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Abstract:
The effectiveness of norm-based control methodologies heavily relies on the quality of the model
that describes the dynamic behavior of the plant. In practical applications, the requirement
to accurately describe the system at hand often results in high-order plant-models. On the
other hand, low-order models are desired to end-up with low-order controllers that reduce
implementational costs. The resulting trade-off between dynamical order and closed-loop
performance can not be handled in a straightforward manner since the closed-loop behavior
is unknown at the moment of plant-parametrization.
This paper proposes a method to overcome this trade-off via non-parametric H∞ control-
synthesis, i.e. omitting parametrization of the plant. As a result, no data-reduction or data-
interpolation is performed before synthesis. The resulting controller is represented as Frequency
Response Sets for a given frequency grid. This data can be used as input for controller
parametrization with explicit trade-off between closed-loop performance and controller order.
This is achieved by considering the mixed-sensitivity problem as a model-matching problem
based on Youla-parametrization. Via a specific conceptual choice of the coprime-factorization
for the Youla parametrization, it is proved that the SISO H∞ control synthesis problem can be
solved in a non-parametric way based on the plant zeros and frequency response coefficients of
the system solely. A simulation study is performed on a fourth-order system to illustrate the
main steps in the approach.

1. INTRODUCTION

The practical value of advanced optimal controller synthe-
sis tools is heavily affected by the quality of the model that
describes the dynamics of the plant. In practice, the plant
model is commonly identified from experimental data. An
attempt to model all phenomena in this data commonly
results in high-order plant models. Unfortunately, the or-
der of a controller synthesized by common optimal control
synthesis techniques is generally equal to the number of
states of the plant and the weighting filters (Skogestad
and Postlethwaite [2005], Zhou et al. [1996]). This results
in conflicting requirements with respect to closed-loop per-
formance and implementational costs. On the one hand, a
high-order plant model is needed to accurately describe
the plant behavior and achieve closed-loop performance.
On the other hand, a low-order controller is desired from
an implementation point of view. To handle this trade-
off, additional knowledge is required to determine which
dynamics are relevant for closed-loop behavior. Unfortu-
nately, this data is unknown during the parametrization-
step of the plant since the controller is unknown.

1 This work is supported by Philips Applied Technologies

One approach to handle this trade-off is to apply iterative
approaches (de Callafon [1998], Hjalmarsson and M. Gev-
ers [1996], den Hof and Schrama [1995]), which ensure that
the resulting performance-loss due to model-mismatch is
minimized and robust stability is maintained under the
real plant behavior. To counteract the risks of stability and
performance loss, one could also introduce uncertainty in
the plant-model (Douma [1996]). This however results in
a conservative design and does not reveal the performance
that could be achieved if uncertainty is lowered in a certain
frequency region.

An alternative for the iterative approach is high-order-
plant-modeling followed by controller order-reduction tech-
niques to obtain a controller of acceptable dynamical or-
der. However, after time-consuming high-order plant mod-
eling stability and performance is not necessarily guaran-
teed under balanced closed-loop order-reduction (Wortel-
boer [1994], Wortelboer et al. [1999]).

These arguments motivate the main contribution of this
work which is a method to perform non-parametric con-
troller synthesis for the SISO H∞ mixed-sensitivity prob-
lem. The synthesis is non-parametric in the sense that the
all frequency response data (FRD) of the plant is used for
control synthesis.
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In fact, the FRD is used as a high-order model whereas
neither data-interpolation nor data-reduction of the exper-
imental data is applied before the synthesis. As a result, all
the dynamics that may be relevant for closed-loop behavior
are maintained during the controller synthesis step. The
resulting controller is described as Frequency Response
Sets on a given frequency grid. This data can be used
to parameterize the controller with explicit knowledge
of the trade-off between controller order and closed-loop
performance. It has to be mentioned that the explicit
parametrization of the controller is not considered in this
paper but several approaches can be found in literature
Y. Chait and Hollot [1999], Hansen and Walster [2004].

