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Abstract: To obtain high availability with reduced life cycle total ownership costs, classical maintenance
policies are not sufficient. Indeed these polices do not allow us to thrust in just when its necessary because
they are not available to plan the current system state in the future. The paper presents an approach based
on the system decomposition in three levels: Environment, Mission and Resources, to predict the system
failure by tracking its various degradation and thus to know whether the system is able to accomplish its
mission in time by using system current state and its future use.

1. INTRODUCTION

Classical maintenance policies consist of corrective mainte-
nance (CM) and preventive maintenance (PM). In CM pol-
icy, systems are maintained after the failure has occurred. CM
causes unexpected system stops and thus a loss of money and
time. In PM, system equipments are replaced according to
schedule based on equipments time life. PM is expensive be-
cause of frequent replacement of costly equipments. Moreover
studies show that the number of equipments operating hours
is not the only factor which impact on the failure occurrence
Thus, PM increases system availability compared to CM but is
not cost-effective. Therefore these maintenance policies are not
sufficient to obtain high availability with reduced life cycle total
ownership costs.

To improve PM, the Condition Based Maintenance (CBM) uses
real-time information to optimize the maintenance of equip-
ments, and to repair only when maintenance is actually neces-
sary. CBM consists of equipments health monitoring to deter-
mine the equipment state. However CBM is not able to predict
the equipment future state based on the current equipment state
and its future operating conditions. A prognostic capability is
thus necessary to know if the system is able to accomplish
its mission and to avoid failure occurrence in operating condi-
tion. This maintenance policy is called predictive and proactive
maintenance.

In this paper, an approach based on the Mission, Environ-
ment, and Resources (MER ) for systems modelling in order
to prognostic failures is presented. This paper is organized as
follows: in section 2 the problematic of the prognosis is dis-
cussed. In section 3 a review of prognostic approaches is given.
The proposed MER approach is detailed in section 4. Finally,
conclusion and future works are given.

⋆ This work on the prognosis of warship is realised in LSIS laboratory and

carried out in collaboration with DCNS and PREDICT.
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Fig. 1. Simple health indicator trajectory, time to failure is a
function of the operating time

2. PROGNOSTICS PROBLEMATIC

Currently, there exist prognostic methods for equipments which
are some health indicators. These indicators are based on statis-
tics gathered over a large equipment population (Brotherton
et al. [2000]). Consequently although these indicators are an
average, they do not account for the equipment which is moni-
tored . These indicators are essentially based on operating time.
Figure 1 shows an example of a health indicator. The health
trajectory and maintenance thresholds (nominal, replace, fault)
are function of the operating time. The equipment is following a
known fault-life degradation path. In this case the time to failure
can be predicted by estimating the health indicator value.

To be more realistic, the health trajectory is not only a function
of time but depends also on the equipment use and the envi-
ronment where it evolves. As shown on figure 2, the health in-
dicator trajectory switches between various curves. Each curve
is plotted for specific constraints (equipment use and environ-
ment) and characterizes operating modes. In this case mainte-
nance threshold are defined in function of equipment health.

To realize a prognostic, first, the current health indicator value
and operating mode must be estimated and then the health
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Fig. 2. More real health indicator trajectory, time to failure is a
function of the operating time
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Fig. 3. More real health indicator trajectory, time to failure is a
function of the operating time
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Fig. 4. Structure of experience based prognostics approaches

indicator should be projected in the future. The projection
is possible if the operating mode sequence or one or more
probable sequences are known.

3. REVIEW OF PROGNOSTIC APPROACHES

The prognosis approaches are classified into three classes in
function of their applicability and relative costs (Byington et al.
[2003], Lebol et al. [2001]). The hierarchy of these classes is
illustrated on figure 3.

3.1 Experience based prognostics

This kind of prognostic is the least complex and requires the
equipment failure history data. Thus experience based prog-
nostic is applicable to mass production equipment. This class
is based on probabilistic modeling of the degradation. Usually
failure and expertise data are compiled from legacy systems
and experts. A statistical distribution is fitted to the data. Rules
defined by human maintenance experts can be used to represent
heuristics. An expert system provides the inference mechanism
to perform the future equipment state from the current state as
shown on figure 4.

