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Abstract: The paper presents a global chassis control (GCC) optimization approach using a gradient-based 
optimal control algorithm. The goal is to find optimal actions of various actuators such as active steering 
and active differential, which ensure satisfying the optimization criterion (e.g. trajectory following error 
minimization) subject to different equality and inequality constraints on state and control variables. The 
optimization algorithm is based on an exact gradient method, where the cost function gradient is calculated 
by using a backpropagation-through-time-like algorithm. The proposed GCC optimization approach is 
illustrated on an example of double lane change maneuver using rear active steering and/or rear active 
differential actuators. 

 

1. INTRODUCTION 

The traditional vehicle dynamics control systems based on 
brake interventions are being improved by introducing new 
vehicle dynamics actuators such as active steering systems 
and active differentials. The addition of new actuators opens 
significant opportunities of improving vehicle active safety 
and handling performance. However, the overall vehicle 
dynamics control system becomes a complex multi-input 
multi-output system (denoted here as Global Chassis Control 
(GCC) System), which calls for application of modern 
control techniques to reach the optimal performance. 

The GCC system optimization usually relates to finding 
optimal parameters of a state variable controller (Hancock, 
2006) for a linearized vehicle dynamics model. Although 
straightforward and potentially effective, such a parameter 
optimization design approach is generally suboptimal when 
compared to nonlinear time-varying controllers. In order to 
get a clear insight how far from optimal the parameter 
optimized controller is, it would be beneficial to apply 
advanced numerical techniques of finding optimal trajectories 
of nonlinear system control variables. Other benefits of using 
the nonlinear open-loop optimization include (i) assessment 
on the degree of GCC improvement achieved by introducing 
different actuators and (ii) gaining an insight on how the state 
controller can be extended by feedforward and/or gain 
scheduling actions to improve the performance. 

Any automotive control system that includes many, 
especially redundant actuators is a good candidate for 
applying control variable optimization. This includes 
advanced engine control systems (Kolmanovsky, 2001), 
hybrid vehicle controls (Sundstroem and Stefanopoulou, 
2006), and vehicle dynamics control systems (Velenis and 
Tsiotras, 2005; Hattori et al., 2005). 

A traditional way of solving the control variable optimization 
problem includes complete time-discretization of the problem 

and its conversion into a nonlinear programming formulation 
(Betts, 2001). The penalty functions related to the state and 
control variable constraints, and also plant equation 
constraints are added to the cost function. The control and 
state variables can, thus, be treated as independent variables, 
so that the cost function gradient calculation is relatively 
simple. However, the optimization problem formulated in 
such a way can be characterized by a slow convergence due 
to additional plant equations equality constraints. Also, 
numerical stability can be sensitive to choice of various 
optimization parameters such as discretization period, 
weighting factors of penalty functions etc. 

In this paper we present a GCC optimization approach based 
on the nonlinear optimization method developed in (Kasac, 
1998). In contrast to the nonlinear programming approach, 
the plant equations constraints are not included in the cost 
function. The control and state variables are rather treated as 
dependent variables (coupled via plant equations), so that the 
final algorithm has a backward-in-time structure similar to 
the backpropagation-through-time (BPTT) algorithm 
(Werbos, 1990), which is mostly used as a learning algorithm 
for recurrent neural networks. Such an exact gradient 
algorithm is more complex than the nonlinear programming-
based algorithm, but it can provide better and numerically 
more stable convergence properties. GCC application of the 
algorithm is illustrated on an example of double lane change 
maneuver executed by using control actions of active rear 
steering and active rear differential actuators. 