The main approach is the following: the H∞ mixed sensi-
tivity problem is considered as a model-matching problem.
Under the condition of a stable plant, it can be guaranteed
via the Youla-parametrization (Zames and Francis [1983],
Vidyasagar [1985]) that closed-loop stability is achieved
based on the non-parametric data and zero’s of the plant.
Additionally, an explicit description of the set of controller
frequency response behavior is given that corresponds
to a certain norm of the mixed sensitivity problem via
Nevalinaa-Pick interpolation techniques.

The idea to use non-parametric measured plant data for
synthesis closely relates to the line of reasoning proposed
by Favoreel et al. [1999] and Woodley [2001]. Beside dif-
ferences in the theoretical basis, the proposed approach is
based on the frequency domain instead of the time-domain,
it has the ability to give a set description of the controllers
that satisfy a certain norm-constraint. Quantitative Feed-
back Theory (QFT) techniques, as proposed in Horowitz
[1993] and Yaniv [1999], can also be regarded as closely
related to the proposed approach. It seems however that
the concept of model-matching, used in this paper, is more
rooted into standard optimal control concepts as proposed
in Doyle et al. [1990] and Francis [1987].

The outline of the paper is as follows. Section 2 introduces
the frequency domain mixed sensitivity problem which
is used as the theoretical framework of this paper. This
section shortly describes the conversion of the H∞ optimal
control synthesis problem into a model-matching problem
by introduction of the Youla parameter. Given a stable
plant and the parametric zeros’s, this model-matching
appears to be solvable in a non-parametric manner as
described in Section 4. The set description of subopti-
mal controller FRD’s is formulated in Section 5 whereas
Section 6 describes an example to illustrate the proposed
approach.

2. FREQUENCY DOMAIN OPTIMAL CONTROL

The robust controller synthesis problem considered in this
paper is defined as the design of a stabilizing controller
with transfer function C(s) for the plant P (s) such that
the following SISO mixed-sensitivity problem is solved:

∥

∥

∥

[

W1S
W2T

]

∥

∥

∥

∞
≤ γ (1)

whereas S=̂ 1

1+PC
, T =̂ PC

1+PC
, W1 and W2 respectively rep-

resent the sensitivity function, the complementary sen-
sitivity function, and the corresponding weighting filters

which are chosen such that W1,W2 ∈ RH∞. Furthermore,
‖ . ‖∞ denotes the H∞-norm.

The frequency domain approach described in Francis
[1987] and Doyle et al. [1990] is used as basis to solve this
problem and therefore is described briefly to introduce the
main line of reasoning. Section 4 describes that the method
proposed in Francis [1987] and Doyle et al. [1990]can be
used to overcome plant parametrization for the case of
stable SISO plants such that synthesis can be performed
non-parametrically.

2.1 From Mixed-sensitivity to Model-matching Problem

For the purpose of easy reading, the main steps in the
proposed approach are summarized.

(1) The set of all stabilizing controllers is parametrized
in terms of the Youla parameter Q ∈ RH∞.

(2) The control problem formulated in (1) is rewritten
as a model-matching problem in terms of Q. The
subsequent synthesis can be performed in this new
design parameter Q due to bijection between Q and
C.

(3) Classical Nevanlinna-Pick interpolation is applied to
obtain a Q that solves (1) and guarantees stability of
the closed-loop system. As a final step, C is computed
from Q.

(4) If P is stable, the coprime factorizations of the plant
and the controller can be chosen such that the model-
matching problem can be solved without knowledge
about the poles of the plant. The zeros of plant are
the only parametric plant data needed to solve (1)
and guarantee stability of the closed-loop system.

In order to describe the set of stabilizing controllers,
the coprime-factorization of the plant and a stabilizing
controller, denoted by C0, are introduced (see Vidyasagar
[1985]):

P =
N

M
, C0 =

X0

Y0

, N, M, X0, Y0 ∈ RH∞ (2)

Given one stabilizing controller C0, the set of all stabilizing
rational controllers is given by(Francis [1987], Zhou et al.
[1996]):

C := {C =
X0 + MQ

Y0 − NQ
| Q ∈ RH∞} (3)

Due to bijection between Q and C, Q can also be expressed
in terms of C:

Q := {Q =
CY0 − X0

M + CN
| C ∈ C} = RH∞ (4)

The sequel of this section is used to rewrite (1) as a
matching problem in terms of Q which is easier to solve
that the original problem due to convexity in the term Q
(Francis [1987]):

‖T1 − T2Q‖∞ ≤ 1, Q ∈ RH∞ (5)

Proposition 1. There exist a T1, T2 ∈ RH∞ such that
C ∈ C satisfies (1) if and only if Q satisfies (5). The key
observation is that (3) is a bijection between the set of
stabilizing controllers C and Q = RH∞.

