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1. INTRODUCTION

Fault Tolerant Control (FTC) is a relatively new idea
recently introduced in the research literature - Blanke et al.
[2003] which allows to have a control loop that fulfills
its objectives (maybe with a possible degradation) when
faults in components of the system (instrumentation, actu-
ators and/or plant) appear. A control loop could be consid-
ered fault tolerant if there exist adaptation strategies of the
control law included in the closed-loop or mechanisms that
introduce redundancy in sensors and/or actuators. From
the point of view of the control strategies, the literature
considers two main groups: the active and the passive
techniques. The passive techniques are control laws that
take into account the fault appearance as a system pertur-
bation. Thus, within certain margins, the control law has
inherent fault tolerant capabilities, allowing the system to
cope with the fault presence. In the works of Chen et al.
[1998], Liang et al. [2000], Qu et al. [2001], Liao et al.
[2002] and Qu et al. [2003], among many others, complete
descriptions of passive FTC techniques can be found. On
the other hand, the active fault tolerant control techniques
consist on adapting the control law using the information
given by the FDI block (see Blanke et al. [2003]). With this
information, some automatic adjustments are done trying
to reach the control objectives. See the work of Zhang and
Jiang [2003] for a recent review of active FTC. The whole
active FTC scheme can be expressed using the three-layer
architecture for FTC systems proposed by Blanke et al.
[2003] where the first layer corresponds to the control
loop, the second layer corresponds to the fault diagnosis
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(Korbicz et al. [2004], Patton and Korbicz [1999], Witczak
[2006, 2004]) and accommodation modules while the third
layer is the supervisor system.

In this paper, a new active FTC strategy is proposed.
First, it is developed in the context of linear systems and
then it is extended to Takagi-Sugeno fuzzy systems. The
key contribution of the proposed approach is an integrated
FTC design procedure of the fault identification and fault-
tolerant control schemes. Fault identification is based on
the use of an observer. Once the fault have been identified,
the FTC controller is implemented as a state feedback
controller. This controller is designed such that it can
stabilize the faulty plant using Lyapunov theory and LMIs.

The paper is organised as follows. Section 2 presents the
details regarding the proposed FTC strategy. For the sake
of simplicity, the developed scheme is described for linear
systems and then suitably extended for Takagi-Sugeno (T-
S) systems (Section 3). The final part of the paper presents
a numerical example which shows the performance of the
proposed approach.

2. FTC STRATEGY

Let us consider the following reference model:

xk+1 = Axk + Buk, (1)

yk+1 = Cxk+1, (2)

where xk ∈ R
n stands for the reference state, yk ∈ R

m

is the reference output, and uk ∈ R
r denotes the nominal

control input.

Let us also consider a possibly faulty system described by
the following equations:
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xf,k+1 = Axf,k + Buf,k + Lfk, (3)

yf,k+1 = Cxf,k+1, (4)

where xf,k ∈ R
n stands for the system state, yf,k ∈ R

m

is the system output, uf,k ∈ R
r denotes the system input,

fk ∈ R
s, (s ≤ m) is the fault vector, and L stands for its

distribution matrix which is assumed to be known.

The main objective of this paper is to propose a novel
control strategy which can be used for determining the
system input uf,k such that:

• the control loop for the system (3)–(4) is stable,
• xf,k+1 converges asymptotically to xk+1 irrespective

of the presence of the fault fk.

The subsequent part of this section shows the development
details of the scheme that is able to settle such a challeng-
ing problem.

The crucial idea is to use the following control strategy:

uf,k = −Sf̂k + K1(xk − xf,k) + uk (5)

where f̂k is the fault estimate. Note that, due to the sepa-
ration principle, it is not assumed that xf,k is available, i.e.
an estimate x̂f,k can be used instead. Thus, the following
problems arise:

• to determine f̂k,
• to design K1 in such a way that the control loop is

stable, i.e. the stabilisation problem.

2.1 Fault identification

Let us assume that the following rank condition is satisfied

rank(CL) = rank(L) = s. (6)

This implies that it is possible to calculate H = (CL)+ =
[

(CL)T CL
]

−1
(CL)T . By multiplying (4) by H and then

substituting (3) it can be shown that

fk = H(yf,k+1 − CAxf,k − CBuf,k). (7)

Thus, if x̂f,k is used instead of xf,k then the fault estimate
is given as follows

f̂k = H(yf,k+1 − CAx̂f,k − CBuf,k), (8)

and the associated fault estimation error is

fk − f̂k = −HCA(xf,k − x̂f,k). (9)

