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Abstract: Human-machine supervision is a fundamental research and applicative axis to contribute to the 
dependability of complex systems. A recent and promising way to optimize means and performances of 
supervision is to provide human operators with prognosis activity support tools. Many methods are 
currently developed or adapted. This paper focuses on the fuzzy treatment and read-out of residuals. After 
their specification, their application for benchmark supervision provides experimental results which are 
analyzed in order to discuss on their real impact for human prognosis. 

 

1. INTRODUCTION 

Human has the ability to anticipate events and dysfunctions 
evolution (Hoc et al., 94). This ability is a keystone to 
prevent problems and plan solutions. In context of 
supervision, human-machine practices centered on 
anticipation allow the prognosis activity to be carried out 
(Gentil, 07). Our integration and evaluation work show that 
favour prognosis enhances human-machine performances of 
supervision (Delépine, 07). With regards to a development 
methodology of anticipatory supervision environment, many 
methods have been searched, adapted and/or developed. In 
this paper, one of these is highlighted. It concerns fuzzy 
treatment and read-out of residuals. 

Before describe this method, a survey of prognosis activity 
provides the reasons of its choice. In a next part, it is applied 
to assist human operator in supervision of a hydraulic two-
tank benchmark. Finally, based on experimental results we 
discuss of its applicability and efficiency to improve human 
prognosis. 

2. PROGNOSIS ACTIVITY 

Prognosis is to anticipate and predict the evolution of a 
system in all its states so as to maintain over time its smooth 
functioning (Mathur, 01). Find precursors of failures or fault 
symptoms, envisage their causes and consequences, and 
support decision making process constitute prognosis roles in 
supervision (Propes et al., 02, Qiu et al., 05, Delépine, 07). 
Whatever the integration approaches and the prediction goals, 
prognosis activity follows the cyclic process of hypotheses 
generation, Fig. 1.  

The process begins with the generation of hypotheses, and 
then allocates certainty degree to each hypothesis. Afterwards 
according to requirements, the plausible hypotheses are 
selected and used as predictions for future exploitations. 

Based on the perception and interpretation of past, present, 
and future data which are recorded and/or predicted during its 
process, prognosis activity must provide results on the future 

in a dynamic context. This context is obviously incomplete, 
imprecise, and uncertain. Indeed, principal vector of the 
process, the generated hypotheses imply uncertain knowledge 
that evolves related to the process evolution and to the 
available information on the dynamic system. 

Fig. 1. Process and tasks linked to the prognosis activity 

When temporal and cognitive resources are available, 
anticipatory supervision of complex systems can be applied. 
If human operators aim at predicting the future behaviour of a 
given system by perceiving pertinent information, they have 
to manage the research of these information and to focus on 
the evolution of non-optimal parameters. By interpreting the 
perceived information, they generate hypotheses on possible 
future state and evolution of the controlled system. Finally, 
they evaluate hypotheses in order to identify and venture the 
more relevant predictions. 

In situation of smooth functioning, predictions concern 
mainly the duration of such a situation or, in a dual way, a 
possible future failure. On the additional basis of perception 
of parameters near to nominal values, the role of the human 
operators usually is the refining of the ins and the outs of the 
predicted failure. Related to the knowledge they have on the 
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system, human operators manage prognosis on the future 
consequences of their actions on the system before their 
execution. As part of decision/action function, the 
exploitation of the various predictions opens the possibility 
for planning actions to be proceeded.  

As a system keeps very seldom the nominal conditions, it is 
necessary to assess continually system performances in order 
to predict its future state. Success of such a process relies 
essentially on the relevance and the representation of 
available information on the system. In relation with human 
task for prognosis, it seems useful to provide human 
operators with supports on the information perception 
process. The development of adapted support tools requires 
methods to elaborate and present salient data for 
generation of human hypotheses (Endsley, 98). Both the 
fuzzy treatment and the read-out of residuals are considered 
in order to develop support tool for prognosis and to test it in 
experimental context (Delépine, 07). 

