Θ. The minimum and
maximum values for the parameters considered are de-
termined using linear programming techniques (Milanese
et al. [1996]). The obtained confidence interval can be
directly used to calculate an adaptive threshold for the
residual r(k) = y(k)− ỹ(k). Finally, the adaptive threshold
is described by the following inequality:

x
T (k)θm(k) + εm(k) − y(k) ≤ r(k)

≤ x
T (k)θM (k) + εM (k) − y(k). (13)

The presented approach does not take into account the fact
that not only the output variable y(k) is uncertain but also
all input variables x(k) can be uncertain. The problem of
computing the feasible set of parameters when some or all
explanatory variables, as well as the output, are uncertain
is usually called the Error-In-Variables (EIV) problem.
The study of this problem can be found in Milanese et al.
[1996]. Moreover, in Kowal and Korbicz [2007], the EIV
parameter-bounding algorithm is adapted for use with
the Takagi-Sugeno fuzzy model in order to compute the
adaptive threshold.

2.2 Dynamic GMDH networks and their uncertainty

The idea of the GMDH (Ivakhnenko [1971]) is based on
replacing the complex model of the process with partial
models (neurons) by using the rules of variable selection.
As usual, partial models have a small number of inputs
ui(k), i = 1, 2, . . . , m, and are implemented by GMDH
neurons. The synthesis process of the GMDH network
(Farlow [1984], Pham and Xing [1995]) is based on iterative
processing of a sequence of operations. This process leads
to the evolution of the resulting model structure in such a
way as to obtain an approximation of the optimal degree
of model complexity. In a general form, the GMDH neural
network output can be written as

ỹ(k, θ) = g
(

θ
(1)
1 , . . . ,θ(1)

n1
, . . . ,θ

(L)
1 , . . . ,θ(L)

nL

)

, (14)

where g(·) stands for the neural network structure (Witczak
et al. [2006]), L is the number of layers of the GMDH
model and nl is the number of neurons in the l-th layer.
Each GMDH neuron has the following structure:

ỹ(l)
n (k) = ξ

(

(

z
(l)
n (k)

)T

θ
(l)
n

)

, (15)

where ỹ
(l)
n (k) stands for the neuron output (l = 1, . . . , L

is the layer number, n = 1, . . . , nl is the neuron number
in the l-th layer) corresponding to the k-th input signal
u(k) of the system, ξ(·) denotes a non-linear invertible
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activation function, z
(l)
n (k) = f([u

(l)
i (k), u

(l)
j (k)]T ), i, j =

1, . . . , nu (nu being the number of inputs in the i-th layer)
are the regressor vectors with f(·) being an arbitrary

bivariate vector function, and θ
(l)
n are the parameter

vectors.

An outline of the GMDH algorithm can be as follows
(Mrugalski [2004], Pham and Xing [1995]):

Step 1: Determine all neurons in the first layer (estimate

their parameter vectors θ
(l)
n with the training data set

T ) whose inputs consist of all possible couples of input
variables, i.e., (nu − 1)nu/2 couples (neurons).

Step 2: Using a validation data set V , not employed
during the parameter estimation phase, select several
neurons which are best fitted in terms of the chosen
criterion.

Step 3: If the termination condition is fulfilled (the net-
work fits the data with desired accuracy or the introduc-
tion of new neurons did not induce a significant increase
in approximation abilities of the neural network), then
Stop, otherwise use the outputs of the best-fitted neu-
rons (selected in Step 2 ) to form the input vector for
the next layer, and then go to Step 1.

To obtain the final structure of the network, all unneces-
sary neurons are removed, leaving only those which are
relevant to the computation of the model output. The
feature of the above algorithm is that the techniques for
parameter estimation of linear-in-parameter models can
be used during the realisation of Step 1. Indeed, since
ξ(·) is invertible, the neuron (15) can relatively easily be
transformed into a linear-in-parameter one.