The remainder of this section is proof, with (14) and (15)
as the most important transfer functions.
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The mixed sensitivity problem formulated in (1) can be
written as:

‖|W1S|
2 + |W2T |2‖∞ < γ2, C ∈ C (6)

Substitution of (3) in (6) gives:

‖|W1M(Y − NQ)|2 + |W2N(X + MQ)|2‖∞ ≤ γ2 (7)

This can be rewritten as (see Doyle et al. [1990]):

‖|U1 − U2Q|2 + U3‖∞ ≤ γ2 (8)

where U1, U2 and U3 are defined as:

Ū2U1 = W1MNW1MY − W2MNW2NX (9)

Ū2U2 = W1MNW1MN + W2MNW2MN (10)

U3 =
W̄1W1W̄2W2

W̄1W1 + W̄2W2

(11)

The notation .̄ is defined as the complex conjugate of {.},
i.e. H̄(s) = H(−s).

The structure of the transfer-functions described in (9),
(10) and (11) makes the Ū2U1, Ū2U2 and U3 exhibit a
symmetrical pole-zero pattern in both the imaginary and
real axis. Via the spectral factorization, denoted by F ,
such functions can be decomposed into a part with poles
and zeros in the right-half plane and a part with poles and
zeros in the left-half plane.

The spectral factorization of the right-hand of (10) gives
an expression for Ū2 which is substituted in (9):

U1 =
W1MNW1MY − W2MNW2NX

Ū2

(12)

Equation (8) can be cast into an inequality over all
frequencies:

|U1 − U2Q|2 + U3 ≤ γ2 ,∀ω
|U1 − U2Q|2 ≤ (γ2 − U3) ,∀ω

|F(γ2 − U3)
−1U1 −F(γ2 − U3)

−1U2Q|2 ≤ 1 ,∀ω
‖F(γ2 − U3)U1 −F(γ2 − U3)U2Q‖∞ ≤ 1

(13)
This brings us to the model-matching problem formulated
in (5):

T1 = F(γ2 − U3)U1 (14)

T2 = F(γ2 − U3)U2 (15)

Remark that U1 /∈ RH∞ due to unstable poles generated
by the terms Ū−1

2 , W1MN and W2MN . As described
by Doyle et al. [1990](page 188), it is allowed to replace
U1 with V U1 ∈ RH∞ where V is chosen such that V V̄
has unit-gain and V cancels the instable poles of T1 by
unstable zeros.

3. SOLVING THE MODEL-MATCHING PROBLEM

In this section, the matching problem formulated in (5) is
written as an interpolation problem that can be solved by
classical Nevanlinna-Pick interpolation.

The following filter G ∈ RH∞ is introduced (see (5)):

G = T1 − T2Q ≤ 1 (16)

Given the filter G, Q can be computed via:

Q = −T−1

2 (G − T1) (17)

In order to guarantee that Q ∈ RH∞, the unstable poles of
the term T−1

2 have to be canceled by the zero’s of (G−T1).

The set of unstable zeros of T2, i.e. the poles of T−1

2 are
defined as:

ZT2
:= {z ∈ C

+ ∪∞ | T2(z) = 0} (18)

Now the aim is to find G ∈ RH∞ such that:

‖G‖∞ ≤ 1 (19)

G(a) = T1(a) := b ∀ a ∈ ZT2
(20)

A filter G that satisfies these conditions can be found using
classical Nevanlinna-Pick interpolation (Ball et al. [1990],
Francis [1987]). Given the filter G, the filter Q can be
acquired via (17).

