
Stabilizing Nonlinear Adaptive PID State
Feedback Control for Spacecraft Capturing

Yuichi Ikeda ∗ Takashi Kida ∗∗ Tomoyuki Nagashio ∗∗

∗ Kushiro National College of Technology, Kushiro, Hokkaido, Japan
(e-mail: yikeda@ mech.kushiro-ct.ac.jp).

∗∗ University of Electro-Communications, Chofu, Tokyo, Japan
(e-mail: (kida,nagashio)@ mce.uec.ac.jp)

Spacecraft; Tracking control; PID

Abstract: In the future space infrastructure, the missions of refueling and capturing of the
inoperative spacecraft by the orbital servicing vehicle or the space robot are considered. To
achieve them, the six degrees of freedom tracking control of the chaser spacecraft is required to
approach the target spacecraft. Moreover, the stability of the connected system of the chaser
and target must be ensured. In addition, it is also important to suppress the position and
attitude error under the influence of the disturbance. In this paper, we derive the PID controller
that satisfies the stability of the spacecraft system before and after capturing, and removes
the states error caused by constant disturbance. The effectiveness of controller is verified by
numerical simulations.

1. INTRODUCTION

In the future space infrastructure, the capturing of the
inoperative spacecraft by the orbital servicing vehicle or
the space robot is considered. To achieve the mission, the
chaser spacecraft must fly around the target spacecraft so
as to track its docking port whose position and attitude
generally change with respect to the inertial frame, accord-
ing to nutation or tumbling motion of the target space-
craft. When the relative errors of the position and attitude
become sufficiently small, the chaser can safely capture the
target. This is the first operation before capturing. Then,
the connected spacecraft system of target and chaser must
be stabilized by damping the energy, and carried to some
place, say international space station (ISS), by tacking
another given trajectory if necessary. After the second
operation, the mission is completed. These control actions
must be performed using only the controller of the chaser
since that of the target has been out of order.

From the viewpoint of control problem, the following two
issues are raised. First is six degrees-of-freedom (6 d.o.f.)
tracking control of spacecraft under the influence of ex-
ternal disturbance. The controller must be designed for
the nonlinear translation and rotation dynamics and kine-
matics coupled with each other. Second is the stabilizing
control during above operation including the connecting
instance.

On the nonlinear tracking control under the influence of
external disturbance, almost all researchers have concen-
trated on the nonlinear H∞ controller that makes L2

gain of closed-loop system from disturbance to controlled
output less than γ > 0 (Dalsmo and Egeland [1996, 1997],
Luo et al. [2004] and so on). They also employ PD type
state feedback control. However, although they generally

require higher feedback gains to achieve higher distur-
bance attenuation capability, it is not realizable since the
maximum level of control input is practically constrained.
Therefore the authors consider it is not necessarily only
an approach to the control purpose. Moreover, they discuss
only the problem before chaser connects to target. For this
problem, authors have proposed the control method which
ensures the stability before and after spacecraft connection
without changing controller by passivity based control (Ito
[2005], Ito et al. [2006]). However, it does not consider the
influence of external disturbance.

Viewing this, we propose PID state feedback controller
that guarantees the asymptotic stability and tracking ca-
pability before and after capturing without changing the
controller, and can effectively attenuate the constant sec-
ular signal in disturbance by using backstepping approach
(Kristi et al. [1995]). In addition, since it is difficult to
know all physical parameters exactly, we extend it to the
adaptive controller which can estimate the physical param-
eters. The proposed method has the advantage of ensuring
the stability of the system before and after capturing
without changing controller as the literatures (Ito [2005],
Ito et al. [2006]). Finally, numerical simulation results are
shown.

Following notations are used throughout this paper.