When the physical model of the equipment is difficult to obtain,
and it is impossible to monitor the degradation state with the
sensor network, the experience based prognostic may be the

only alternative (Byington et al. [2002]). These approaches can
be used for a maintenance interval (Fig. 1).

3.2 Data driven prognostics

Data driven prognostic is based on the use of symptoms or
degradation indicators. The future progression of these indica-
tors is performed using a statistical method. Approaches of this
class are gathered according to statistical and learning methods
(Byington et al. [2002], Roemer et al. [2005]).

Evolutionary/Feature based prognostic: These prognostic
methods track and trend deviations of specific features or mea-
surements from their normal operating conditions. The choice
of the statistical method depends on the number of features and
the number of operating modes. Simple methods can be used
such as linear regression, exponential smoothing, partial least
square or more complex ones such as principle components
analysis, canonical variant analysis, etc. (Luo et al. [2003]).

Machine learning/Artificial Intelligence Trend analysis prog-
nostic: The main method used is artificial neural network
(Zemouri et al. [2002]). The network is trained using measured
or extracted features during the occurrence of failures. Once
the network is trained, it is used to predict or detect the same
features progressions for different tests under similar operating
conditions. The network inputs are features from tk−n to tk and
the network outputs are either features at tk+T or the current
state of the equipment. In the first case the network realizes an
extrapolation of the features (Zemouri et al. [2002]) and in the
second case a classification of the features.

State estimator prognostic: Kalman filters or other tracking
filters can also be used as a prognostic technique. They are
tools for the estimation of unknown states by combining current
measurements and recent state estimation (Yang et al. [2002]).

Data driven approaches efficiency is highly dependent on the
quantity and the quality of the system operational data. These
approaches require that the number of sensors is high enough
to follow the degradation. The key of data driven prognostic is
to find measurements or features that are relatively unchanged
unless a malfunctioning event occurs in the system.

3.3 Model based prognostic

The models used in this class, are physical based models, and
and mathematical models.

In the first case, model based residuals can be used as features.
Residuals correspond to the difference between the real mea-
surements issued from the sensors and the outputs of a math-
ematical model. This assumes that the residuals are large in
the presence of malfunctions and small in normal disturbances
(noise and modelling errors).

In the second case, degradation models (damage accumulation)
are used (Fig. 5). These models could be a structural dynamic
system as first or second order nonlinear equations (Adams
[2002]) considered like a slow time process and coupled with
the system model (Luo et al. [2003], Chelidze [2002]). To
obtain the time to failure from the estimation of the current
degradation state, the coupled model is initialized with this
estimation and simulated until the failure threshold. The cou-
pled model simulation is complex because the fast time model
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Fig. 5. Structure of model based prognostics approaches

depends on the slow time model evolution and the slow time
model evolution depends on the real system (fast time model)
solicitation. Various operating modes could be considered to
improve the accuracy of prognostic (Luo et al. [2003]).

3.4 Combination of Approaches

Müller [2005] proposed a prognostic process based on the three
approach classes mentioned previously. This process goal is to
perform an estimation of system performances at time t + ∆t
from the observation of the system current state at time t and a
provisional list of the maintenance actions during [t, t + ∆t].
This approach combines a probabilistic approach for degra-
dation mechanism modelling and an event one for dynamical
monitoring . First the system is modelled through a functional
analysis. The system is decomposed into several subsystems
and subsystems are also decomposed until the equipment level
is reached. Then, the obtained model provides information to
build the structure of a probabilistic model which is com-
pleted by the failure mode and effects analysis, the hazard and
operability study, the knowledge of the physical relationship
between subsystem and database and/or expert’s knowledge
to define the probabilistic model parameters. This model is
implemented by a dynamical Bayesian network. It represents
the causal relationships and temporal degradations. The event
model formalizes the current state of the system issued from
the supervision and the maintenance actions applied to the
equipments. The prognostic model is the coupling of the prob-
abilistic and event model. The prognostic is performed by ini-
tializing the prognostic model with the current system state and
the maintenance actions plan (definition of the simulation sce-
nario), then by an iterative inference of the dynamical Bayesian
network.

