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Abstract: Feedback in server systems has during last years gained much interest in order to
fulfill still increasing demands on performance and optimization regarding, for example, quality
of service (QoS) requirements. In this paper we expand a previously published feedback–based
prediction scheme for controlling a single server queue together with a new control strategy.
These control structures have the benefit over other previously suggested control structures
that no off–line estimation of the required work is needed. In addition, our solutions maintain or
improve the performance, regarding average response time and loss of computational resources.

1. INTRODUCTION

Server systems are used in most (tele)communication net-
works. The server system can process jobs from either
other network entities or from clients. In the Internet,
web servers send web pages to clients. Virtualized server
environments have become popular within the server host-
ing for many reasons (isolation, platform independentness,
and other). Being able to isolate the resource allocation
and consumption between several applications now allow
designs for better utilization of the resources than if the
applications were to share the resources or, alternatively,
hosted by separated physical resources. Virtualized server
environments are still restricted by limited physically re-
sources, which impose interesting control problems; how to
divide resources optimally between the virtualized server
environments, and how to guarantee that the virtualized
server environments are ensure, and restricted to, the
resources assigned to them. Some virtualization schemes
allow a new form for actuation, allowing the designer to
define the amount of computational resources dedicated
to the virtual environment online, and thus, the amount
dedicated to the server, see Xu et al. [2006], Wang et al.
[2007]. Since a server system consists of CPUs, it has a
non-linear behavior. A small increase in load can result in
rapidly growing response times. Therefore, the design of
the control mechanisms is not a simple task if optimized
performance is desired. In recent years this field has gained
a large research interest from both academia and IT ven-
dors (Hellerstein et al. [2004]).

In this paper we focus on response-time control (the
response–time T is defined as the time between the arrival
of a job and the time when is has been fully served, also
often denoted the system time, see Kleinrock [1975]); an
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objective directly coupled to the end-user, but with close
relations to e.g. the more server oriented queue length
control (Kihl et al. [2007]). However, the connection be-
tween the queue length and the response time depends on
numerous factors such as the nature of the arriving traffic
and the service times. Liu et al. [2006a] designed a response
time control system based on admission control, where the
admission probability was adjusted to obtain the desired
response time. The control set–up was based on a measure-
ment of the average required work. This was measured off–
line under low load, and then applied in online control. The
off–line identification of the average required work was also
the procedure of the work by Henriksson et al. [2004] where
feed–forward was used as part of control set–ups with
resource allocation actuators. This method can result in
serious degradation of performance if the average required
work changes, as often happen in real applications. The
required work is in general not easy to define in real server
systems that often operate by processor sharing, and it can
be hard to give any qualified estimates of this quantity.

In this paper, we expand a previously published control
scheme (see Kjær et al. [2007]) to cope with periodical
actuation based on computational resources allocation, as
e.g. with server virtualization schemes. We also assume
processor sharing serving instead of single server process-
ing, and more bursty traffic. The prediction method is
utilized for a new response–time control scheme. This
controller is shown, through simulations, to maintain bet-
ter desired robustness and transient properties than other
published control strategies

2. SYSTEM DESCRIPTION AND MODELING

We consider a processor–sharing system. At a given time,
the computational resources available to the processor
are divided uniformly between the jobs present. Since
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the processor will accept any incoming job, no queue
is present. In virtualized server environments the CPU–
resources are often shared between several applications.
We treat our processor system as one application where
the dedicated (reserved) share of the CPU is treated as an
abstract computational resource, which can be set online
at certain time intervals in the interval p ∈ [0.05, 1]. In
the case where more computational resources are allocated
(reserved) to the processor than the processor requires, the
over–allocation is considered as a loss of computational
resources, which could else have been utilized by other
applications. Also, it is assumed that certain calculations
are allowed at each departure, and that measurements of
former response times, arrival times, and number of jobs,
are available as measurements. For the development of
controllers, no specific distributions for the arrivals and
the required work are assumed. We do not consider the
case where the processor can hold only a limited number
of jobs. The arrival times and the required work are
treated as disturbances, whereof only the arrival times are
measurable.