2. OPTIMAL CONTROL ALGORITHM 

2.1  Continuous-Time Problem Formulation 

A continuous-time nonlinear optimal control problem is 
considered. The problem is to find the control vector u(t) that 
minimizes the cost function 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 2081 10.3182/20080706-5-KR-1001.2973



 
 

     

 

 ( )0
0

( ), ( ) ,
ft

J F t t dt= ∫ x u  (1) 

subject to the nonlinear continuous-time plant equations 
 ( ) ( ( ), ( )),t t t=x x u& φ  (2) 
and the initial and final conditions of the state vector 
 ( ) ( )00 , ,f ft= =x x x x  (3) 

then subject to the control and state vector inequality 
constraints  
 ( ) ( )( ), 0,t t ≥g x u   (4) 

and equality constraints 
 ( ) ( )( ), 0,t t =h x u  (5) 

where x(t) is the n-dimensional state vector, u(t) is the m-
dimensional control vector, g(x(t), u(t)) is the p-dimensional 
vector function of inequality constraints, h(x(t), u(t)) is the q-
dimensional vector function of equality constraints, and tf is 
the terminal time. 

2.2 Discrete-Time Problem Formulation 

The discrete-time form of the cost function (1) reads  
 1

0
0

( ( ), ( )),
N

i
J F i iτ

−

=

= ∑ x u  (6) 

where N is the number of sampling intervals, τ = tf / N is the 
sampling interval, and x(i) and u(i) are the state and control 
vectors in the i-th time interval ti=iτ, i=0, 1,…, N-1, 
respectively. The set of differential equations (2) is 
transformed to the set of difference equations 
 ( ) ( ) ( )( )1 , ,i i i+ =x f x u  (7) 

where the Euler discretization method1 is used 
 ( ( ), ( )) ( ) ( ( ), ( )).i i i i iτ= +f x u x x uφ  (8)     
The initial and final conditions of the state vector are 
 ( ) ( )00 , ,fN= =x x x x   (9) 
and the control and state vector inequality and equality 
constraints read 
 ( ) ( )( ), 0,i i ≥g x u    (10) 

 ( ) ( )( ), 0.i i =h x u   (11) 

2.3  Penalty Method Approach 

The next problem-formulation step includes expansion of the 
cost function (6) with penalty functions for constraints: 
 

0 1 2 3,J J J J J= + + +   (12) 
where 
 ( ) ( )( )2

1
1

,
n

B k k f
k

J K N t
=

= −∑ x x   (13) 

is the penalty function for the final boundary conditions (9), 
KB is the weighting coefficient of the penalty function, and 
xk(tf) is the k-th component of the state vector at the terminal 
time tf. 

Further,  

                                                           
1 Since the proposed algorithm is found to be robust with respect to 
the choice of number of time intervals N, we use the simple Euler 
method with the sampling interval τ selected to a value that is small 
enough to provide satisfactory accuracy of optimization. 
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is the penalty function for inequality constraints (10), where 
( )H x−  is the Heaviside step function defined as 

 ( )
0, if 0,
1, if 0,

x
H x

x
− ≥⎧

= ⎨ <⎩
 

and VK  is the penalty function weighting coefficient for 
inequality constraints. Finally, the penalty function for the 
equality constraints (11) is given by 
 ( ) ( )( )
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−

= =

= ∑∑ x u   (15) 

where EK  is the corresponding weighting coefficient. 

By setting V VK Kτ=  and E EK Kτ= , the equation (12) can 
be expressed as  
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Hence, the optimal control problem (6) to (11) can be 
formulated in the following form 
 ( ) ( )( )

1

1
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, ,
N

i
J F i i Jτ

−

=

= +∑ x u   (18) 

( ) ( ) ( )( ) ( ) 01 , , 0 .i i i+ = =x f x u x x  (19) 

2.4  Gradient Optimization Method 

The gradient descent algorithm with respect to control vector 
u(i) is given by: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 , ,l l
u u l

Ji i i i
i

η+ ∂
= − =

∂
u u J J

u
      (20) 

where  l = 1, 2, …, M. The index l denotes the l-th iteration 
of the gradient algorithm, M is the number of iterations, and 
η is the convergence coefficient. 