{o} : inertial frame,

{t}, {c} : target and chaser body fiexd frame,

{s}, {R} : connected system and

reference trajectory fixed frame,

mi, Ji : mass and inertia matrix,
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fi, τi : control force and torque,

wf , wτ : disturbance force and torque,

rj , [εT
j ηj ]T : position and attitude vector

of each frame,

vj , ωj : linear and angular velocity vector

of each frame,

pt, pR : constant vector fixed {t} and {R} frame

ρii, ρsi : position vector from a nominal fixed point

to force input point,

lii, lsi : position vector from a nominal fixed point

to center of mass of target and chaser,

l : distanece of center of mass between target

and chaser,

I : 3 × 3 identity matrix,

a× : skey symmetric matrix determined by a ∈ R3,

CY
X : direction cosine matrix from the frame X to Y ,

‖a‖ =
√
aT a : the norm of vector a,

diag{a, b, c, . . .} : diagonal matrix

Rn : linear space of real vectors of dimension n,

Sq : hypersphere of dimension q,
where subscripts i and j represent i = t, c and j = t, c, s, R.

2. MODELING AND PROBLEM DESCRIPTION

We consider the control problem that a nominal point A
fixed at {c} tracks a target point B fixed at {t} before
capturing as shown in Fig. 1 (Phase 1), and then a nominal
point A fixed at {s} tracks a target point B fixed at {R}
after connection as shown in Fig. 2 (Phase 2). In order
to simplify the discussion on the stability for both cases,
we only describe the Phase 2 problem, since they can be
unified as described in Remark 3.

Here, the following assumptions are made.
Assumption 1. The chaser and the target are rigid, and
they are connected rigidly by the docking port. Therefore,
the spacecraft system is rigid before and after the connec-
tion.
Assumption 2. The control input is not applied to the
target.

Then the translation and rotation dynamics equation of
the rigid body around a nominal point A, that is not
necessarily the center of mass, becomes in {s} frame,

Mṗs + Cps = u+ w, (1)
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Fig. 1. Definition of target and chaser fixed frame, and the
position vector (before capturing: Phase 1).
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Fig. 2. Definition of connected system fixed frame and the
position vector (after capturing: Phase 2).

where

M =
∑ [

mi −mil
×
si

mil
×
si Ji −mil

×
sil

×
si

]
,

C =
∑ [

miω
×
s −miω

×
s l

×
si

mil
×
siω

×
s ω×

s Ji −mil
×
siω

×
s l

×
si

]
,

qs = [rT
s εT

s ]T , ps = [vT
s ωT

s ]T , w = [wT
f wT

τ ]T ,

u= U
[
fc

nc

]
=

[
uf

uτ

]
, U =

[
I 0

ρ×sc I

]
.

The inputs fc and τc can be uniquely determined after uf

and uτ are derived since the matrix U satisfies det U �= 0.
The position of A and the attitude of {s} with respect to
the inertial frame {o} are given by following kinematics if
quaternion is used for the attitude parameterization.

ṙs = vs − ω×
s rs, (2)

θ̇s =
1
2

[
ηsI + ε×s

−εT
s

]
ωs = E(θs)ωs, (3)

where θs = [εT
s ηs]T ∈ S3 satisfies the constraint ‖θs‖ = 1.

Our tracking control problem is to find a controller such
that

rs = rRp , εs = εR, ηs = ηR, vs = vRp , ωs = ωR

when t → ∞. The position and velocity of the point B
fixed at {R} are given by

rRp = rR + pR, vRp = vR + ω×
RpR. (4)

To this end, we describe an error system in {s}. Let the
direction cosine matrix from {R} to {s}

Cs
R = (η2

se − εT
seεse)I + 2εseε

T
se − 2ηseε

×
se (5)
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using the quaternion of relative attitude qe = [εT
e ηe]T ,

where εe and ηe are defined as
εse = ηRεs − ηsεR + ε×s εR, ηse = ηsηR + εT

s εR. (6)

The relative position, linear velocity and angular velocity
are given in the same {s} frame as

rse = rs − Cs
RrRp, vse = vs − Cs

RvRp,

ωse = ωs − Cs
RωR.