Similarly as in Section 2.1, while applying the least-square
method to parameter estimation of neurons, a set of
restrictive assumptions has to be satisfied. The first, and
the most controversial, assumption is that the structure of
the neuron is the same as that of the system (no structural
errors). In the case of the GMDH neural network, this
condition is extremely difficult to satisfy. Indeed, neurons
are created based on two input variables selected from
u and hence it is impossible to eliminate the structural
error. Another assumption concerns transformation with
ξ−1(·). A more realistic approach is to assume that errors
lie between a priori given bounds.

Let us consider the following system:

y(k) =
(

z
(l)
n (k)

)T

θ
(l)
n + ε(l)

n (k). (16)

The problem is to obtain the parameter estimate vector

θ̂
(l)

n (k), as well as the associated parameter uncertainty
required to design a robust fault detection system. In order

to simplify the notation, the index
(l)
n is omitted in further

descriptions.

As proposed in (Mrugalski et al. [2005], Witczak et al.
[2006], Korbicz and Mrugalski [2008]), the structure, pa-
rameters and modelling uncertainty of the GMDH net
can be determined with the bounded-error approach, pre-
sented in the previous subsection. As a consequence, any
parameter vector contained in Θ is a valid estimate of θ.
In practice, the centre (in some geometrical sense) of Θ is

chosen as the parameter estimate θ̂, e.g.,

θ̂i =
θm

i + θM
i

2
, i = 1, . . . , nθ, (17)

where
θm

i = arg min
θ∈Θ

θi, i = 1, . . . , nθ, (18)

θM
i = arg max

θ∈Θ

θi, i = 1, . . . , nθ. (19)

Using the methodology described above it is possible

to obtain the parameter estimate θ̂ and the associated
feasible parameter set Θ. However, from the practical
point of view, it is more convenient to obtain model output
uncertainty, i.e., the interval in which the “true” model
output ỹ(k) can be found. This kind of knowledge makes
it possible to obtain an adaptive threshold, and hence to
develop a fault diagnosis scheme that is robust to model
uncertainty.

If there is no error in the regressor, then the problem of
determining system output uncertainty can be solved as
follows:

z
T (k)θm(k) ≤ z

T (k)θ ≤ z
T (k)θM (k), (20)

where
θ

m(k) = arg min
θ∈Θ

z
T (k)θ, (21)

θ
M (k) = arg max

θ∈Θ

z
T (k)θ. (22)

The computation of (21) and (22) is realised by mul-
tiplying parameter vectors corresponding to all vertices
belonging to Θ by z

T (k).

The above technique can easily be adapted for parame-
ter and uncertainty estimation of the non-linear neuron
model (15) (Witczak [2007]). Moreover, the presented
technique can also be adapted to the so-called error-in-
variable case, i.e. when the regressor is not precisely known
but there exist its lower and upper bounds.

In a similar way as was done for the T-S fuzzy model
(1), the confidence interval (20) can be directly used to
calculate the adaptive threshold as follows:

z
T (k)θm(k) + εm(k) − y(k)

≤ r(k) ≤ z
T (k)θM (k) + εM (k) − y(k).

(23)

For the situation when an error in the regressor of the
GMDH model is taken into account, the adaptive thresh-
old is considered by Witczak [2007].

Finally, it should be pointed out that the main argument
behind using a GMDH net is the fact that linear parameter
estimation based techniques can be used for its design pur-
poses. This means that the resulting parameter confidence
set (or the feasible parameter set) is precisely described.
This is in contrast with other approaches, e.g., multi-
layer perceptrons (Witczak [2006]), where a linearization
technique is employed.

2.3 Multi-layer perceptron and its uncertainty

To simplify the study of MLP model uncertainty, the two-
layer network is considered. The hidden layer includes
neurons with non-linear activation function ξ(·); however,
in the output layer one neuron with the linear activation
function was employed. The network is described by

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7903



ỹ(k) =

nh
∑

i=1

θ0,iξ





nu
∑

j=1

θi,juj(k)



 , (24)

where u ∈ R
nu represents a vector of the network inputs,

nh is the number of the neurons in the hidden layer.