3.5 Approaches conclusion

Experience, Data driven and model based prognostic ap-
proaches are equipment oriented. They are not directly appli-
cable with complex dynamical systems. The approaches com-
bination (Müller [2005]) allows realizing a prognostic on a
complete system. In all presented approaches the notion of
operating mode is not really explicit, but the degradation prop-
agates according to the system use and the environment where
the system operates. Thus to perform a best prognostic, it is
necessary to have a prognostic model which includes ”where”
and ”how” the system is used.

4. THE MER APPROACH

The ship is a complex system whose total modelling with
only one kind of model is difficult and even impossible and
definitely useless because all subsystems/equipments are not
solicited simultaneously. Indeed the use of these subsystems
depends on the ship activity and the environment where they

Mission

ResourcesEnvironment

Ship

Fig. 6. The three levels of the MER approach
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Fig. 7. The environmental level of the MER approach

work. To have a more realistic model, it is proposed to describe
a complex system like a ship according to three levels as
shown on figure 6. The “mission” level defines the ship use
(activity) during a given period of time. The “resources” level
corresponds to the means which allow achieving a pre-defined
mission. The “environment” level is the conditions wherein
the mission is executed and the resources used. On figure 6,
influence relationships between each level are also reproduced.

4.1 The Environement

The environment is all that can influence the behavior of the
resources, and thus modify their degradation rates. The envi-
ronment is described by a set of indicators. These indicators are
extracted from a knowledge base according to the location and
the date. This knowledge base represents the knowledge of the
indicators evolution only. For instance, the ship environment
could be the weather conditions (state of the ocean), the sea-
water quality (salinity, temperature, etc.).

The environmental level (Fig. 7) goal is to break up the ship
road book when the constraints imposed by the environment
to the ship are considered as constant. A set of constant con-
straints define the environmental context. This level defines the
schedule of the various environmental contexts Ecj .

4.2 The Resources

The resources are subsystems necessary to achieve a mission
successfully. They are identified from the functional analysis
of the system. The decomposition level of the system into
resources depends on the maintenance actions. This is useless
to decompose a Diesel engine in intake manifold, turbo com-
pressor, exhaust manifold, etc., if in failure mode, the complete
Diesel engine is going to be replaced by another one.

Each resource is characterized by one or more use profile
and degradation. A use profile of a resource corresponds to
the mode in which the resource is solicited. For example, the
constraints imposed to the ship propulsion are not the same
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when the ship in an acceleration phase or when the ship is
navigating at its cruising speed. A degradation is linked to
a physical phenomenon which evolves during the resource
life. The degradation rate, which corresponds to the speed
of the degradation evolution is assumed to be function of
the use profile and the environmental context. For a given
resource Rx, the various use profile are noted Pu(Rx,k) and the
various degradation are noted D(Rx,i). The use of a resource

is thus defined by the pair
(

Pu(Rx,k), Ecj

)

. Each degradation
D(Rx,i) is normalised between 0 and 1. The health indicator
corresponding to D(Rx,i) is given by:

H(Rx,i) = 1 − D(Rx,i) (1)

The global heath indicator of the resource Rx is thus defined
by:

HRx
= min

(

Hi(Rx,i)

)

(2)

To describe the evolution of D(Rx,i), a two step method is
proposed. First, the evolution is defined qualitatively (Fig. 8),
this step characterises the first and second derivative of D(Rx,i)

ie. if the degradation is constant or evolves in a concave,
convex or linear trajectory. In a second step, the evolution is
defined quantitatively by the parameters α. On figure 8, various
values of α are plotted for linear, convex or concave evolution.
This plot requires the definition of the degradation by a set of
functions given in table 1 where τ corresponds to the time.

Table 1. Quantitative description of degradation
functions

Evolution Sign of Ḋ(Rx,i) Sign of D̈(Rx,i) D(Rx,i)

Constant 0 0 Cst.

Linear + 0 ατ + Cst.

Convex + + (ατ)2 + Cst.