The order of G is generally equal to the number of
interpolation constraints. Furthermore, a solution that
satisfies (20) can only be found if the Pick-matrix is
non-singular. Else, the problem formulated in (6) is non-
solvable given the current weighting filters and predefined
γ. For more details on properties of the Pick-matrix is
referred to Ball et al. [1990] and Francis [1987].

It will appear in Section 4 that the only plant data required
the obtain the interpolation conditions are the zeros’s of
the plant.

4. THE NON-PARAMETRIC MODEL-MATCHING
PROBLEM

The derivations given in Section 2 and Section 3 are used
as a starting point to apply the matching interpolation
approach for non-parametric controller synthesis. This is
achieved using a certain conceptual choice of the coprime
factorization of P and C0 such that all the plant-data
vanish out of U1. As a result, the zeros of the plant are
the only required parametric plant data to generate the
matching conditions given in (20).

Since both parametric, e.g. weighting filters, and non-
parametric data will be used, a different notation is in-
troduced for a non-parametric description of a frequency
response function:

Hi = H(jωi) (21)

where ωi denotes a discrete frequency grid to evaluate the
frequency response function (FRF) H(jω).

Proposition 2. Given a stable plant P : W1, W2 and the
zero’s of P are the only required parametric data to gen-
erate the Nevanlinna-Pick interpolation conditions that
solve (5).

Given P ∈ RH∞, the following coprime factorizations are
allowed:

N = P, M = 1

X0 = 0, Y0 = 1
(22)

Substitution of (22) in (10) gives:

Ū2U2 = P̄P (W̄1W1 + W̄2W2) (23)

Evaluating the zeros of T2 (see (15)) shows that ZT2
equals

the union of the zeros of P , P̄ (the negative counterparts
of the zero’s of P ), the zeros of F(W̄1W1 +W̄2W2) and the

zero’s of F(γ2 − W̄1W1W̄2W2

W̄1W1+W̄2W2

).

Substitution of Ū2 into (12) gives:
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U1 =
W1PW1

P̄F(W̄1W1 + W̄2W2)
(24)

=
W̄1W1

F(W̄1W1 + W̄2W2)
(25)

Substitution in (15) shows that T1 is a function of the
weighting filters only and therefore can be evaluated for
arbitrary s ∈ C, e.g. the zeros of T2. As as result, the
interpolation conditions G(a) = T1(a) | a ∈ ZT2

can be
generated given W1, W2 and the zeros of P . This finishes
the proof of Proposition 2.

Given the interpolation conditions (Proposition 2), G
can be computed. Since T1 and T2 are known non-
parametrically, the corresponding Qi can be computed
by non-parametric evaluation of (17). The non-parametric
description of the controller, Ci, can be obtained by eval-
uating (3) for every frequency point.

5. SET DESCRIPTION OF SUBOPTIMAL
CONTROLLERS

The infemum of γ in (6), defined as γopt, results in unique
input-output behavior of the controller. Lowering the
performance requirement, i.e. γ > γopt, results in a set of
suboptimal controllers. This set-description is interesting
for several reasons. First of all, the additional freedom
can be used to parameterize low-order controllers. By
lowering the desired performance specifications, deviations
are allowed around the optimal controller behavior. In
this manner, the trade-off between order and closed-loop
performance can be handled in direct manner. Moreover,
due to the equivalence of controller perturbations and
plant perturbations in a SISO feedback configuration, the
set-description of allowable perturbations in the open-loop
behavior, can be used to find a robust controller over a set
of plant FRF’s.

Given the set of interpolation conditions {ai, bi} derived
in Section 4, the set of solutions for the model-matching
problem is given by Ball et al. [1990]:

G(s) = [Θ11(s)R(s) + Θ12(s)][Θ21(s)R(s) + Θ22(s)]
−1

(26)
where R(s) is an arbitrary filter contained in the set
R := {‖R‖∞ ≤ 1 | R ∈ RH∞}. Θ(s) is defined as:

Θ(s) = I+

[

b1 . . . bn

1 . . . 1

]







(s − a1)
−1 0

. . .

0 (s − an)−1







Λ(a, b)−1







−b̄1 1
...