2.1 Purpose of Control

Loss of computational resources occurs when resources
are dedicated (reserved) to the processor, but no jobs are
present to use the resources. Therefore, from a resource
optimization point of view, it is desirable to ensure that
there always are job to serve. Since jobs can not be
invented by the processor, the only solution is to reduce
the service rate, and thereby holding jobs longer in the
processor. This has a cost on the application performance,
since the response times will increase. The trade–off is then
to ensure that there are jobs to serve, but at the same
time, to maintain an acceptable response time. The goal of
control is to ensure that the response time is as specified by
Tref , and minimizing the loss of computational resources.
A third performance metric is the variation of the response
times. The smaller it is, the better.

2.2 Modeling

In queuing theory it is well–known that a M/M/1 and a
M/G/1–PS system have the same average response time,
see Kleinrock [1967] and M. Sakata and Oizurnih [1971].
This means that a processor–sharing system without a
queue behaves similarly (in terms of average response
time) as a single server with an infinite queue. Modeling
the system by a single server means that the jobs can not
pass one another in time (the first job that enters is the
first job to leave), which simplifies estimation significantly.

Since the system is an event driven system, we chose to
model what happens when an event occurs. Consider the
case where a job leaves the processor at time tnow, leaving
N remaining jobs. This is illustrated in Fig. 1. Assuming
that all jobs will have the same required work ŵ and that
the allocated computational resources p remain constant,
a prediction of the average response time T̂ is given by

T̂ = 1/N
∑

i

(tnow − ai) + ŵ(N + 1)/2p (1)

where ai is the arrival time of job i. The first term to the
right of the equality sign represents the amount of time

Queuing time Processing time

PredictedKnown

time

tnow

N

ŵ/pAcumulated jobs

Fig. 1. Accumulated jobs in a single server queue.

that the jobs have already spend in the processor. This
quantity is known by measurement, and is illustrated as
the area left of tnow in Fig. 1. The second term of the
equation represents the expected time that the jobs will
have to stay in the processor for completion. This quantity
is based on an estimate, and is illustrated as the area right
of tnow in Fig. 1. (see Henriksson et al. [2004] and Kjær
et al. [2007] for a more detailed explanation).

3. ESTIMATION

The model described above can be useful for online ad-
justment of the response time, but it relies on several
measurements. The number of jobs in the system N , and
their arrival times ai are quantities often registered by a
real system. If the prediction is executed at the departure,
tnow is simply found by reading the clock. The average
required work ŵ is a lot harder to find. In a single server
with a queue it could be estimated by measuring former
service times, corrected with the allocated computational
resources, but for processor sharing systems, this is not
possible. Therefore, relaying on a measurement of the re-
quired work will reduce the applicability of the estimation.
We therefore seek another strategy.

In classical linear estimation–problems models are used to
estimate non–measured quantities, see for example Åström
and Wittenmark [1997]. Often the measurable variables
are compared to the estimated values, and a feedback
mechanism tries to minimize the estimation error. We
consider T as a measurable output and w as a state to be
estimated. In Kjær et al. [2007] we proposed a redesign of
the response–time prediction presented in Henriksson et al.
[2004], resembling the structure of a classical observer.
Because the dynamics of the system are not well known,
we suggest to use a PI–controller due to its robustness. To
stress that the estimator does not rely on measurements
of w, we impose an artificial variable z to act as the input
to the model. The estimator now takes the form

T̂ =
1

N

∑

i

(tnow − ai) +
(N + 1)

2p
z (2)

Ik = Ik−1 +
hkK

Ti
(Tk − T̂k) +

hk

Ta
(vk−1 − zk−1) (3)

vk = K (Tk − T̂k) + Ik (4)

z =

{

v for v > 0
0 else

(5)

where Ti and K are controller parameters. The variable hk

is the time between the previous and the current sampling.
Using a varying sampling periods in the integrator has
earlier been shown by Årzén [1999] to be superior to fixed
sample–periods for some event based systems. Integrator
anti–windup is included as the last term in (3), where z(k)
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Fig. 2. Block diagram of predictor. The predictor can be
interpreted as an observer with state z.

is the achieved control signal (z is not allowed to be nega-
tive). The parameter Ta determines the convergence rate
of the anti wind–up, see Åström and Wittenmark [1997].
The parameters Ti = 0.0005, K = 0.000001, Ta = 0.5 were
chosen for the investigations to be presented. The estima-
tion scheme is also illustrated in Fig. 2. Equations (3) and
(4) form a general PI controller, where the term zk−1 is
exchanged with the relevant control signal.