The gradient of the cost function (18) in the l-th iteration of 
the gradient algorithm and i-th sampling interval is  
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( )
( ) ( )

1
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0
,
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ik k k

F i JJ
u j u j u j

τ
−

=

∂ ∂∂
= +

∂ ∂ ∂∑   (21) 

where ( ) ( ) ( )( ),F i F i i≡ x u , and k = 1, 2, …, m. 

The sum on the right-hand side of (21) can be evaluated as 
follows  
 ( )
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1 1

0 1
,

N N

i i jk k k

F i F j F i
u j u j u j

τ τ τ
− −
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∂ ∂ ∂
= +

∂ ∂ ∂∑ ∑   (22) 

where the terms for i j<  are equal to zero, because the state 
vector x(i) is not dependent on ( )ju  for j > i (the causality 
principle: the state vector in the past is not dependent on 
control vector in the future). 

The terms in the sum on the right-hand side of (22) depend 
on ( )ku j  implicitly through x(i) for i > j, which gives 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2082



 
 

     

 

 ( )
( )

( )
( )

( )
( )1

.
n

r

rk r k

F i F i x i
u j x i u j=

∂ ∂ ∂
=

∂ ∂ ∂∑   (23) 

The following step is calculation of the partial derivative term 
( ) ( )juix kr ∂∂ /  in (23). Based on (19), the chain rule for 

ordered derivatives is obtained:  
 ( )
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1
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x j f j
u j u j

∂ + ∂
=

∂ ∂
  (24) 
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for  i = j+2, …, N-1, where ( ) ( ) ( )( ),r rf j f j j≡ x u . 

If the second term on the right-hand side of the expression 
(21) is denoted as 
 ( ) ( )

( )
1

1
,

N

k
i j k

F i
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u j

−

= +

∂
=

∂∑   (26) 

then the following recurrent algorithm for the calculation of 
the sum (23) can be obtained 
 ( )1 0 ,rP N − =    (27)  
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where j = N-2, N-3,…, 0; r = 1, 2, …, n; k = 1, 2, …, m. 
Detailed derivation of the backward-in-time recurrent 
algorithm (27)-(29), as well as the gradient ( )1 / kJ u j∂ ∂ , is 
provided in (Kasac, 1998). 

The standard gradient algorithm with the constant 
convergence coefficient η and a linear gradient Ju is 
characterized by a slow convergence. Small value of the 
gradient Ju near the optimal solution is the main reason for 
the slow convergence. In this work we use a simple “sliding-
mode”-based modification of the gradient algorithm, where 
the linear dependence on Ju is replaced by the following 
nonlinear form: 
 ( ) ( )1 ( )( ) ( ) ,

( )
l l u

u

ii i
i

η
ε

+ = −
+
Ju u

J
 (30) 

where 
  1

1
( ) ( ),

N
T

u u u
i

i i
−

=

= ⋅∑J J J  (31) 

and ε  is a positive small parameter. Such a nonlinear 
modification of the gradient algorithm provides a stronger 
influence of the gradient Ju near the optimal solution, and 
consequently better convergence. 
 

3. VEHICLE DYNAMICS MODEL 

The 10 degree of freedom (DOF) vehicle dynamics model 
(Hancock, 2006) is adapted in this report, in order to get a 
simpler and still relatively accurate model structure 
convenient for control variable optimization. The 
simplification primarily relates to omitting the roll, pitch, and 
heave DOF.  
 
 
 

3.1  State-Space Subsystem 

The considered vehicle dynamics model include three state 
variables related to longitudinal, lateral and yaw DOF, three 
state variables related to vehicle trajectory in the inertial 
coordinate system, four state variables corresponding to the 
rotational speeds of each wheel, first order dynamics of the 
tire load subsystem, and first order dynamics of rear steering 
and rear differential actuators. 
The differential equations for the each subsystem are given as 
follows. 