Unfortunately, the crucial problem with practical imple-
mentation of (8) is that it requires yf,k+1 and uf,k to

calculate f̂k and hence it cannot be directly used to obtain
(5). To settle this problem, it is assumed that there exists

a diagonal matrix αk such that f̂k = αkf̂k−1 and hence
the practical form of (5) boils down to

uf,k = −Sαkf̂k−1 + K1(xk − xf,k) + uk (10)

2.2 Stabilisation problem

By substituting (5) into (4) it can be shown that

xf,k+1 = Axf,k − BSf̂k + BK1ek + Buk + Lfk, (11)

where ek = xk − xf,k stands for the tracking error. Let
us assume that S satisfies the following equality BS = L,
e.g. S = I for actuator faults. Thus, BS = L and hence

xf,k+1 = Axf,k + L(fk − f̂k) + BK1ek + Buk. (12)

Finally, by substituting (9) into (12) and then applying
the result into ek+1 = xk+1 − xf,k+1 yields

ek+1 = (A − BK1)ek + LHCAef,k. (13)

where ef,k = xf,k − x̂f,k stands for the state estimation
error.

2.3 Observer design

As was already mentioned, the fault estimate (8) is ob-
tained based on the state estimate x̂f,k. This raises the
necessity for an observer design. Consequently, by substi-
tuting (7) into (3) it is possible to show that

xf,k+1 = Āxf,k + B̄uf,k + L̄yf,k+1, (14)

where

Ā = (I − LHC)A, B̄ = (I − LHC)B, L̄ = LH.

Thus, the observer structure, which can be perceived as
an unknown input observer (see, e.g. Hui and Zak [2005],
Witczak [2004]), is given by

x̂f,k+1 =Āx̂f,k + B̄uf,k + L̄yf,k+1+

+ K2(yf,k − Cx̂f,k). (15)

Finally, the state estimation error can be written as
follows:

ef,k+1 = (Ā − K2C)ef,k. (16)

2.4 Integrated design procedure

The main objective of this section is to sumarise the pre-
sented results within an integrated framework for the de-
velopment of fault identification and fault-tolerant control
scheme. First, let us start with two crucial assumptions:

• the pair (Ā,C) is detectable,
• the pair (A,B) is stabilisable.

Under these assumptions, it is possible to design the
matrices K1 and K2 in such a way that the extended
error

ēk =

[

ek

ef,k

]

, (17)

described by

ēk+1 =

[

A − BK1 LHCA

0 Ā − K2C

]

ēk = A0ēk, (18)

converges asymptotically to zero.
Theorem 1. The extended error ēk converges asymptot-
ically to zero iff there exist matrices W ≻ 0, L1 and
P 2 ≻ 0, L2 such that

[

W AW − BL1

WAT − LT
1 BT W

]

≻ 0, (19)

[

P 2 P 2Ā − L2C

Ā
T
P 2 − CT LT

2 P 2

]

≻ 0. (20)

Proof. It can be observed from the structure of A0 in (18)
that the eigenvalues of the matrix A0 are the union of
those of A − BK1 and Ā − K2C. This clearly indicates
that the design of the state feedback and the observer can
be carried out independently (separation principle). Thus,
it is clear from the Lyapunov theorem that ēk converges
asymptotically to zero iff there exist matrices P 1 ≻ 0 and
P 2 ≻ 0 such that following inequalities are satisfied:

(A − BK1)
T P 1(A − BK1) − P 1 ≺ 0, (21)

(Ā − K2C)T P 2(Ā − K2C) − P 2 ≺ 0. (22)
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By applying the Schur complements, it is possible to show
that (21)–(22) are equivalent to

[

P−1

1 A − BK1

AT − KT
1 BT P 1

]

≻ 0, (23)

[

P−1

2 Ā − K2C

Ā
T
− CT KT

2 P 2

]

≻ 0. (24)

By substituting W = P−1

1 and then multiplying (23) from
left and right by diag(I,W ) and (24) from left and right
by diag(P 2, I) it can be show that

[

W AW − BK1W

WAT − WKT
1 BT W

]

≻ 0, (25)

[

P 2 P 2Ā − P 2K2C

Ā
T
P 2 − CT KT

2 P 2 P 2

]

≻ 0. (26)

Subsequently, by substituting L1 = K1W and L2 =
P 2K2 it is possible to transform (25) and (26) into (19)–
(20), which completes the proof. 2

Finally, the design procedure boils down to solving the
LMIs (19) and (20), and then determining K1 = L1W

−1

and K2 = P−1

2 L2.

2.5 Illustrative example

Let us consider (1)–(2) and (3)–(4) described by the
following matrices:

A =

[

0.2225 0.2093 0.1013
0.4659 0.4231 0.3361
0.2330 0.2626 0.4191

]