(7)

Hereafter, we simply represent Cs
R as C by dropping

subscripts. Substitution of (7) into (1), (2) and (3), using
the identity Ċ = −ω×

e C, yields the relative equation of
motion as

Meṗse + Cepse + ∆e = u+ w, (8)
ṙse = vse − (ωse + CωR)×rse, (9)

θ̇se = E(θse)ωse, (10)

where

qse = [rT
se ε

T
se]

T , pse = [vT
se ω

T
se]

T , Me = M,

Ce =
∑ [

ce11 ce12

ce21 ce22

]
, ∆e =

∑
[∆T

e1 ∆T
e2]

T ,

ce11 = mi(ωse + CωR)×, ce12 = −mi(ωse + CωR)×l×si,

ce21 = mil
×
si(ωse + CωR)×, ce22 = ω×

seJi −mil
×
siω

×
sel

×
si,

∆e1 = mi[C(ω̇×
RpR + ω×

R

2
pR) − l×si(Cω̇R − ω×

seCωR)

−(ωse + CωR)×l×siCωR],

∆e2 = mil
×
si[C(ω̇×

RpR + ω×
R

2
pR) − l×si(Cω̇R − ω×

seCωR)

−ω×
sel

×
siCωR − (CωR)×l×si(ωse + CωR)]

+Ji(Cω̇R − ω×
seCωR) + ω×

seJiCωR

+(CωR)×Ji(ωse + CωR).
By the transform, the tracking control problem is reduced
to a regulation problem to design control input uf and uτ

such that
rse = 0, εse = 0, ηse = 1, vse = 0, ωse = 0

when t→ ∞ according to (8)-(10).
Remark 3. By setting the parameters with respect to the
target to zero, and the frames {s} → {c}, {R} → {t}
in relative equation of motion of the connected system
(8)-(10), this can be described as the equation of motion
of the chaser with respect to the target before capturing.
Therefore, if the control law which makes the relative error
asymptotically stable can be found, then this control law
can stabilize both cases.

3. ADAPTIVE CONTROLLER DESIGN

In this section, we derive the adaptive PID control law
which makes the relative error asymptotically stable under
unknown physical parameters, i.e.

rse = 0, εse = 0, ηse = 1, vse = 0, ωse = 0,

by applying the backstepping approach when w = 0. On
the reference signals, we assume the followings.
Assumption 4. The reference signals rR, εR, ηR, vR, ωR

and ω̇R are uniformly continuous, bounded and known for
all t ∈ [0,∞).

The concrete design procedure is given as follows.

Step 1 :

We suppose that vse and ωse are the virtual inputs to
the subsystem (9) and (10), and define the stabilizing
functions such that
α1 = −KP1rse −KI1ζ1, α2 = −KP2εse −KI1ζ2, (11)

where KPn and KIn (n = 1, 2) are the symmetric and
positive definite matrices, ζn (n = 1, 2) is the integral
variable defined as

ζ1 =

t∫
0

rse dt, ζ2 =

t∫
0

εse dt. (12)

Now, we define the error variable between the state
(vse,ωse) and the desired control (α1, α2) such as

z1 = vse − α1, z2 = ωse − α2. (13)

From (13), the subsystem (9) and (10) become
ṙse = (z1 + α1) − (ωse + CωR)×rse, (14)

θ̇se = E(θse)(z2 + α2). (15)

Define the following candidate Lyapunov function such as

V1 =
1
2
‖rse‖2 +

1
2
ζT
1 KI1ζ1

+‖εse‖2 + (ηse − 1)2 +
1
2
ζT
2 KI2ζ2. (16)

By utilizing the following skew symmetric matrix proper-
ties

aTa× = 0, aT b×a = 0, ∀a, b ∈ R3,

the time derivative of (16) along the trajectories of the
closed-loop system becomes

V̇1 = rT
se{(z1 + α1) − (ωse + CωR)×rse} + rT

seKI1ζ1

+εT
se{(ηseI + ε×se)(z2 + α2)} − εT

se(ηse − 1)(z2 + α2)

+εT
seKI2ζ2

=−rT
seKP1rse − εT

seKP2εse + rT
sez1 + εT

sez2. (17)
From (17), obviously rse → 0, εse → 0 and ηse → 1 as
t→ ∞ when z1 = z2 = 0.