4. CONTROLLER DESIGN

4.1 Suggested Controllers

The system suffers from a significant time delay; a change
in p will only propagate to T after a certain time. In
classical control theory, the performance of systems with
delays can be improved by prediction techniques, such as
the Smith predictor, see Åström and Hägglund [2005].
Inspired by this idea, two control strategies have been
designed based on the estimator in (2). Due to lack of the-
oretical tools to analyze event–driven nonlinear systems,
no analysis of the stability of the controlled systems have
been performed. Inspiration to how this could be done can
be seen in e.g. Kihl et al. [2007].

State Feedback Controller (state FB). The predictor
in (2)-(5) is seen as an observer, and z as a state. A state
feedback can now be formed by inverting the prediction
model (2)

pstate =
N + 1

2(Tref − 1
N

∑

i(tnow − ai))
z . (6)

as suggested in Kjær et al. [2007]. To handle model errors,
a periodic PI–controller as in (3) and (4) is added (K =
10−4, Ti = 0.0101, Ta = 1010.1). The control structure is
illustrated in Fig. 3.

PI with Predictive Feedback Controller (PI–PFB).
A periodic PI controller similar to the one used in the state
FB controller is used for feedback of the response time.
This suffers from the time delay discussed earlier, and
feedback from the predicted response time can allow much
faster reaction. We chose to use a proportional controller

pp =−Kp(Tref − T̂ ) . (7)

with Kp = 0.2. The structure is illustrated in Fig. 4.

PI

controller

Dynamic

predictor

a w

p

zpredictor

Inverse

pstate

Processor
TTref

Tref

Fig. 3. Block diagram of the suggested state FB controller.

PI

controller

Dynamic

predictorcontroller

P

a w

p
Processor

TTref

pp

Tref T̂

Fig. 4. Block diagram of the suggested PI–PFB controller.

4.2 Sample Periods

It is an assumption that the computational resources ded-
icated to the processor only can be changed at some fixed
time period, Ts. However, the estimation is not restricted
by the sampling period. The estimation is updated for
each departure, ensuring that the estimate T̂ and the state
z always incorporate the newest measurements. When a
sample incident occurs, the control signal can be based
on data accumulated not just at the former sampling
incidences, but also on data obtained in–between.

4.3 Controllers for Comparison

Earlier work presents solutions where feed–forward and
feedback are combined as illustrated Fig. 5, see e.g Liu
et al. [2006b], Lu et al. [2003], and Henriksson et al. [2004].
These all assume that an estimate of the average required
work is available. An often used procedure to obtain the
estimate is to measure the response times at very low
arrival rates. Assuming that only one job is present, the
response times can be used to estimate the required work.
The estimate is then used online at higher arrival rates,
assuming that it will remain constant. This method is
not robust towards changes in the required work, as, for
example, when the relative popularity within a certain
website suddenly changes. We present two controllers
based on this principle for comparison.

PI with Inverse Prediction Feed–Forward (PI–
IPFF). A periodic PI controller as in (3) and (4) is used
for feedback (K = 1.4 · 10−5, Ti = 0.0101, Ta = 1010.1).

Equation (1) is rearranged, and the T̂ is exchanged with
the desired value Tref

pff =
N + 1

2(Tref − 1
N

∑

i(tnow − ai))
ŵ . (8)
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Fig. 5. Block diagram of a combined feedback, feed–
forward setup for the processor system.

This is a slightly modified version of the feed–forward
presented in Henriksson et al. [2004].

PI with Queuing–Theoretic Feed–Forward (PI–
QFF). A periodic PI controller similar to that used in
the PI–IPFF controller is used for feedback. The feed–
forward is based on queuing–theoretic models. The average
response time of a M/G/1-PS in stationary is given by
(Kleinrock [1967], M. Sakata and Oizurnih [1971])

T = x̄/(1 − λ x̄) . (9)

Equation (9), or varieties hereof, have formed the base
for other feed–forward designs in the literature, e.g. Liu
et al. [2006b], Lu et al. [2003]. In our case, x̄ = w̄/p if p
is constant. Assuming that w̄ is known (and exact), and λ

is estimated by some windowing mechanism (λ̂), a feed–
forward signal can be formed as

pff = w (̄1 + λ̂ Tref )/Tref (10)

4.4 Filtering Issues

The involved signals can be quite irregular, which can lead
to irregular estimation and poor control performance.