B =

[

0.0196 0.8318
0.6813 0.5028
0.3795 0.7095

]

C =

[

1 0 0
0 1 0

]

,L = −B

The reference input is defined by

uk = [0.3 tanh(k/100), 0.1 + 0.2 cos(πk/100)]T , (27)

for k = 0 . . . 1000. Similarly, the fault scenario is as follows

fk,1 =

{

0, k < 400
0.4, k > 400

fk,2 =

{

0, k < 200
0.5 + 0.3 sin(πk/100), k > 200

Figures 1–3 presents the results achieved for the pro-
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Fig. 1. Faults and their estimates

posed FTC strategy. In particular, the proposed design
procedure was applied to obtain K1 and K2 and then
(10) (with αk = I) was applied as a control strategy. As a
result, Fig. 1 clearly shows that the faults can be estimated
with a very high accuracy. Moreover, from Fig. 2 it can be
observed that uf,k is equal to uk until the occurrence of
the fault f2. After that time the control strategy uf,k was
changed. As can be easily observed, the control strategy
was also changed when f1 occurred. The final conclusion
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Fig. 2. Trajectories of uk and uf,k
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Fig. 3. Residual

is that the residual zk = yk − Cx̂f,k is very close to zero
in the presence of faults (Fig. 3). This is because of the
proposed control strategy for which xf,k converges to xk

and consequently zk converges to zero. On the other hand,
the presence of faults can be easily determined from (8).

3. EXTENSION TO T-S FUZZY SYSTEMS

The main objective of this section is to extend the ap-
proach proposed in Section 2 to Takagi-Sugeno fuzzy sys-
tems (see Takagi and Sugeno [1985]). In order to make the
paper self-contained let us start with a brief introduction
to the T-S fuzzy systems.

3.1 Elementary background on T-S fuzzy systems

A non-linear dynamic system can be described in a simple
way by a Takagi-Sugeno fuzzy model, which uses series of
locally linearised non-linear models (see, e.g. Takagi and
Sugeno [1985], Korbicz et al. [2004]). According to this
model, a non-linear dynamic systems can be linearised
around a number of operating points. Each of these linear
models represents the local system behaviour around the
operating point. Thus, a fuzzy fusion of all linear model
outputs describes the global system behaviour. A T-S
model is described by fuzzy IF-THEN rules which rep-
resent local linear I/O relations of the non-linear system.
It has a rule base of M rules, each having p antecedents,
where ith rule is expressed as

Ri : IF w1
k is F i

1 and . . . and wp
k is F i

p,

THEN

{

xk+1 = Aixk + Biuk

yk = Cixk
,

(28)

in which i = 1, . . . ,M , F i
j (j = 1, . . . , p) are fuzzy sets and

wk =[w1
k, w2

k, . . . , wp
k] is a known vector of premise vari-

ables (Korbicz et al. [2004]) which may depend partially
on the state xk.

Given a pair of (wk,uk) and a product inference engine,
the final output of the normalized T-S fuzzy model can be
inferred as:
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





















xk+1 =

M
∑

i=1

hi(wk)[Aixk + Biuk]

yk+1 =
M
∑

i=1

hi(wk+1)Cixk+1

, (29)

where hi(wk) are normalized rule firing strengths defined
as

hi(wk) =
T p

j=1
µF i

j
(wj

k)
∑M

i=1
(T p

j=1
µF i

j
(wj

k))
(30)

and T denotes a t-norm (e.g., product). The term µF i
j
(wj

k)

is the grade of membership of the premise variable wj
k.

Moreover, the rule firing strengths hi(wk) (i = 1, . . . ,M)
satisfy the following constraints











M
∑

i=1

hi(wk) = 1

0 6 hi(wk) 6 1, ∀i = 1, . . . ,M

. (31)

3.2 FTC startegy

In the light of the approach presented in Section 2, the
T-S reference model used in this paper is given by:

xk+1 =

M
∑

i=1

hi(wk)[Aixk + Buk], (32)

yk+1 =
M
∑

i=1

hi(wk)Cxk+1, (33)

(34)

or equivalently by

xk+1 =

M
∑

i=1

hi(wk)Aixk + Buk, (35)

yk+1 = Cxk+1. (36)

Similarly, a possibly faulty T-S system is described by

xf,k+1 =
M
∑

i=1

hi(wk)Aixf,k + Buf,k + Lfk (37)

yf,k+1 = Cxf,k+1. (38)

Following the same line of reasoning as in Section 2, it can
be shown that the fault estimate is given by:

f̂k = H(yf,k+1 − C

M
∑

i=1

hi(wk)Aix̂f,k − CBuf,k). (39)