1) Longitudinal, lateral, and yaw DOF: 
 ( )1 2 3 4

1 ,x x x xU Vr F F F F
M

= + + + +&  (32) 

 ( )1 2 3 4
1 ,y y y yV Ur F F F F
M

= − + + + +&  (33) 

 ( ) ( )

( ) ( )

1 2 3 4

1 3 2 4 ,
2 2

y y y y
zz zz

x x x x
zz zz

b cr F F F F
I I

t tF F F F
I I

= + − + −

− + + +

&  (34) 

 ,rψ =&  (35) 
 cos sin ,X U Vψ ψ= −&  (36) 
 sin cos ,Y U Vψ ψ= +&  (37) 
where U and V are the longitudinal and lateral velocity, r is 
the yaw rate, X and Y define the vehicle position in the 
inertial coordinate system, and ψ  is the yaw angle. Further, 
Fxi and Fyi, i=1, 2, 3, 4, are the longitudinal and lateral forces 
of the i-th tire in the vehicle coordinate system (i=1, 2 – front 
tires; i=1, 3 – left tires), M is the vehicle mass, Izz is the 
vehicle moment of inertia around the vertical axis, b is the 
longitudinal distance from the front axle to the vehicle centre 
of gravity (CoG), c is the longitudinal distance from the rear 
axle to the CoG, and t is the track. 

2) The wheel rotational dynamics: 
 1 ,i i xti

wi wi

RT F
I I

ω = −&  (38) 

where ωi  is the rotational speed of the i-th wheel, Fxti is the 
longitudinal force of the i-th tire in the tire coordinate system, 
Ti is the torque at the i-th wheel, Iwi is the wheel moment of 
inertia, and R is the effective tire radius.  

3) Delayed total lateral force (needed to calculate the lateral 
    tire load shift): 
 ( )1 2 3 4

1 1 ,y d y d y y y y
d d

F F F F F F
τ τΣ Σ= − + + + +&  (39) 

where dτ  is the time constant that is chosen to provide a 
good fit of 10 DOF model lateral tire load shift behavior. 

4) The actuator dynamics: 
 1 1 ,r r r

δ δ

δ δ δ
τ τ

= − +&  (40) 

 1 1 ,r
r r

T T

d T T T
dt τ τ
∆

= − ∆ + ∆  (41) 

where rδ  is the rear wheel steering angle, rT∆  is the rear 
differential torque shift, and δτ  and Tτ  are the actuator time 
constants. 
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3.2  Longitudinal Slip Subsystem 

The longitudinal tire slip is given by 
 ,i i

i
i

R U
U

ωη −
=  (42) 

where Ui is the longitudinal velocity of the vehicle body at 
corner i: 
 

1,3 ,
2
tU U r= −           

2,4 .
2
tU U r= +  (43) 

3.3  Lateral Slip Subsystem 

The tire slip angle is calculated as 
 arctan ,i

i i
i

V
U

α δ= −  (44) 

where iδ  is the road wheel angle, and Vi is the lateral velocity 
of the vehicle body at the corner i: 
 

1,2 ,V V br= +            
3,4 .V V cr= −  (45) 

Note that in this work 1 2δ δ=  are considered to be external 
(driver’s) input variables, and 3 4δ δ=  are control inputs to be 
optimized (active rear steering). 

3.4  Tire Load Subsystem 

In the absence of heave dynamics, the tire load of each tire 
may be calculated as: 
 

1,2
1 ,
2

g
z y d

hcMgF F
l t Σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
m    

3,4
1 ,
2

g
z y d

hbMgF F
l t Σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
m  (46) 

where l is the wheelbase and hg is the CoG height. Note that 
the second term corresponds to the lateral load shift, where 

y dF Σ is given by (39). The longitudinal tire load shift is 
neglected in this study. 

