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Abstract: This paper presents a clinical diagnosis support system which combines the
advantages of Dempster-Shafer theory with Bayesian networks in order to simulate the uncertain
medical reasoning. We propose a hierarchical structure using Dempster-Shafer at the upper level
for evaluating more general hypothesis (disease groups) and Bayesian networks at the lower level

for a more accurate analysis of specific diseases.

1. INTRODUCTION

In many areas, such as medical diagnosis, the main char-
acteristic of information is uncertainty. Most of the hu-
man disease states are not sufficiently well understood.
Medicine uses empirical knowledge about superficial as-
sociations between symptoms and diseases. Also, many
data, symptoms, or diagnosis test results can be affected
by incompleteness, subjectivity, and inaccuracy. The un-
certainty can stem from the inability to evaluate the degree
of truth of a hypothesis due to unreliable and incomplete
information, or inconsistent knowledge.

The reasoning process in this unreliable and uncertain
environment must be based on the main operators of
intelligence - grouping (G), focusing attention (F), and
combinatorial search (S).

The problem of diagnosis can be largely defined as the
process of identifying a set of hypotheses that model com-
pletely the problem domain and finding that one hypothe-
sis having the highest odds of matching the real state of the
world. As was stated in the previous section, this process
is usually empirical involving several cognitive strategies
repeated in an iterative manner. In the attempt to build
a system which follows as closely as possible the human
reasoning pattern, we have tried to emulate such cogni-
tive strategies as generalizing, focusing, and discriminating
among hypotheses.

Generalizing and focusing imply that reasoning takes place
at different levels of abstraction. An experienced physician
begins to form hypotheses based on the most significant
symptoms, and an initial physical examination and the
patients past medical history. This is the first stage we
considered, corresponding to the upper level of abstrac-
tion, where hypotheses have a generic meaning and refer
to groups of diseases. This level is characterized by loosely
connected diagnostic hypotheses which makes the discrim-
ination among them easier. Then, in the context of these
initial hypotheses, the clinician proceeds to the acquisition
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of evidence in order to make a distinction between the
groups of diseases and choose the most probable one. Once
a group has been chosen, the reasoning process goes more
in depth looking at the hypotheses within that particular
group, at a lower level of abstraction. The hypotheses in
this second stage of evaluation are more specific, and more
strongly connected through the evidence they share. The
clinical data is integrated with test results to estimate the
likelihood of each diagnostic hypothesis.

In the attempt to develop a system which models the
multi-stage process of medical diagnosis as well as the
domain dependencies, we consider a hybrid hierarchical
solution, which combines the Dempster-Shafer formalism
with the Bayesian network approach in a two-level reason-
ing scheme.

The BN formalism is a popular choice for the development
of medical applications, thanks to its close relation to
causal models and its natural way of representing un-
certainties when dealing with diagnosis, treatment selec-
tion, planning, and prognosis in medicine. However, a
representation of the medical problem domain can result
in large probability models which require great compu-
tational efforts and are not always tractable. There are
numerous studies which tackle this problem using various
approximate algorithms, such as the solution presented in
Wemmenhove et al. [2007].

This paper presents a novel solution to the complexity
problem, which is intrinsic to the hybrid architecture itself,
by the layered mechanism of inference and the structured
representation of knowledge. A partitioning of the prob-
lem domain is achieved by the use of granular comput-
ing concepts, such that the original diagnosis problem is
decomposed into sub-problems of more manageable com-
plexity and solved by a suitable combination of heuristic
(Dempster-Shafer) and probabilistic (Bayesian networks)
methods.
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Fig. 1. Knowledge architecture

The paper is structured as follows: section 2 presents
a granular knowledge architecture chosen so that the
knowledge representation is coherent with the two levels
of abstraction in the reasoning process. The structure and
attributes of this system are described in more detail
in Section 3. Section 4 describes a medical application
exemplifying all aspects stated in the previous section.
Finally, section 5 includes a brief evaluation of the solution
proposed and a few concluding remarks on further issues
to be solved.

2. MEDICAL KNOWLEDGE STRUCTURE

The medical knowledge architecture, according to the two-
level reasoning model is presented in Fig. 1.