...
−b̄n 1







(27)

The Pick-matrix λ(a, b) is defined a:

Λ(a, b) =
[1 − b̄ibj

āi + aj

]

1≤i,j≤n
(28)

The infemum of γ for which the matching problem is
solvable (Pick-matrix non-singular), results in a unique
optimal solution, i.e. R is not contributing to G. For
suboptimal solutions, (27) describes the mapping from the
unit circle, described by R, onto the region of allowed
perturbations around the optimal controller for every
frequency.

Since it is known that conformal mapping (Rahman [1997])
holds for proper functions like (26), the outer boundary of
R at frequency ωi, defined as R′

i := {R : ‖R(ωi)‖∞ =
1}, is mapped onto the outer-boundary of the set of
corresponding Youla parameters, described by Q′

i, via (27)
and (17).

One element of the set Q′
i can be computed non-

parametrically by direct substitution of the complex num-
ber Ri ∈ R′

i in (27). This can be understood as fol-
lows: consider one point on the unit disc Ri ∈ R′

i at
frequency ωi. Then there exist a filter R(s) ∈ R such that
R(jωi) = Ri. Substitution of this particular R(s) in (26)
gives a filter G which is in the set of G’s that corresponds
to stabilizing controllers that satisfy (6). This imaginary
parametrization of R can be performed for every element of
R′

i for every frequency point separately and hence results
in a set description of all allowable controller FRD’s.

To enable numerical implementation, R′
i is approximated

by a discrete grid. The mapping of this grid via (26) results
in a non-parametrical region of allowable perturbation of
the controller FRD. These regions can be approximated
by parameterizations, e.g. ellipsoids, for every frequency
grid point. The appearance of ellipsoids can be explained
from the fact that interconnection described in (26) can
be regarded as a Mobius transform of R.

6. SIMULATION EXAMPLE

The proposed approach is illustrated using a fourth order
plant. Despite the choice for this low-order system, the
approach is particulary very suited for high order systems
where the trade-off between order and performance is non-
trivial.

The following transfer-function is used to generate FRD
of the plant:

P (s) =
2s2 + 4.5s + 1125

s4 + 4.5s3 + 1130s2 + 2025s + 202500
(29)

Equation (29) describes a system with an eigenfrequency
at 30[rad/s] and 30/4[rad/s] and a damping of 5% for
both resonances as depicted in Fig. 1.

In order to mimic experimental data, the FRD of the
plant is synthesized by substitution of {s = jωi | ωi =
10xi , x ∈ {−4,−3.99,−3.98, . . . 4.98, 4.99}} into P (s).
This non-parametric data is used as input for the controller
synthesis. The zeros, needed for synthesis, are directly
extracted from (29):

z1,2 = −1.1250 ± 23.6904j (30)

In case of experimental data, the undamped zeros can
be parametrized relatively easily since they appear as
undamped anti-resonances. By taking the inverse of Pi,
these zeros appear as undamped poles that can be fitted
locally by standard tools. Acquiring the value of real-
valued zeros however, e.g. due to amplifier dynamics, is
more complicated and may require fitting routines. Section
6.1 shortly comments on this aspect.

The weighting filters W1 and W2 of (6) are chosen such
that a low sensitivity function at low frequencies and low
complementary function at high frequencies is enforced:

W1(s) =
37.9

s + 0.01
, W2(s) =

0.02

0.01s + 1
(31)
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Fig. 1. Pi(-), W1(s)(-.) and W2(s)(- -)
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Fig. 2. Bode Controller for: γ = 1 (-), γ = 1.5 (-) and
γ = 2 (-)

Fig.1 depicts the bode-plot of Pi, W1(s) and W2(s).

In order to generate the interpolation conditions, the filter
T1 and the unstable zeros of filter T2 are computed as
proposed in Section.4. Evaluating the filter T1 at the zeros
of T2 gives the interpolation conditions:

a = {0.01, 32.21 ± 29.29j}

b = {8 · 10−14, −0.1214 ± 0.3759j}
(32)

To compute the set-description of G, the following discrete
grid over the unit circle is used for R′

i:

R′
i = {1 · ejφ | φ ∈ {0, 0.025, . . . , 2π}} (33)

For every element of R′
i, the given interpolation conditions

are substituted into (26) in order to compute G(s). It has
to be emphasized that Ri itself is chosen as a complex
constant and therefore does not represent a proper filter.
As a consequence, every mapping of Ri into G(s) on itself
results in a Ci which is not realizable as a analytical
filter. However, either for the optimal solution, the term
Ri vanishes such that G(s) is analytical and therefore
realizable, or within the set of suboptimal solutions an
analytical parametrization can be found by combining
several solutions G(s) that correspond to different values
of Ri.