Concave + -
√

(ατ) + Cst.

Degradation D(Rx,i) is thus modelled by two matrices Ψ(Rx,i)

and A(Rx,i) respectively the qualitative matrix (table 2) and the
quantitative matrix (table 3).

Table 2. Ψ(Rx,i): the qualitative matrix

Ecj1 Ecj2 . . . Ecjk
. . . Ecjm

Pu(Rx,k1) ++ 00 . . . +- . . . 00

Pu(Rx,k2) +- +0 . . . ++ . . . 00

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pu(Rx,kn) +0 ++ . . . +0 . . . +-

Table 3. A(Rx,i): the quantitative matrix

Ecj1 Ecj2 . . . Ecjk
. . . Ecjm

Pu(Rx,k1) α1,1 α1,2 . . . α1,k . . . α1,m

Pu(Rx,k2) α2,1 α2,2 . . . α2,k . . . α2,m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Pu(Rx,kn) αn,1 αn,2 . . . αn,k . . . αn,m

The degradation function is obtained by setting-up matrices
Ψ(Rx,i) and A(Rx,i). Matrix Ψ(Rx,i) could be built by question-
ing the users of the system and sometimes using data analysis.
When this matrix is validated the A(Rx,i) matrix can be built. If
data are available parameters α could be learnt, else they could
be initialized by expert. When the prognostic is different from
the real resource state parameters α could be updated if real
environmental context and real use profile are clearly identified.

Ḋ(Rx,i) = 0

D̈(Rx,i) = 0

Constant

Ḋ(Rx,i) > 0

D̈(Rx,i) = 0

Linear

Ḋ(Rx,i) > 0

D̈(Rx,i) > 0

Convexe

Ḋ(Rx,i) > 0

D̈(Rx,i) < 0

Concave

Fig. 8. Qualitative description of degradation functions
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∆TiR
= 0

∆TiR
= 0∆TiR

> 0

stp = 1

stp = 0

Fig. 9. Generic DEVS atomic model of a task

4.3 The Mission

The mission profile is necessary and very important in order to
take the constraints applied to the resources into account. The
mission profile is built by decomposing the mission into tasks.
A task corresponds to the use of a set of a resource during a
period of time. During a task, the used resources could have
only one use profile. The mission profile is deterministic, it is
known before the ship departure, and factual, the end of one
task is the start of another one. Firstly, the mission level consists
of building a task library according to the system. In this library,
each task is defined by a set of couples

(

Rx, Pu(Rx,k)

)

i.e. how
each resource is used during the task. The set of used resources
of a task Ti is denoted TiR.

To perform a prognostic it is necessary to model the profile
mission in order to simulate it. A generic Discrete EVent
Specification (DEVS) Atomic Model of a task (Fig. 9) is
thus defined. DEVS is a modular formalism to model causal
and deterministic system. A DEVS Atomic model is based
on continous time, inputs, outputs, states, transition functions,
output functions and state life time functions (Ziegler et al
[2000]). More complex models are built by connecting several
atomic models in a hierarchical way. Interactions between
atomic models are ensured by the input and output ports.

The inputs of the generic task model are EndTi−1
which is the

end event of the previous task, the variable Envch corresponds
to the change on environmental context and the variable ∆TiR

which represents the availability of the resources used in the
task Ti. When one or more resources are unavailable, ∆TiR

is null. The output of the model is the end task event EndTi
.

The initial state “Init” initializes the model variables run = 0,
stp = 0 and the task life time li with the intended time. Then,
the model is in phase “Wait” in order to wait for the event
EndTi−1

to pass in phase “Active”. If in in waiting phase the
event ∆TiR=0 occurs. The task is stopped ( phase “Stop”). The
phase “Start” allows to memorize the event EndTi−1

even if
the task is stopped. As soon as ∆TiR=1 occurs, the model is in
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phase “Wait” and if run = 1 goes to phase “Active”. “Init” and
“Start” have a null life time, they are phases to update variables.
For “Wait” and “Stop” phases the life time depends on variables
run and stp:

- if run = 0 then σwait = ∞ else σwait = 0.
- if stp = 0 then σstop = ∞ else σstop = 0.