The hypotheses grouping idea has emerged in the attempt
for the different levels of abstraction in the reasoning pro-
cess to be reflected in a corresponding, layered knowledge
representation of the problem domain. Grouping allows
narrowing the search-space of primary hypotheses to man-
ageable dimensions by identifying the strongest similarity
patterns among manifestations (symptoms).

To build the model we have used a bottom-up approach,
starting from the finest granulation of data (Yao [2004])
(all symptoms and hypotheses) and generalizing up to a
coarser granulation (groups of hypotheses) through offline
procedures of clustering. If we introduce a representation
of knowledge for Grouping and Focusing attention as a
R,[Cy] and R,[Cy] it is possible to define a Decision-
making process as:

Bg[Cyl — = R[Cy] [ Dy[Ry[Cy]J] — DECISION

| Tg fl\ | ACTION

A cost function, J,, was introduced in the above reasoning
chain to obtain an optimum decision by a search pro-
cedure. The operators G, F, S, are applied to different
knowledge categories C, and define an optimum decision
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Fig. 2. Example of causal interrelations among hypotheses

by selection based on J,; value. Therefore, different proce-
dures can be used to implement the G, F', S operators on
the different levels of abstraction.

We examined two clustering methods, hierarchical (Dan-
drade [1978]), (Salvador and Chan [2004]) and Fuzzy
CMeans (FCM) clustering (Albayrak and Amasyali [2003]),
which we consider more appropriate for medical diagnosis.
The first executes a sharp classification in which each
object is either assigned to a class or not, but permits
the choice of the degree of generality according to medical
experience. The latter can be considered closer to the
medical reasoning as it allows objects to belong to several
classes at the same time, but with different degrees of
membership.

Each group will be defined at the bottom level (lowest
level of abstraction) by a causal (Bayesian) network. Con-
sidering that the interrelations among the variables of the
network are causal, from the medical point of view we
obtain several types of variables: diagnostic hypotheses
which represent primary causes, diagnostic hypotheses
corresponding to profound pathological manifestations or
complications of the primary hypotheses, as well as symp-
toms/signs/relevant tests. A diagnostic hypothesis may
have multiple causes, while also affecting several organs
(see Fig. 2).

3. DIAGNOSIS SUPPORT SYSTEM STRUCTURE

As presented in Fig. 3, the structure of the Decision
Support System (DSS) for medical diagnosis (Dumitrache
[2007]) is hierarchical organized and includes a Dempster-
Shafer inference module and a Bayesian inference module.

3.1 Dempster-Shafer Module

The Bayesian approach has regained the attention of the
Al research community, being considered most appropriate
to simulate uncertain reasoning. However, it requires a
large amount of probabilistic data, not merely for each
piece of evidence, but also for the interrelationship of the
evidences with diseases, which is difficult to obtain not
only statistically, but also subjectively. As the level of
generality increases, the estimation of probabilistic data
becomes more and more difficult. This is the main rea-
son why we have chosen the Dempster-Shafer formalism
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Fig. 3. DSS Structure

(Shafer [1976]) for the assessment and combining of belief
at level 1 (high generality - multiple clusters of elementary
hypotheses), and also because at this level of generality the
clusters can be considered independent.

Another advantage of the Dempster-Shafer theory is that
it permits the allocation of belief not only to singleton, but
also to subsets of hypothesis (Dumitrache [1998]).

The belief module contains two components: a static
component, which contains apriori belief, implemented
by a belief list, and a dynamic component for belief
combination induced by several pieces of evidence. An
example of the structure of the belief list is given in 1.
Belief management, the Dempsters rule of combination:
mi2(A) = > yay—a M1 (X)ma(Y) was implemented using
an algorithm based on the first Mobius transform (Kennes
and Smets [1990]).

[(617G170.3);...(€j7GiUGk,O.5)] (1)

where A is an element of boolean algebra (€2) derived
from the universe of discourse A = {G4,...,Gg,...,Gn},
for example A = {G; U G;}. m;(A) is the mass (basic
probability assignment) derived from the evidence E;, for
example F; = FEdema. X and Y are elements of which
meet the condition X NY = A.