3.5  Tire Subsystem 

The tire model is based on a simplified form of Magic 
formula model (Bakker et al., 1987). The simplification leads 
to a significant reduction of complexity of analytical Jacobian 
matrices in (28) and (29), which is primarily determined by 
the tire model complexity. The longitudinal and lateral tire 
forces are calculated as static functions of the longitudinal 
slip, lateral slip, and normal loads to tires: 
 2 2 ,i i is η α= +  (47) 
 ( )( )sin arctan ,i zi iF F D C kBsµ=  (48) 

 ,i
xti i

i

F F
s
η

=       ,i
yti i

i

F F
s
α

=  (49) 

where µ is the tire friction coefficient, B, C and D are tire 
model parameters, and 180 /k π= . The above tire model 
predicts the friction circle as a basic tire property. 
The calculated tire forces are then transformed to the chassis 
coordinate system to serve as inputs of the state-space 
subsystem (Subsection 3.1) and the tire load subsystem 
(Subsection 3.4): 
 cos sin

sin cos
xi xti i yti i

yi xti i yti i

F F F
F F F

δ δ

δ δ

= −

= +
. (50) 

 
 

3.6  Rear Active Differential Subsystem 

The torque at each wheel is given by 
 

1,2 4
bTT = − ,       

3,4 2 4
i b

r
T TT T= ∆ −m , (51)

where rT∆  is the differential torque shift control variable, Ti 
is the input torque (driveline torque) and Tb is the braking 
torque (equally distributed braking force to each wheel is 
assumed). 
The differential torque shift rT∆  is subject to constraints 
related to the left and right wheel speed difference (Hancock, 
2006): 
(a) Active limited-slip differential (ALSD): 
 3 4 3 40,   0r rT Tω ω ω ω> ⇒ ∆ > < ⇒ ∆ < . 
(b) Torque vectoring differential (TVD): 
 4 3 3 40,   0AWSD r AWSD rk T k Tω ω ω ω< ⇒ ∆ > < ⇒ ∆ < , 
where kAWSD>1 is the allowable wheel speed difference factor 
(for a realistic TVD kAWSD ≈ 1.25). Note that kAWSD=1 for the 
ALSD. The above-mentioned constraint is included in plant 
model as 
 ( ) ( ) ( ) ( )1 2 ,r r r r rT H w H T T H w H T T+ + − −∆ = ∆ ∆ + ∆ ∆  (52) 

where 1 3 4AWSDw k ω ω= − , 2 3 4AWSDw kω ω= − , and ( )H x−  and 

( ) 1 ( )H x H x+ −= −  are Heaviside step functions (Section 2). 

4. OPTIMAL CONTROL PROBLEM FORMULATION 

The optimal control objectives is to find the control variables 
which ensure that vehicle follows the reference trajectory in 
X-Y inertial coordinate system with a minimum tracking 
error. In other words, the problem is to find the rear steering 
angle rδ  and/or the rear differential torque shift ∆Tr which 
minimize the cost function: 
 22

2 2
2

1 max0 0

( ) ( )
f ft t

i
s R R ui

i i

uJ K X X Y Y dt K dt
U=

⎡ ⎤= − + − +⎣ ⎦ ∑∫ ∫ , (53) 

where XR and YR are coordinates of the reference trajectory, 
1 ru δ≡ , 2 ru T≡ ∆ , o

1max max 20rU δ≡ = , 2max maxrU T≡ ∆ =  
1250 Nm , and Ks and Ku1,2 are weighting factors of individual 
cost functions. 
Also, the following inequality constraints of the control and 
state variables can be considered and realized through the 
penalty cost function (14): 
a) Control variables constraints: 
 Nm 1250max =∆≤∆ rr TT ,         o

max 20r rδ δ≤ = , (54) 
b) Limit of vehicle side slip angle: 
 o

max 5 , arctan V
U

β β β≤ ≈ = . (55) 

The functionality of the optimal control method for the above 
formulation has been fully verified on examples of step steer 
and double lane change maneuvers with different constraints 
and friction coefficients µ. Section 5 presents the results for 
double lane change maneuver with no constraints on the side 
slip angle β. The reference trajectory is of Gaussian type, and 
is given by red dashed line in Figs. 1-5. The optimization is 
subject to the following equality constraints (boundary 
constraints, cf. (13)) on the final trajectory point:  
 ( ) (0), ( ) / 0.f fY t Y dY t dt= =  (56) 
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5. OPTIMIZATION RESULTS 

The C code optimization program for the double lane change 
example is executed on a personal computer with Intel 
Pentium 4 processor (3.20 GHz). The terminal time is tf =6 s, 
the sampling interval is τ =0.003 s, so that the number of 
time intervals is N=2000. The number of iterations of the 
gradient algorithm is M=6000. The initial value of the control 
vector (for the initialization of the gradient algorithm) is set 
to zero. The execution time is typically in the range of several 
minutes. 