Step 2 :

We derive the adaptive controller which makes the state
z = [zT

1 zT
2 ]T asymptotically stable, i.e. z = 0, when w = 0.

From (8), (11) and (13), the dynamics with respect to z is
as follows.

Mz ż + Czz + ∆z = u, (18)
where
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Mz = Me, Cz = Cz1 + Cz2,

Cz1 =

[
ce11 ce12

ce21 0

]
, Cz2 = diag{0, ce22},

∆z =

⎡
⎣

∑
miφi1∑

miφi2 + ψβs

⎤
⎦ ,

φi1 = α̇1 − l×siα̇2 + (ωse + CωR)×α1

−(ωse + CωR)×l×siα2 + C(ω̇×
RpR + ω×

R

2
pR)

−l×si(Cω̇R − ω×
seCωR) − (ωse + CωR)×l×siCωR,

φi2 = l×si[α̇1 − l×siα̇2 + (ωse + CωR)×α1 − ω×
sel

×
siα2

+C(ω̇×
RpR + ω×

R

2
pR) − l×si(Cω̇R − ω×

seCωR)

−ω×
sel

×
siCωR − (CωR)×l×si(ωse + CωR)],

ψ = ψ1(α̇2 + Cω̇R − ω×
seCωR) + ψ2(ωse, α2 + CωR)

+ψ2(CωR, ωse + CωR),

βs =
∑

βi, βi = [Ji,11 Ji,12 Ji,13 Ji,22 Ji,23 Ji,33]T ,

ψ1(a)βi = Jia, ψ2(a, b)βi = a×Jib,

Ji,jk (i = t, c : j, k = 1, 2, 3, j ≤ k) is the (j, k) element
of Ji. In addition, α̇1 and α̇2 can be easily calculated
from (12), (14) and (15). Define the following candidate
Lyapunov function such as

V2 = V1 +
1
2
zTMzz +

∑ 1
2Γi1

m̃2
i +

1
2
β̃T

s Γ−1
2 β̃s, (19)

where Γi1, Γ2 are the scalar and symmetric positive defi-
nite matrices, m̃i = mi−m̂i, β̃s = βs− β̂s are the estimate
error, m̂i, β̂s are the estimate variable, respectively. By
utilizing the fact that Cz1 is the skew symmetric matrix,
the time derivative of (19) along the trajectories of the
closed-loop system becomes

V̇2 = V̇1 + zT (−Czz − ∆z + u) −
∑

Γ−1
i1 m̃

˙̂m− β̃T
s Γ−1

2
˙̂
βs

=−rT
seKP1rse − εT

seKP2εse + rT
sez1 + εT

sez2

−zT
1

∑
miφi1 − zT

2

∑
miφi2 − zT

2 ψ̄βs

+zT
1 uf + zT

2 uτ −
∑

Γ−1
i1 m̃i

˙̂mi − β̃T
s Γ−1

2
˙̂
βs

=−rT
seKP1rse − εT

seKP2εse + rT
sez1 + εT

sez2

−
∑

mi[φT
i1 φ

T
i2]z − zT

2 ψ̄βs + zT
1 uf + zT

2 uτ

−
∑

Γ−1
i1 m̃i

˙̂mi − β̃T
s Γ−1

2
˙̂
βs, (20)

where

ψ̄ = ψ1(α̇2 + Cω̇R − ω×
seCωR) + ψ2(ωse, z2 + α2 + CωR)

+ψ2(CωR, ωse + CωR).