Similarly, the observer structure is

x̂f,k+1 =
M
∑

i=1

hi(wk)Āix̂f,k + B̄uf,k + L̄yf,k+1+

+ K2(yf,k − Cx̂f,k), (40)

where Āi = (I − LHC)Ai and B̄ = (I − LHC)B.
Finally, the T-S counterpart of the extended error (18)
is

ēk+1 =

M
∑

i=1

hi(wk)

[

Ai − BK1 LHCAi

0 Āi − K2C

]

ēk =

=
M
∑

i=1

hi(wk)A0,iēk = A0(h(wk))ēk, (41)

where the matrix A0(h(wk)) belongs to a convex poly-
topic set defined as

A0 =

{

A0(h(wk)) : A0(h(wk)) =
M
∑

i=1

hi(wk)A0,i,

M
∑

i=1

hi(wk) = 1, 0 6 hi(wk) 6 1

}

(42)

By adapting the general results of Oliveira et al. [1999],
the following definition is introduced:

Definition 1. The extended error described by (41) is
robustly convergent to zero in the uncertainty domain (42)
iff all eigenvalues of A0(h(wk)) have magnitude less than
one for all values of h(wk) such that A0(h(wk)) ∈ A0.

Theorem 2. The extended error described by (41) is
robustly convergent to zero in the uncertainty domain (42)
if there exist matrices P xi

≻ 0, G1, L1 and P yi
≻ 0, G2,

L2 such
[

P xi
AiG1 − BL1

GT
1 AT

i − LT
1 BT G1 + GT

1 − P xi

]

≻ 0, (43)

[

P yi
Ā

T

i GT
2 − CT LT

2

G2Āi − L2C G2 + GT
2 − P yi

]

≻ 0, (44)

for all i = 1, . . . ,M .

Proof. Using Theorem 1 and then applying Theorem 1 and
2 from the work Oliveira et al. [1999] it is straightforward
to complete the proof. 2

Finally, the design procedure boils down to solving the
set of M LMIs (43) and (44) and then determining K1 =
L1G

−1

1 and then K2 = G−1

2 L2.

4. ILLUSTRATIVE EXAMPLE

Let us consider the fault-free T-S fuzzy systems described
by

R1 : IF yk,1 is F1 THEN xk+1 = A2xk + Buk

R2 : IF yk,1 is F2 THEN xk+1 = A3xk + Buk

R3 : IF yk,1 is F3 THEN xk+1 = A1xk + Buk

with

A1 =

[

0.2225 0.2093 0.1013
0.4659 0.4231 0.3361
0.2330 0.2626 0.4191

]

, (45)

A2 =

[

0.4751 0.2430 0.2282
0.1156 0.4456 0.0093
0.3034 0.3810 0.4107

]

, (46)

A3 =

[

0.2224 0.4609 0.2029
0.3077 0.3691 0.4677
0.3960 0.0881 0.4585

]

, (47)

where the membership functions are given in Fig. 4. The
remaining parameters, signals and fault scenarios are the
same as these used in the example presented Section 2.5.
Figures 5–10 presents the results achieved for the proposed
FTC strategy described in Section 3. In particular, the
proposed design procedure was applied to obtain K1 and
K2 and then (10) (with αk = I) was applied as a control
strategy. As a result, Figs. 5–6 clearly show that the faults
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Fig. 5. Fault fk,1 and its estimate
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Fig. 6. Fault fk,2 and its estimate

can be estimated with a very high accuracy. Similarly as in
Section 2.5, from Figs. 7–8 it can be observed that uf,k is
equal to uk until the occurrence of the fault f2. After that
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Fig. 7. Trajectory of uk,1 and uf,k,1
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Fig. 9. Residual z1,k

time the control strategy uf,k was changed. The control
strategy was also changed when f1 occurred. The final
conclusion is that the residual (Figs. 9–10) is very close
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Fig. 10. Residual z2,k

to zero in the presence of faults. This is because of the
proposed control strategy for which xf,k converges to xk

and consequently zk converges to zero. On the other hand,
the presence of faults can be easily determined from (8).

5. CONCLUSIONS

In this paper, a new active FTC strategy has been pro-
posed. First, this new approach has been developed in
the context of linear systems and then it was extended
to Takagi-Sugeno fuzzy systems. The key contribution of
the proposed approach is an integrated FTC design pro-
cedure of the fault identification and fault-tolerant control
schemes. Fault identification is based on the use of an
observer. Once the fault have been identified, the FTC
controller is implemented as a state feedback controller.
This controller is designed such that it can stabilize the
faulty plant using Lyapunov theory and LMIs. Illustrative
examples both for linear and non-linear systems described
by T-S fuzzy models are provided that show the effective-
ness of the proposed FTC approach.
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