Fig. 1 shows the results of optimization of the front road 
wheel angle 

fδ  for asphalt road (µ = 1), with the aim to reach 
the desired vehicle trajectory. That is, the optimization task is 
to find an ideal driver steering input referred to the road 
wheel angle. The results in Fig. 1 illustrate that the desired, 
relatively sharp vehicle trajectory cannot be fully satisfied by 
using the front wheel steering at the given velocity of 22 m/s. 
The maximum absolute value of the lateral acceleration 
reaches about 26.5m/s 0.65ya V Ur g= + = ≅& . 
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Fig. 1. Front wheel steering optimization results for asphalt 
road (µ = 1). 

Figs. 2-5 shows the optimization results for a road condition 
characterized by the tire-road friction coefficient µ = 0.6 (e.g. 
wet asphalt surface) for different vehicle dynamics actuators: 
active rear steering (ARS), active torque vectoring 
differential (TVD), active limited-slip differential (ALSD), 
and combined ARS and TVD.  The top plot of each figure 
include three trajectories: (i) reference trajectory that 
corresponds to the optimized (reached) trajectory for µ = 1 in 
Fig. 1,  (ii) trajectory when no control action is used (δ r = 0, 

∆Tr = 0), and (iii) trajectory reached by using the control 
action. The front steering input is taken from Fig. 1 (no driver 
model is used). 
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Fig. 2. Optimization results for ARS+TVD control and µ = 
0.6. 
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Fig. 3. Optimization results for ARS control and µ = 0.6. 
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Fig. 4. Optimization results for TVD control and µ = 0.6. 
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Fig. 5. Optimization results for ALSD control and µ = 0.6. 

Since the reference lateral acceleration 26.5m/sya ≅  is close 

to be achievable on the road with µ = 0.6, the optimization of 
combined ARS+TVD control variables result in accurate 
trajectory following (Fig. 2). In the case of individual ARS or 

TVD control, the trajectory following accuracy remains 
almost the same as in the case of combined ARS+TVD 
control (cf. Figs. 3-4 and Fig. 2). The main difference is that 
the individual controls require larger magnitudes of the 
control inputs rδ  and ∆Tr than the combined control. When 
comparing the two individual controls, it is important to note 
that the ARS control provokes smaller magnitudes of the 
vehicle side slip angle β than the TVD control. The active 
limited slip differential (ALSD) cannot compensate for the 
understeer behavior in the first part of maneuver, and the 
corresponding trajectory error is the same as for the passive 
vehicle (Fig. 5). This is because the ALSD cannot generate 
oversteer, i.e. it can only shift torque to the slower/inner 
wheel (understeer generation; cf. Subsection 3.6). Similar 
comparative performance has been obtained for lower µ 
values as well. 

6. CONCLUSIONS 

A back-propagation-through-time (BPTT) exact gradient 
method of optimal control has been applied for control 
variable optimization in Global Chassis Control systems. The 
optimization approach has been illustrated on an example of 
double lane change maneuver. The approach is proven to be 
numerically robust and precise, and it can give valuable 
insights into the ultimate GCC performance. The future work 
will be directed to use of the developed optimization method 
for various multi-input GCC optimization studies. Further 
improvements of the optimization method in terms of using 
more precise vehicle dynamics model, numerical calculation 
of Jacobian matrices, and enhanced optimization algorithm 
will be considered as well. 
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