3. METHOD 

The fuzzy treatment and the read-out of residuals combine 
several information in order to elaborate operating indicators. 
The basis of this method is a dynamic model of smooth 
functioning and the fuzzy logic. This method involves 
implementing the elaboration chain of Fig. 2 appropriately 
with system conditions and demands of supervision 
designer. Keys of this method are detailed in three parts. 

3.1  Model and residuals 

According to residuals as a pertinent support for assessing 
performances system, the fuzzy treatment and the read-out of 
residuals require a model that can be simulated in real-time 
(Delépine et al., 05). Thus, as shown in Fig. 2, u(t) are both 
the system and the model inputs ; y(t) are the outputs 
measurements of the system submitted to noise ; ŷ(t) are the 
system outputs estimated by the dynamic model ; residuals 
are differences between y(t) and ŷ(t). These residuals show 
the system drift. More accurately, if the model represents 
reliably the correct functioning of the dynamic system, 
residuals reflect disturbances and fault effects. 

An interesting approach to generate useful residuals relates to 
the assessment of elementary residual ri(t) in accordance with 
                           number of measured variables: 

  (1) 

In order to generate complementary residuals, a structural 
analysis of elementary residuals should be done. This 
consists in identifying each variable directly related to each 
residual. Automatically, the first variable to list is the 
measured variable yi(t). The next identified variables are the 
ones implicated in relations used to estimate ŷi(t) from the 
model.  

Making the structural analysis in-depth needs a temporal 
survey of all variables that can be incriminated by 
dysfunction propagation when a residual diverges from zero 
and indicates a failure. 

 
 

 Fig. 2. Elaboration chain of operating indicator 

Based on this analysis, last step of the approach can be 
carried out.  The goal of this final step is to generate residuals 
that complete elementary residuals. This generation requires 
attempting mathematical combinations of measured variables 
to simplify relations, provide a new group of incriminated 
variables and so make useful residuals founded on these 
combinations. The more the residuals implying different 
groups of variables are, the more residuals allow faults to be 
distinguished. 

3.2  Fuzzification and symbolic inference 

In process control, uncertainties from measurements or 
models for instance are most often inevitable and so must not 
be ignored. Indeed, uncertainty intervenes in reasoning 
activities and affects results of decision making process.  
Reliability and stability of process control depend on how to 
manage this uncertainty. A solution is to integrate and to 
control uncertainty longer as possible in control methods. 
Thus, final decisions remain based on information 
significantly near of perceived real. Properly, the fuzzy logic 
allows such a purpose. 

Introduced by Zadeh (Zadeh, 68), fuzzy subsets express 
partial membership of an element to a symbolic attribute. As 
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work carried out in monitoring framework (Evsukoff et al., 
05), or in supervised control (Neves et al., 99), it is possible 
to organize a fuzzy treatment for different domains of 
application. Even if parametric techniques exist, calibration 
of fuzzy treatment is usually done by expert of the system. 
Based on him knowledge, expert attempts to find the best 
compromise between number and representativeness of 
attributes, calculation and conceptual cost of membership 
functions in order to obtain membership rates of element to 
these attributes that provide significative information. 

Fig. 3 illustrates a fuzzification example of residual values to 
prepare prognosis process. According to trapezoid functions 
associated to P, Z, and N subsets, a dynamic membership 
degree for each attribute (µN(r(t)), µZ(r(t)) and µP(r(t))) 
qualifies r(t). P, Z, and N mean respectively Positive, normal 
Zone (near to zero), and Negative. These attributes are 
representative of the conformity or of the deviation types 
concerning residual values. 

To acquire results more refined, the calibration of fuzzy 
treatment can be made in order to adapt treatment parameters 
according to the system operating mode. For example, in a 
system operating mode wherein model reliability is 
satisfactory, subsets domains are decreased so as to benefit 
from a higher sensibility. 