Here, by selecting control inputs and estimate laws as⎧⎨
⎩
uf = −rse −KD1z1 +

∑
m̂iφi1

uτ = −εse −KD2z2 +
∑

m̂iφi2 + ψ̄β̂s

, (21)

⎧⎪⎪⎨
⎪⎪⎩

˙̂mt = −Γt1[φT
t1 φ

T
t2]z

˙̂mc = −Γc1[φT
c1 φ

T
c2]z

˙̂
βs = −Γ2ψ̄

T z2

, (22)

where KDn (n = 1, 2) is the symmetric and positive
definite matrix, V̇2 becomes

V̇2 =−rT
seKP1rse − εT

seKP2εse + rT
sez1 + εT

sez2

−
∑

mi[φT
i1 φ

T
i2]z − zT

2 ψ̄βs

+zT
1 (−rse −KD1z1 +

∑
m̂iφi1)

+zT
2 (−εse −KD2z2 +

∑
m̂iφi2 + ψ̄β̂s)

+
∑

m̃i[φT
i1 φ

T
i2]z + β̃T

s ψ̄
T z2

=−rT
seKP1rse − εT

seKP2εse − zT
1 KD1z1 − zT

2 KD2z2

−
∑

(mi − m̂i)[φT
i1 φ

T
i2]z +

∑
m̃i[φT

i1 φ
T
i2]z

−(βT
s − β̂T

s )ψ̄T z2 + β̃T
s ψ̄

T z2

=−rT
seKP1rse − εT

seKP2εse − zT
1 KD1z1 − zT

2 KD2z2

−
∑

m̃i[φT
i1 φ

T
i2]z +

∑
m̃i[φT

i1 φ
T
i2]z

−β̃T
s ψ̄

T z2 + β̃T
s ψ̄

T z2

=−rT
seKP1rse − εT

seKP2εse − zT
1 KD1z1 − zT

2 KD2z2.

(23)

Obviously, V̇2 ≤ 0 holds. Therefore, x is bounded since

V2(x(t)) ≤ V2(x(0)), ∀ t ≥ 0, (24)

x= [ζT
1 ζT

2 rT
se ε

T
se ηse v

T
se ω

T
se m̃t m̃c β̃

T
s ]T ,

and V2 is radially unbounded in state space R23×S3. Then
ẋ is also bounded since the control inputs (21) and the
derivative of estimate variable are bounded by assumption
4. These follow that V̈2 is bounded. Therefore, it is shown
that

V̇2 → 0 ⇐⇒ rse → 0, εse → 0, z1 → 0, z2 → 0

as t → ∞ from Lyapunov-Like Lemma (Slotine and Li
[1991]), and then

ζ1 → 0, ζ2 → 0, ηse → 1, vse → 0, ωse → 0

as t → ∞ from (11)-(13) and V2 = 0. Furthermore, the
closed loop system becomes⎧⎨

⎩
∑

m̃iφi1 = 0∑
m̃iφi2 + ψ̄β̂s = 0

(25)
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when t → ∞. It implies the estimate variables converging
to some constant values, i.e. m̂i → ci1, β̂s → c2 as t→ ∞.
Especially, from the first equation of (25)∑

m̃iφi1 = m̃tφt1 + m̃cφc1 = 0, (26)

if ‖φi1‖ �= 0 for all t ≥ 0 and φi1 is linear independent, then
m̃i obviously becomes m̃i → 0, i.e. m̂i → m, as t→ ∞.
Remark 5. It is noted that the adaptive controller (21)
and (22) can be stabilized before and after capturing by
Remark 3.

4. NUMERICAL SIMULATION

4.1 Mission setup

As a numerical simulation, we suppose the situation where
the chaser tracks the docking port fixed at the target
that performs the tumbling motion. After capturing, as
the problem of transportation to the space station, the
connected system tracks the reference trajectory. Both
cases are controlled by adaptive controller (21) and (22).