The life time σact is defined in section 4.4.

The complete mission model is then built by associating task
atomic model where a task model is a generic DEVS model
with one task of the library. Two tasks connectors are also
defined in DEVS: the synchronization connector where two or
more tasks have to be finished in order to begin a new task,
and the delay connector corresponding to a delay in the event
EndTi

.

4.4 Prognostic realization

The prognostic consists in the simulation of the mission model
where Envch and tasks life time are initialized. During the
phase “Active” of each running task, the resource level is used
to project degradations ahead. The prognostic realization is
presented through a fictive example.

Example definition: A ship is assumed to be composed
of two resources R1 and R2 with one degradation to track
respectively D(R1,1) and D(R2,1). The environment is classified
in four contexts: Ec1, . . . , Ec4. Ta, Tb, Tc, defined in table 5,
correspond to the task library. Resources matrices are given in
table 4.

Table 4. Resources definition

Ψ(R1,1) Ψ(R2,1)

Ec2 Ec4

Pu(R1,1) +0 ++

Pu(R1,2) 00 +-

Ec1 Ec2 Ec3

Pu(R2,1) +0 ++ +-

A(R1,1)

Ec2 Ec4

Pu(R1,1) 2.1O−5 7.1O−5

Pu(R1,2) 0 4.1O−5

A(R2,1)

Ec1 Ec2 Ec3

Pu(R2,1) 1O−5 1O−5 2.1O−5

Table 5. Task library

Ta

(

R1, Pu(R1,1)

)

,
(

R2, Pu(R2,1)

)

Tb

(

R1, Pu(R1,2)

)

Tc

(

R2, Pu(R2,1)

)

According to the ship objective, the mission is composed by the
task sequence Ta, Tc, Tb with initial life times respectively 20,
10 and 25 time units (ut). Thus, the mission model can be built
by coupling three generic atomic DEVS models and initialized
the life time σact. The obtained DEVS model for the mission
Mu is reproduced on figure 10 where the start of the first task is
the mission begin event (start) and the end of the last task the
mission end event (end). Tasks T(u,k) are defined by coupling
a task of the library with a life time. For the simulation, the
mission model requires the event Envch generated from the
ECj

sequence given by the environmental level. Table 6 gives
the environmental context time table and so the event dates of
Envch are 10, 25, 45 and 60 ut.

Table 6. Environemental contexts schedule

Ecj
From To

Ec1 -5 ut 10 ut

Ec2 10 ut 25 ut

Ec3 25 ut 45 ut

Ec4 45 ut 60 ut

T(u,1) T(u,2) T(u,3) End

EndT2
EndT1Start

Envch

∆T1R

∆T2R
∆T3R

Fig. 10. DEVS model of the mission Mu

Prognostic function: This function is called when tasks arrive
on phase “Active”. The degradation function for the degradation
D(Rx,i) during task T(u,k) is denoted D(Rx,i)(T(u,k)) and for

the mission Mu is denoted D(Rx,i)(Mu). When Rx is used
by T(u,k) and matrices Ψ(Rx,i) and A(Rx,i) are defined for the
current value of the environment context Ecj

, the variation of
degradation function is given by:

∆D(Rx,i)(T(u,k)) =
(

Ψ(Rx,i) ◦ A(Rx,i)

) (

T(u,k), Ecj

)

(3)

In the other case, the variation of the degradation function is
considered as null. ∆D(Rx,i)(Mu) is thus given by:

∆D(Rx,i)(Mu) =

y=T (My)
∑

y=1

(

∆D(Rx,i)(T(u,y))
)

(4)

where T (My) is the task set ot the mission My . The degradation
function D(Rx,i) during the task T(u,k) is the accumulation of
the degradation variation for the previous task. It is given by:

D(Rx,i)(T(u,k)) = D(Rx,i)0

+

y=u−1
∑

y=1

(

∆D(Rx,i)(My)
)

+

y=k
∑

y=1

(

∆D(Rx,i)(T(u,y))
)

(5)

with D(Rx,i)0
the degradation initial value. This value is in

[0, 1] according to the resource state when it is placed on the
system. The degradation can also be defined as:

D(Rx,i)(T(u,k)) = Df (Rx,i)(T
−1
Rx

) + ∆D(Rx,i)(T(u,k)) (6)

where Df (Rx,i)(T
−1
Rx

) is the degradation value at the end of the

last task where Rx is used. T−1
Rx

is given by:

T−1
Rx

= T(v,w), (v, w) = max(u, k) where Rx ∈ T(u,k)R
(7)

if the tasks set defined by
{

Rx ∈ T(u,k)R

}

is empty, the degra-
dation value is on its initial value D(Rx,i)0

.

During the simulation of the mission model variables, ∆TkR
is a

function of degradation states of resources used by task T(u,k).
These variables are used to stop the mission at least once the
resources used by the task become unavailable and they can
also be used to update the task time lk. The life time σact which
represents the task time needs to be updated each time the task
model arrives in phase “Active”. Thus, when the model arrives
in phase “Active”, if the previous phase was also “Active” (ie
event Envch occurs) lk is given by:

lk = lk − ǫ − f(∆TkR
) (8)
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Mu−1 Start EndT1
EndT2 End

Ecj

Ec1

Ec2

Ec3

Ec4

EnvchEnvchEnvch

R1

Pu(R1,1)

Pu(R1,2)

R2

Pu(R2,1)

time

[ut]
0 10 20 25 30 45 55

Fig. 11. Simulation of the mission Mu

0 10 20 30 40 50 60

0 10 20 30 40 50 60

0.300

0.301

0.302

0.1500

0.1504

∆D(R1,1)(Mu)

∆D(R2,1)(Mu)

time [ut]

Fig. 12. Degradations variation during Mu

where ǫ , in DEVS, is the past time since the last event i.e. the
remained time in phase “Active”. lk is also updated when the
model arrives in phase “Stop” and the last phase is “Active”.
The life time σact for the task T (u, k) is equal to lk.

Application to the example: In this example, it is assumed
that resources degradation states do not impact on the task
time i.e. f(∆TkR

) = 0. Moreover the degradation values at
the end of the mission Mu−1 are D(R1,1)Mu−1

= 0.1 and

D(R2,1)Mu−1
= 0.3.

On figure 11, the simulation of the mission Mu is decomposed
into tasks event on the first plot and environmental events on
the second plot. The last two plots give the use of the resource
during the mission. Figure 12 shows the evolution of resources
degradation according to the environmental contexts and use
profiles defined by the tasks (3). In this example, events linked
to ∆TkR

are not represented because it is a short mission where
resources health indicators do not reach the fault threshold (see
Fig. 2).

5. CONCLUSION AND FUTURE WORKS

In this paper, a new approach to prognostic system failure is
presented. The decomposition of the system into three levels
(mission, resources, environment) allows to take into account
environmental constraints imposed to the system during a given
mission. Moreover, the modelling of all types of resources

degradations is made possible in a similar way whatever the
resource (electrical, mechanical, digital, . . . )

In the example presented in this paper, only one prognostic is
made. To have a more accurate prognostic various sequences
of environmental contexts could be generated according to
the ship road book. Each sequence will be balanced with its
occurrence probability and mission will be simulated for each
sequence. The prognostic will be thus given by an average of
the prognostic of each sequence according to the environmental
contexts sequence probability. Maintenance actions could also
be modelled as a task which reduces the degradation state.

Future works will focus on the classification of environmental
indicators in order to identify various environmental contexts
and on the initialization of the qualitative and quantitative
aspects of a ship. For a more realistic complex application, the
dimensions of matrices Ψ and A may become very large , it
could be interesting to firstly identify vectors of environmental
contexts influence and use profile influence in order to then
compute Ψ and A matrix.
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récurrents à fonctions de bases radiales : RRFR, Application
au prognostic. Revue d’intelligence artificielle, RSTI série
RIA, volume 16, pages 307-338, 2002.

B.P. Ziegler, T.G. Kim, H. Praehofer. Theory of Modelling and
Simulation, 2nd Edition. Academic Press, 2000.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

12866