 
Fig. 3. Example of residual fuzzification 

The evolution of residual trends allows the assessment of 
system situation and the prediction of dynamics of the 
propagation for a given deviation. Therefore, it seems 
interesting to make a fuzzification of trends residual 
(µN(ŕ(t)), µZ(ŕ(t)) and µP(ŕ(t))), then to combine results with 
those obtained by the fuzzification of residual values in order 
to obtain a R(t) salient information. Each membership degree 
µstate(R(t)) of all possible situations is calculated according to 
the symbolic rules presented on Fig. 4 and synthesized by 
this expression:  

μstateGH(R(t)) = ⊤(μ(r(t) ∈ G  AND  ŕ(t) ∈ H)(t))  

μstateGH(R(t)) = μG(r(t)) × μH(ŕ(t))   

with G and H represent attributes index from fuzzy treatment 
of the residual amplitude and its trend. The product operator 

corresponds to a useful probability T-norm. Indeed, it allows 
all combined memberships to be dissociated and compared. 
Thus, as human practices, this method highlights the most 
probable situation. At every time, the biggest degree 
μstateGH(R(t)) symbolises the predominant situation so it is 
selected to characterize R(t) information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Base for symbolic inference process of residuals 

Concretely, this inference process gives from two descriptive 
features (value and trend) of a residual, a representative 
information of system situation. The case of residual for 
which the value is located essentially in N and its trend in P, 
represents by means of R(t) a less critical situation than in 
case of respective way N-N or even than P-P. In other words, 
N-P case characterizes a low residual value but that seems to 
recover nominal conditions. The N-N case signifies also a 
low residual value that will probably get worse. Finally, the 
P-P case corresponds with a high residual value that 
continues to raise. However, N-P case specifies a less 
reassuring situation than in Z-N, Z-Z and Z-P cases. 

3.3  Operating indicators 

The fuzzy values of R(t) can be used on this numeric form for 
automated techniques of supervision. However, assimilation 
and use of R(t) by human operators needs to favour 
reachable, synthetic and appropriate read-out principle that 
allows them to perceive and assess quickly the system 
performances. For this reason, the base of symbolic rules 
provides a specific range of colors according to the 
predominant online situation. Range of colors and means of 
colors assignment have been determine by experts, 
supervision designers and end users. 

In the end, R(t) represents on the form of colorful signal, the 
evolution of salient information that synthesizes trend and 
value for behaviour of a measured variable in relation to its 

μΩ(R(t))
ŕ(t) = r(t) – r(t-∆),  ∆ = temporal window of trend calculation 
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(2) 
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referent variable. This information turns out an extremely 
valuable operating indicator. Indeed, it is analogous to the 
interpretation of perceived signals made by the human 
operators. 

Range of colors should be wisely antisymmetric because the 
R(t) sign is a relevant and useful information. For example, 
with the residual of a liquid level, the R(t) sign makes 
possible to distinguish a case of liquid leak (negative 
residual) with a liquid obstruction (positive residual). These 
operating indicators contribute to establish a reliable and 
relevant informational framework. Presumably, this 
framework must stimulate and improve spontaneous 
generation of human operator hypotheses. 

4. APPLICATION 

In order to evaluate the method of fuzzy treatment and read-
out of residuals, the integration of such a method is made to 
supervise a benchmark and presented in this section. The 
benchmark is firstly described. 

4.1  Benchmark description 

The benchmark is a hydraulic system composed of two tanks. 
It is the benchmark for the 193 Specific Action of CNRS 
“Diagnosis of Hybrid Systems” (AS, 04). Illustrated on Fig. 
5, the selected configuration is equipped of two control 
valves V1 and V3 that are constantly opened, a manual 
control valve V2 and a controlled pump P1 in order to 
maintain the fluid level h2 between h2

H and h2
B. 