The parameters vector θ = [θT
l , θT

n ]T ∈ R
nh(nu+1)

consists of the parameters of the linear neuron θ
T
l =

[θ0,1, . . . , θ0,nh
]T , and the parameter vectors of the non-

linear neurons from the hidden layer θ
T
n , where θ

T
n =

[θT
1,n, . . . ,θT

nh,n]T , θi,n = [θi,1, . . . , θi,nu
]T . The network

model (24) can be described in a more condensed form:

ỹ(k) = z
T (k)θl, (25)

where the regressor of the output neuron is given by:

z̃(k) =
[

ξ(uT (k)θ1,n), . . . , ξ(uT (k)θnh,n)
]

. (26)

Let us assume that the system output is described in the
following form:

y(k) = ỹ(k) + ε(k). (27)

The polytopic region Θ becomes very complicated when
the number of measurements and parameters is large,
which means that its determination is extremely complex
and time-consuming. Since the number of neurons in the
hidden layer nh of the MLP considered is usually large,
then the number of parameters nθ = nh(nu + 1) is large
as well, and hence the above approach cannot be directly
applied to parameter estimation of (24) (Witczak [2006]).
An easier solution relies on approximating the convex
polytope Θ̂ by an ellipsoid. In a recursive OBE algorithm
(Milanese et al. [1996], Walter and Pronzato [1996]), the
measurements are taken into account one after the other
to construct a succession of ellipsoids containing all values
of θ̂ consistent with all previous measurements. The OBE
algorithm provides rules for computing θ(k) and P (k) in

such a way that the volume of Θ(θ̂(k+1), where P (k+1))
denotes a positive-definite matrix which specifies the size
and orientation of the ellipsoid.

Taking into account process linearization (Mrugalski et al.
[2007]), the non-linear model (24) can be rewritten as

y(k) = ỹl(k) + o(θ, θ̂), (28)

where o(θ, θ̂) stands for the higher-order terms of the
Taylor series expansion, and ỹl(k) is the output of the
linearized model.

Moreover, based on (28), the system output can be written
as

y(k) = ỹl(k) + ε(k), (29)
where ε(k) is the output error.

Applying the OBE algorithm, it is possible to obtain the
bounds of the linear model output uncertainty interval
(Mrugalski et al. [2007]):

ỹm
l < ỹl < ỹM

l (k), (30)

where

ỹm
l (k) = ∇ỹT

θ̂l −
√

∇ỹT P∇ỹ, (31)

ỹM
l (k) = ∇ỹT

θ̂l +
√

∇ỹT P∇ỹ. (32)

In order to obtain the output uncertainty interval of the

whole model, it is necessary to obtain the bounds of o(θ, θ̂)
based on the expression (32):

o(θ, θ̂) = y(k) − yl(k)

= z̃0(k)θl − z̃(k)θl −∇ỹT
n |θ=θ̂(k−1)(θn − θ̂n(k))

= (z̃0(k) − z̃(k))θl −∇ỹT
n |θ=θ̂(k−1)(θn − θ̂n(k)).

(33)

After some computations it is shown (Mrugalski et al.

[2007]) that the linearisation error o(θ, θ̂) depends on

the parameter error e(k) = θ(k) − θ̂(k). Moreover, each
element ei(k) is overbounded by the square roots of the
diagonal elements matrix P , which defines the size and
orientation of the ellipsoid:

−
√

Pi,i ≤ ei(k) ≤
√

Pi,i, (34)

where i = 1, . . . , nh(1 + nu). Thus, depending on the

changes of the values ei(k), also the value o(θ, θ̂) will be
changing in the limited interval:

o(θ, θ̂)m ≤ o(θ, θ̂) ≤ o(θ, θ̂)M . (35)

Based on the expressions (35), (36) and (39), it is possible
to obtain the neural model output uncertainty interval:

z̃
T
θ̂l −

√

∇ỹT P∇ỹ + o(θ, θ̂)m ≤ ỹ(k)

≤ z̃
T
θ̂l +

√

∇ỹT P∇ỹ + o(θ, θ̂)M .
(36)

The work Mrugalski et al. [2007] provides a detailed

description regarding the determination of o(θ, θ̂)m and

o(θ, θ̂)M . As a consequence, the adaptive threshold can
be reliably determined.