All the tested periodic PI controllers use the comparison of
the reference and a filtered response time T p; T p

k = (T p
k−1+

T s
k )/2 where T s

k is the average response time of the jobs
that departed under the interval between sampling k − 1
and k.

To update the estimator, the estimated response–time is

compared to a filtered measured response–time; T f
i =

0.999 T f
i−1 + 0.001 Ti, where i indicates the departing job

number, and Ti is the response time of job i.

The response time estimate can also be quite irregular. An
obvious idea is to apply a filter directly to the estimate
T̂ . This has an undesirable effect due to the nonlinear
structure. Linear filtering of the term 1/p would weight
small values of p and could lead to wrong estimates. Also,
a linear filtering of the term

∑

i(tnow − ai) would weight
the jobs that have a long service time over those having a
short response time, thus increasing the average estimate.
The filtering must therefore be placed with care. The
best results have been obtained by simply filtering N ;

Nf
i = 0.999 Nf

i−1+0.001 Ni, which is an event–based filter.

The state FB controller and the PI–IPFF controller are
based on inverse prediction. That is, any response time
error is compensated in one update. A similar idea is used
in classical minimum–variance control, which is known to
have poor robustness properties, see Åström [2006]. In our

case, the result is an undesirable irregular control signal,
and some filtering is imposed. Applying a filter to the
control signal would drive the average control signal off due
to the nonlinearity of the fraction in (6) and (8). Therefore,
the numerator and denominator are filtered separately;

Pi = 0.999 Pi−1 + 0.001 (N + 1) z (11)

Qi = 0.99 Qi−1 + 0.01
1

N

∑

i

(tnow − ai) (12)

pstate = Pi/2(Tref − Qi) (13)

for the state FB controller. For the PI–IPFF controller,
pstate is substituted for pff , and z for w̄.

4.5 Simulations

We investigated the controllers with simulations. We used
a discrete-event simulation program written in Java. The
Java-program included classes for the traffic generator, the
processor, the observer, and the controller.

Steady state and transient simulations were performed. All
steady–state results were evaluated after all transients had
been removed. Transient behavior was investigated after
convergence to steady state, and was allowed to run for
sufficiently long time for the transient to settle.

To achieve sufficient burstiness, we used second order
hyper–exponential (H2)–distributions to generate inter–
arrival times and required work. A H2–distributed vari-
able x is with probability α a realization of logarithmic
distributed variable with expected value a1, and with
probability (1−α) a realization of logarithmic distributed
variable with expected value a2. We used the parameters:

α = (C2 − 1)/(C2 + 161) (14)

a1 = 0.1 x̄ , a2 = x̄(1 − α)/(1 − 10α), (15)

where C2 and x̄ were the variance coefficient and average
value of the H2–distributed sequence, respectively. The
value of C2 were chosen equal for the inter–arrival times
and the required work distributions, and had the value
C2 = 5 unless stated differently.

Average values and confidence intervals were evaluated
on down–sampled data to remove correlation between
the measurement points. The size of the 95%–confidence
intervals for the response time did not exceed 10% of the
mean value. The size of the confidence interval for the
loss of computational resources did not exceed 1% of the
maximum available computational resources. To evaluate
the capability to maintain low variation of the response
times the variation–cost function was defined as

Js =
1

N

N
∑

k=1

(T̄ − Tk)2 , T̄ =
1

N

N
∑

k=1

Tk (16)

In the transient investigation we could not rely on long
simulation runs to obtain sufficient accurate results when
evaluating performance. Therefore, the transient periods
were averaged over a large number M of experiments. To
compare the performance of the simulation runs, we used
the cost functions
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Fig. 6. Averaged steady state simulations for different
arrival rates λ. C2 = 5, w̄ = 0.01 s, ŵ = 0.01 s,
Ts = 1 s, Tref = 1.

JT (M) =
1

M

M
∑

i=1

1

Tt

∑

k∈Tt

(Tref − Tk)2 (17)

Jp(M) =
1

M

M
∑

i=1

1

Tt

∑

k∈Tt

(qk)2 (18)

where Tt was the transient period, and qk was the loss of
computational resources.