 

Fig. 5. Hydraulic two-tank benchmark 

System instrumentation is made up of three sensors that 
measure Qp, h2 and Q1. The presence of fluid pipe C4 at mid-
height provides further evolution conditions for system 
operating mode. This feature highlights the complex 
dynamics of the benchmark for which fluid volume 
evolutions in each tank are equal to the sum of inputs and 
outputs fluid flows. Finally, system parameters are: 

A = 3,6.10-5 m2:  Section surface of fluid pipes             
S = 0,0154 m2:  Section surface of tanks                           
g = 9,81 m/s2:  Gravity constant                                        
Qcp1:   P1 pump flow = 0,0002 m3/s                                

ucp1{0,1}:  Discrete control of  P1 pump                
uc2{0,1}:  Discrete control of  valve V2 

The Toricelli’s law completes the description with variables 
and relations that control the system. These variables and 
relations are: 

Qp = ucp1 . Qcp1  Effective flow of P1 pump                 
Q1 = A.√(2g.h1)  Effective flow of fluid pipe C1                 
Q2 = uc2 . A.√(2g.h2) Effective flow of fluid pipe C2         
Q3 = A.sign(h1 - h2) √(2g.|h1 - h2|) Effective flow         
  of fluid pipe C3                 
Q4 = A.sign(h1 - h2) √(2g.|max(h1;0,5) – max(h2;0,5)|) 
 Effective flow of fluid pipe C4                 
hi  Fluid level in tank i 

So the system can be modelled by: 
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In the next section, the studied method is implemented.  

4.2  Implementation 

In order to be able to generate residuals, a dynamic model of 
the benchmark is available. According to the method and 
system instrumentation three first residuals are generated:   

r1 = Qp – Qp                     r2 = h2 – ĥ2                      r3 = Q1 – Q1 

The values from the dynamic model are provided depending 
on physical and simulated relations, so:  

Qp  is  deduced  from  Qp = ucp1 . Qcp1  relation.  Therefore, 
through r1 residual, this variable gives information to suspect 
beyond the sensor measuring Qp, elements related to Qp, ucp1, 
and Qcp1 variables, i.e. actuator, fluid supply pipe, pump P1 
and its control ; 

ĥ2 is deduced from (3). Therefore, through r2 residual, this 
variable gives information to suspect beyond the sensor 
measuring  h2,  elements related to h2, Q2, Q3, and Q4 
variables ; 

Q1 is deduced from Q1 = A.√(2g.h1) relation. Therefore, 
through r3 residual, this variable gives information to suspect 
beyond the sensor measuring  Q1, elements related to Q1 and 
h1. 

By mathematical combination, an other residual is generated. 
This last residual is more abstract for human operator. It is 
about making-up of fluid levels: 

r4 = (h1d + h2) – (ĥ1 + ĥ2) with h1d deduced value from Q1 
measurement and Q1 = A.√(2g.h1) relation 
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As                                 , r4  residual allows Q3 and Q4 
variables to be not incriminated during a short-term 
investigation. 

Finally, regarding to the method, a supervision tool is 
developed to apply the fuzzy treatment and symbolic 
inference to the four residuals. The supervision framework is 
completed with a human-machine interface to display all 
results of the elaboration chain and final operating indicators, 
Fig. 6. Related to the indicators displayed on the interface, 
red color symbolizes a situation which becomes worse 
through surplus deviation, green color reflects a stable 
situation or a return to nominal conditions, and at last, blue 
nuances translate an aggravation in a dysfunctional zone of 
an insufficiency.   

 

 
 
Fig. 6. View of operating indicators 

These method, tool and interface related to operating 
indicators refer to one of the subjects of an experimental 
campaign for which experimental parameters are detailed in 
(Delépine, 07). These parameters have been defined to 
relativize learning phenomena. 

5. EXPERIMENTAL RESULTS 

The campaign concerns eleven human operators which 
supervise the benchmark. Two supervision frameworks are 
tested. The first is a basic supervision configuration, and the 
second is completed by tool and interface related to operating 
indicators described on section 4 following the proposed and 
detailed method in section 3. For each configuration, all 
human operators must control six scenarios of dysfunction.  