3. EXPERIMENTAL RESULTS

The example being considered in this section is concerned
with the so-called DAMADICS benchmark (Patton et al.
[2006]). The benchmark is oriented towards fault diagnosis
of a valve actuator being a part of the evaporation station
of the Lublin Sugar Factory in Poland (Fig. 1).

Positioner

Valve

S

Z1

Z2

Z3

T1 P1 P2

F

CV

X

ACQ

PP

PC

E/P CPU

PS

Fig. 1. Scheme of the actuator

The following notations are used: V1, V2 and V3 are
cut-off valves, ACQ is a data acquisition unit, CPU is
a positioner central processing unit, E/P is an electro-
pneumatic transducer, and DT , PT and FT denote dis-
placement, pressure and volume flow transducers, respec-
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tively. For remote on-line diagnostics, the following mea-
sured variables are accessible: the flow rate of juice after
the control valve (F ), the actuator’s rod displacement (X),
the input set-point (CV ), juice temperature at the input of
the control valve (T1), and juice pressures at the input and
outlet of the control valve, respectively (P1 and P2). The
benchmark specifies a set of 19 faults f1, . . . , f19 whose
description can be found in (DAMADICS [2004]).

Based on the actuator benchmark definition (DAMADICS
[2004]), two structural models can be defined: F =
fF (X, P1, P2, T1), and X = fX(CV , P1, P2, T1), where
fF (·) and fX(·) denote unknown non-linear functions of
the flow rate and displacement, respectively. Using these
functional relations, GMDH neural dynamic models were
developed. Figure 2 presents system responses and the
corresponding system output uncertainty intervals for the
faulty data.

f
t

re
s
id

u
a

l

discrete time

Fig. 2. System response and the system output uncertainty
interval for the fault f4

Now, the MLP model of the juice flow at the outlet of the
valve is considered. The selection of the proper structure of
the MLP model relies on the gradually increasing number
of the neurons in the hidden layer from 1 to 20. For each
network architecture, the set of the initial parameters was
obtained with the application of the global optimization
algorithm called Adaptive Random Search (ARS) (Walter
and Pronzato [1996]), and then the approach described
in the preceding part of this paper was applied. Figure 3
presents system responses and the corresponding system
output uncertainty intervals for the faulty data.
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Fig. 3. System response and the system output uncertainty
interval for the fault f17

Finally, the Takagi-Sugeno network based model was em-
ployed according to the approach described in the preced-
ing part of this paper. Figure 4 presents system responses
and the corresponding system output uncertainty intervals
for the faulty data.
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residuals

adaptive thresholds

fault detection

Fig. 4. System response and the system output uncertainty
interval for the fault f4

4. CONCLUDING REMARKS

The main purpose of this paper was to present an overview
regarding robust model based fault detection systems
applying soft computing models. Special attention was
paid to the uncertainty of such models and their usefulness
in fault diagnosis. In particular, uncertainties of MLP and
GMDH neural networks as well as the Takagi-Sugeno fuzzy
model were considered. The presented approaches are
based on the bounded-error approach and its extension to
the outer bounding ellipsoid. It was shown that the defined
confidence interval for the system output of the GMDH,
MLP and Takagi-Sugeno networks can be used to develop
an adaptive threshold that permits robust fault detection.
In the last part, an experimental study performed with the
DAMADICS benchmark problem showed the effectiveness
of such robust fault detection based on the uncertainty of
soft computing models.
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Zielona Góra, 2004.
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