Given the non-parametric expressions for T1 and T2, Qi

can be computed from G(s) for every grid point of R′
i using

(27). Given G(s), Qi can be obtained via (17). Substitution
of (22) in (3) gives the FRD of the controller denoted by
Ci.

Fig.2, Fig.3 and Fig.4 depicts the results for several values
of γ. Fig.3 and 4 show the allowable deviations of the open-
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Fig. 3. Open-loop using the set of (sub)optimal controllers
for: γ = 1 (-), γ = 1.5 (-) and γ = 2 (-)
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Fig. 4. Nyquist-plot of open-loop with circles of allowable
perturbations for γ = 1 (suboptimal solution)
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Fig. 5. Check on γ for: γ = 1 (-), γ = 1.5 (-), γ = 2 (-).

loop for γ = 1. It can be observed that even for a nearly
optimal controller, a certain degree of freedom exists which
can be exploited during parametrization of the controller.

A check on the performance specification of the synthe-
sized controller FRD is performed by evaluating (6). The
results are depicted in Fig.5. Since the controller both
satisfies performance and guarantees closed-loop stabil-
ity ( Nevanlinna-Pick interpolation guarantees that Q ∈
RH∞), the problem formulated in (6) is solved in a non-
parametric way by the proposed approach.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

6323



6.1 Discussion

Due to finite measurement time and limited computational
power, plant FRD is only available on a limited number
of frequency data-points. Between these data-points, dy-
namic effects could occur which are not captured by the
FRD and hence can threat stability and performance of
the closed-loop system. This is however does not differ
parametrization of plant data. In fact, it can be observed
from the Youla parametrization in (3) that both the in-
terpolation of P and C have a dual role in the description
of the set of stabilizing controllers. If the non-parametric
controller FRD is interpolated, the interpolation function
of P is determined and visa versa. It is expected that good
engineering insight in the characteristics of the plant dy-
namics at hand is sufficient to acquire FRD which captures
all dynamic effects relevant for control synthesis (Ljung
[1999].

Parametrization of the controller FRD, i.e. approximation
of the given sets Ci by a parametric transfer-function
C(s), is required to enable implementation. This raises the
question whether a parametrization of acceptable order,
i.e. lower or equal than the order of the plant and the
weighting filters, can be fitted over Ci. This question can
be answered positively. From (27) can be observed that
the filter G(s) is a proper analytical filter if R(s) ∈ S.
The order of G(s) is generally equal to the number of
interpolation points. This combined with the fact that T1

and T2 originate from physical LTI system behavior, Qi

also represent an analytical filter. Extending this line of
reasoning proves that also C is analytical and therefore is
implementable/realizable as a physical filter.

7. CONCLUSION

In practical design problems, a trade-off appears between
closed-loop performance and the order of the controller.
This trade-off can not be handled in a straightforward
manner since the controller to be synthesized is unknown
during plant parametrization.

The proposed approach supplies a method to perform syn-
thesis of optimal controllers in a non-parametric manner
for the class of SISO stable LTI plants. In this manner,
no interpolation or data-reduction is applied such that all
experimental plant data is maintained during controller
synthesis. The actual parametrization is performed on the
controller such that knowledge of the closed-loop can be
exploited.

The approach is based on the frequency domain mixed-
sensitivity H∞ problem synthesis using model-matching
interpolation techniques. By choosing a conceptual co-
prime factorization for the plant, the interpolation con-
ditions can be obtain while omitting parametrization of
the poles of the plant. Using this approach, the frequency
response data of the controller can be synthesized. For sub-
optimal performance, a set description of the suboptimal
controller frequency response data can be computed. This
reveals the relation between between order and closed-loop
performance which generates the ability to parameterize
low-order controllers or generate robust controllers.
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