5. RESULTS AND DISCUSSION

5.1 Steady State Simulations

Traffic Load The traffic is often described by two traffic
quantities; the arrival rate (λ) and the nominal service rate
(1/w̄). Often, the traffic is quantified by the traffic factor
ρ = λw̄. A low value of ρ means a lightly loaded system,
where as values close to, but below, one means a heavy
loaded system. If ρ exceeds one, the system lack resources
to serve incoming requests, and the system is overloaded.

In the following, the effect of the arrival rate and the
service rate is investigated. Fig. 6 shows the performance
metrices when the arrival rate was varied in a range
corresponding to ρ = 0.05 − 0.90. It indicates that all
the controllers managed to keep the average response
time near the reference, however, small off–sets were
observed. All controllers performed best when the arrival
rate was relative high, since the loss of computational
resources was small. Especially the PI–PFB controller
seemed to perform poorly at very low arrival rates. In
the simulations, the estimate of the required work ŵ
corresponded exactly to the average required work w̄ for
the controllers for comparison. The suggested controllers
estimated this parameter online, but showed no significant
degradation in performance because of this. The PI–QFF
showed a higher variation–cost Js, which indicates a less
smooth response time than the other controllers.

Fig. 7 shows the performance metrices when the required
work was varied in a range corresponding to ρ = 0.14 −
0.875. It indicates that all the controllers managed to

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.8

0.9

1

1.1

A
v
e
ra

g
e
 r

e
s
p
. 
ti
m

e
 (

s
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
2

4

6

8

V
a
ri
a
ti
o
n
 c

o
s
t 
J s

  
(s

2
)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

1

2

3

C
P

U
 b

a
n
d
w

id
th

 l
o
s
s
 (

%
)

 

 

PI–PFB
PI–QFF

PI–IPFF
State FB

Required work w̄ (s)

Required work w̄ (s)

Required work w̄ (s)

Fig. 7. Averaged steady–state simulations for different
average required work w̄. C2 = 5, λ = 70 s−1,
ŵ = 0.01 s, Ts = 1 s, Tref = 1 s.

keep the average response time near the reference, how-
ever, small off–sets were observed. Also here, the queuing
based prediction showed to perform rather poorly over
the full range, since it yield a higher loss of computa-
tional resources, but also a large variation–cost Js. In the
simulations, the estimate of the required work ŵ did not
corresponds exactly to the average required work w̄ for the
controllers for comparison. Despite this, the inverse predic-
tion feed–forward controller performed well in steady state
because of the robustness of the PI–controller.

Response–Time Reference By ensuring that there always
are jobs to process, the loss of computational resources
will be minimal according to the principle behind the
designs. This is obtained by allowing a higher average
response time than what might be possible with more
allocated resources. Fig. 8 shows that there was a limit
where it was not worth to increase the response time
reference any further. In the given case, response–time
references above approximately one did not result in
any significant reduction in the loss of computational
resources. It does not matter, for the loss of computational
resources, whether there were few (but always some) or
many jobs in the system. Thus, a higher response–time
reference would only generate higher average response
time, but no improvements.

When the response times became too short, the risk of an
empty system becomes significant, which introduces loss
of computational resources. This is clearly indicated for
the low response–time reference of Fig. 8.

Traffic variance Traffic might be more bursty than in the
examples presented above. Fig. 9 shows how the suggested
controllers performed under other types of traffic, at
different arrival rates. The figure indicates that generally,
the controllers did not depend much on the burstiness of
the traffic. Only the state FB controller seemed to have a
higher loss of computational resources at low burstiness
and low arrival rate. Generally, the variation–cost Js

increased with the burstiness, but this is a natural trend,
originating from the traffic itself.
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Fig. 8. Averaged steady–state simulations for different
response time references Tref . C2 = 5, λ = 70 s−1,
w̄ = 0.01 s, ŵ = 0.01 s, Ts = 1 s.
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5.2 Transient Simulations

One strong argument to use feedback in the control is
the robustness towards changes in the environment. The
above simulations were all performed with steady–state
environments, which means that both the required work
and the arrival rate had constant distributions. It is of
high relevance to investigate the behavior of the controlled
system under changes in the environment.