In a first part, human operator appreciations on interests of 
operating indicators are communicated. Then experimental 
data concerning prognosis and supervision performances are 
analyzed.  

5.1  Human operators judgments 

Subjectively, human operators have given their opinion on 
operating indicators utility for their prognosis activity. First 
of all, human operators highlight that operating indicators are 
more helpful than traditional alarms. According to their 
observations, indicators report every dynamic variation 
which is significative of a dysfunction. Sometimes 
deteriorations are elusive due to physical and temporary 
compensation and so measurements seem objectively register 
in values intervals of smooth functioning. Even in these 
cases, thanks to the dynamic model these deteriorations are 
reported by operating indicators.  

Human operators note that, individually, each operating 
indicator represents functional state of the system at the 
measured variable level. For this system, this means that if 
one of operating indicators R1, R2, R3, and R4 undergoes a 
deviation then it traduces a functional impairment 
respectively at the Qp, h2, Q1, and h1 or h2 level.  

However, when operating indicators are used together, 
human operators can manage a structural and temporal 
investigation to process a prognosis on ins and outs of a 
predicted failure. Regarding to their judgments, the operating 
indicators facilitate the perception of abnormal situation and 
its conditions. Next results give information to assess if this 
facilitation favours effectively the human prognosis activity. 

5.2  Prognosis and supervision performances 

Based on subjective data coming from human operators 
explanations and from their monitoring, it is possible to count 
proceeded prognosis and to assess the quality of the 
predictions of the human operators. When at least one 
prediction is incorrect or missing according to conditions of 
the moment, the prognosis is respectively imprecise or 
incomplete. In Fig.7, these results manifest that human 
prognosis is more undertaken with the second configuration. 
So, operating indicators supply a major benefit focusing 
on human prognosis stimulation. 

 

 

 

 

 

 

 

 

 

 

Fig.7. Human prognosis for dysfunction management 

Nevertheless, a low progression is noticed for the prediction 
quality. The stimulation of the human prognosis and the 
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enhancement of prediction quality are satisfactory but it is 
convenient to relate them with the performances of 
supervision. There are two interesting types of performances: 

 -  the distribution of the success of the problems resolution 
that constitutes the dysfunction management ;  

-  the time durations used to carry out this investigation. 

Results on Fig. 8 show that a more frequent and best-
managed prognosis brings about a significative benefit on the 
quality of human decisions. Moreover a great progression of 
the human operator predictivity is observed according to 
Table 1. Indeed, fault presence is suspected earlier with the 
second configuration. 

 

 

 

 

 

 

 

 

 

Fig. 8. Quality distribution of human operator decisions 

In relation with duration between the initial human suspicions 
and the first human decision/action, the predictivity 
progression is capitalised by operators to investigate with a 
greater temporal interval. However, this greater duration to 
take action can be interpreted as a decrease of operator 
reactivity. The interpretation of operating indicators in order 
to decide and take action with certainty requires a high-
attention. This attention demand and the temporal cost remain 
acceptable in relation to a best decision making. 

Table 1. Objective results 

Temporal indicators of human 
investigation dynamics Configuration 1 Configuration 2

Duration (s) between fault insertion    
and first human suspicions 86 29 

Duration (s) between first human 
suspicions and human decision/action 121 195 

Duration (s) between fault insertion    
and first traditional alarm  92 

 
Based on this group of results, it is validated that tool and 
human-machine interface related to operating indicators 
stimulate effectively the human prognosis and cause a best 
dysfunction management.  

6. CONCLUSION 

The quality of the human operator decisions, the affluence of 
proceeded prognosis, the human predictivity are acceptable 
and confirm adequacy, applicability, and efficiency of   

the fuzzy treatment and the read-out of residuals to 
improve prognosis activity. Nevertheless, it seems that this 
method applied to perception support can be insufficient in 
case of the presence of a great number of operating 
indicators. Future work will focus on the development of 
extended method to provide human operator with 
interpretation support tools for prognosis activity. 
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