4.2 Capturing method of target spacecraft

In order to avoid the collision and excessive docking
impact, the following scenario is considered in Phase 1.
First, the chaser approach the target in a certain distance
pt. Then, during the tracking control, the target position
is gradually decreased by δpt. When pt = 1.75 [m], the
target is supposed to be captured by the chaser.

4.3 Physical model

The physical parameters used in the simulation are as
follows.

mt = 300 [kg], mc = 200 [kg],

Jt = diag{50, 275, 275} [kgm2],

Jc =

⎡
⎢⎢⎣

75.0 −28.125 −28.125

−28.125 75.0 −28.125

−28.125 −28.125 75.0

⎤
⎥⎥⎦ [kgm2],

ltt = lcc = lst = [0 0 0]T [m], lsc = [l 0 0]T [m] ,

ρtt = ρcc = ρst = [0 0 0]T [m], ρsc = [l 0 0]T [m],

where l = 1.75 [m]. A nominal point A is the mass center
of the chaser before capturing, and it is set as the mass
center of the target after capturing. In the latter case, it
mean that {t} and {s} are the same frame.

4.4 Simulation results

Simulation results are shown in Figs. 3-6 where the initial
values, the target constant vector fixed at {t} and the
controller gains are set as

rt(0) = [20 20 5]T [m], εt(0) = [0 0 0]T , ηt(0) = 1,

vt(0) = [0 0 0]T [m/s], ωt(0) = [0.05 0 − 0.1]T [rad/s],

rc(0) = [15 15 5]T [m], εc(0) = [0.18 0.31 0.18]T ,

ηc(0) = 0.92, vc(0) = [0 0 0]T [m/s],

ωc(0) = [0 0 0]T [rad/s],

m̂t(0) = 180 [kg], m̂c(0) = 120 [kg],

β̂s(0) = [45.0 − 16.875 − 16.875 45.0 − 16.875 45.0]T

[kgm2],

pt = [2.75 0 0]T [m], δpt = 0.1 [m],

KP1 = 0.2I, KD1 = 50I, KI1 = 0.04I, Γt1 = Γc1 = 10,

KP2 = 0.2I, KD2 = 250I, KI2 = 0.04I, Γ2 = 1000.

The reference trajectory which the connected system
tracks is assumed to be

pR = [0 0 0]T [m],

vR(t) = 30CR
o ν[− sin(νt) cos(νt) 0]T [m/s],

ωR(t) = [0 0 0.05]T [rad/s], ν =
2π
600

.

This reference trajectory is the circular orbit of radius of 30
[m] in x− y plane at {i}. Furthermore, following constant
external disturbance

wf = [1 1 1]T [N], wτ = [0.5 0.5 0.5]T [Nm]

is added for all t. These values are ten times of the air drag
disturbance at the lower earth orbit.

Figures 3 and 4 show time histories of the relative position,
velocity, attitude and angular velocity. Fig. 5 shows tra-
jectory of connected system (solid) and reference (dashed)
at {i} after capturing. It is observed that chaser arrives at
the target vector pt and gradually approaches to target by
changing the reference signal under the constant external
disturbance. After capturing is achieved at 203.1[s], the
connected system tracks the reference trajectory under
the constant external disturbance. Time responses of es-
timated parameters are shown Fig. 6. Although all es-
timated parameters not converge to real parameters, as
described section 3, stability of the system is guaranteed
under uncertain physical parameter.

5. CONCLUSION

In this paper, we have proposed the adaptive PID con-
troller that ensures the stability before and after capturing
an inoperative spacecraft in orbit. The effectiveness of con-
troller is verified by numerical simulations. As the future
works, collision avoidance of the chaser and the target
before capturing, the extension to the case considering the
dynamics of the docking port are considered.
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