The top diagram of Fig. 11 illustrates cost functions for the
transient behavior of the system when exposed to change
in the required work. In the beginning of the experiment
the load was relatively low with ρ = 0.4 (λ = 50 s−1,
w̄ = 0.008 s). At time t = 1000 the average required work
was doubled, such that the system was exposed to high–
load traffic, ρ = 0.8. Fig. 10 and the middle and bottom of
Fig. 11 illustrates the results for the transient behavior of
the processor when the arrival rate was changed. Initially,
the system was exposed to a low–load traffic with ρ = 0.35
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Fig. 10. Time–domain transient results with changing
arrival rate and high traffic burstiness (C2=5). Each
plot represents an average of 250 simulation runs.
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Fig. 11. Cost–function results. Top: Transient simulations
case with changing required work (M=150, Tp=1700
s). Middle: Transient simulations case with chang-
ing arrival rate and high traffic burstiness. (C2=5,
M=250, Tp=300 s). Bottom: Transient simulations
case with changing arrival rate and low traffic bursti-
ness. (C2=1.1, M=150, Tp=300 s).

(λ = 50 s−1, w̄ = 0.007 s). At time t = 1000 s the arrival
rate doubled, such that the system was exposed to high–
load traffic, ρ = 0.7. An incorrect estimate of the required
work for PI-IPFF and PI–QFF controllers was used for
all the transient simulations (ŵ = 0.01). The experiment
presented in the middle and bottom of Fig. 11 had traffic
variance coefficients C2=5 and C2=1.1, respectively

A first observation is that the queuing based feed–forward
control responded poorly to changes; in the case of in-
creasing required work the feed–forward did not do any
difference, since it only considered the arrival rate (and
a wrong, static, estimate of w̄). Therefore, the periodic
PI–controller had to handle the change, which was rather
slow, resulting in a large deviation of both the response
time and a large loss of computational resources. In the
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cases where the arrival rate changed, the queuing theory
based feed–forward over–compensated, resulting in a large
loss of computational resources.

For change in required work, the PI–IPFF and the state
FB controller showed no significant difference in perfor-
mance. Immediately after the change, none of the con-
trollers had a good estimate of the required work. The
state FB controller adapted to the change, but because
the prediction controller was rather slow, this did not have
any significant effect during the investigated transient. A
difference between the two controllers was observed when
the arrival rate was changed and the burstiness was low
(the bottom of Fig. 11). Here, the state FB controller had
a valid estimate of the required work under the transient,
and was thus capable of handling the transient better than
the PI–IPFF controller, which had a false estimate. When
more bursty traffic was imposed, the difference between
the state FB controller and the PI–IPFF controller van-
ished (the middle of Fig. 11).

For all high–burstiness simulations our proposed PI–PFB
controller showed superior transient response.

6. CONCLUSIONS

In this paper we have presented design of two controllers
for a processor sharing system where the dedicated com-
putational resources could be set at fixed sample times.
The performance of the two suggested controllers was
compared to two other controllers from the literature.

A general trend in all the investigation was the poor
performance of the PI–QFF controller. It was based on
a fixed, off–line estimated, required work, and only con-
sidered long–term averages in the feed–forward part. Only
with low arrival rate, where the stochastics of the traffic
became dominating, this controller performed similarly,
or a bit better, than the other controllers. The PI–IPFF
and the state FB controller differ in the estimate of the
required work; off-line estimation and online estimation,
respectively. The investigations showed that the dynamic
estimation had most impact on the transient behavior.
In the steady state, the feed–forward based on a poor
estimate of the required work was compensated by the
PI–controller. In the transient simulations, the dynamic
estimator showed better performance if the traffic was not
too bursty. In bursty conditions, the stochastics became
so dominating that the prediction inverse model was too
inaccurate to ensure proper control. In many of the ex-
periments, our suggested PI–PFB controller showed the
best performance. The transient behavior was superior to
all the other controllers. Only when the traffic was lightly
bursty (C2 ∼ 1) the state FB controller and the PI–IPFF
showed a little better performance, since the inverse model
was relative correct. In the steady–state analysis the PI–
PFB controller showed to be sensitive to small required
work and low arrival rate (that is, sensitive to low load).

A restriction on the response–time reference was put
on both of the suggested controllers, which might cause
restriction to their use in practical implementations.

The suggested controllers did not rely on any off–line
estimation of the required work and showed similar or
better performance than the controllers for comparison.
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