In an interactive manner, the system presents the possible
evidence, asking the user if it is available for the case being
studied. When the required evidence matches with the
data provided by the user, the inference can be realized
- the system displays the hypotheses (groups) and unions
of hypotheses supported by this one and the corresponding
beliefs. The user has the opportunity to enter a new value
for the belief, or let the value provided by the system un-
changed. In order to update the beliefs values according to
the new available evidence, the program gives the control

to the Dempster-Shafer module.

3.2 Bayesian network Module

At the lower level, as generality decreases and the knowl-
edge model is refined to include more variables and the
complex interconnections among them, a more accurate
evaluation method becomes necessary, thus emphasizing
the increased precision decreased intelligence (IPDI) prin-
ciple.

Bayesian networks consist of two components: the first is
a quantitative component which provides a probabilistic
model for representing uncertainty in the form of a joint
probability distribution over the set of the variables of the
domain. In solving the diagnostic problem, the task of the
bayesian network is to compute the posterior probability
distribution for a set of query variables (diagnostic hy-
potheses) given a set of evidence variables (symptoms).
The second is the qualitative component, which encodes
causal relations among the variables in the form of condi-
tional dependence/independence assertions which can be
read directly in the directed acyclic graph structure of the
network. The independence assertions greatly reduce the
computing complexity of network evaluation by allowing
the global joint probability to be constructed of local
distributions as P(X) = [[i—, P(xi|pa(x;)), where z; is
a variable (vertex of the graph) and pa(z;) represents the
variables associated to the parent nodes of x;.

Several algorithms have been developed for the evaluation
of Bayesian networks, both exact and approximate. For the
purpose of our system we have considered the Lauritzen-
Spiegelhalter (L-S) algorithm implemented by B. Perry
and J. Stilson in their Toolkit for Experimentation in
Bayesian Networks (Perry and Stilson [2002]), which works
efficiently for networks that are sparse and irregular, such
is the case in our model, where the number of variables is
fairly small and most of the variables are binary. The L-S
algorithm is an exact probability inference algorithm in an
arbitrary Bayes Network.

4. CASE STUDY

As an example of a medical application of the structure
developed, we have considered a list of 26 diagnostic
hypotheses characterized by a total of 207 symptoms
at the finest granulation level (Munteanu [2006]). By
applying the clustering algorithms described in section 2
on the 26 hypotheses considered and a restricted set of
110 symptoms, we obtained similar results as depicted in
Fig. 4, and 5.

The arborescent structure in Fig. 4 corresponding to hier-
archical clustering, is much more intuitive and permits an
aposteriori decision on the number of groups according to
the desired level of abstraction. In the FCM grouping algo-
rithm the number of groups is given as an a-priori parame-
ter for the algorithm, thus requiring some previous insight
of the knowledge structure. However, the FCM algorithm
allows for a representation of the inherent interrelations
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Fig. 4. Results for hierarchical clustering algorithm (par-
tial representation)

among groups (side-effects, disease iter-influentions) as can
be seen in Fig. 5. Each group is represented at the lower
level by a bayesian network model. An example is given in
Fig.7.

Group formation described in the above paragraphs occurs
in a preliminary phase of system set-up and will not

S0NolG)
> 2z = = -

Membership Function over Hypotheses Set

Fig. 5. Results of Fuzzy C-Means clustering algorithm

be reiterated in current usage. The end-user interaction
sequence supported by the system comprises two stages
which correspond to the decision making process imple-
mented in our approach and described above.

A restricted set of symptoms which can be obtained in the
first stage of the diagnosis process by physical examination
or past medical history is used in the Dempster-Shafer
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module for discriminating between groups.

The decision module displays the list evidence correspond-
ing to the group of causes and asks the user to validate
them. As an evidence is observed (chosen by the user from
the list), the probabilistic masses are updated, Fig. 6, right
side of the window. When the evidence list is finished, the
decision module presents a list of hypotheses having the
highest beliefs that resulted from the inference. The user is
asked to choose the most probable candidate for inference
at the lower level. In the second stage, the decision module
presents the user with two options (Fig.7):

a. to review the Bayesian network of the selected group,
where he is given the opportunity to modify the probability
distributions of the nodes and to select evidence nodes;
b. to review the results of the evaluation of the network in
a graphical manner, deciding either to continue or choose
the final diagnosis.

5. CONCLUSIONS

In this paper a hierarchical structure implemented as a
hybrid medical diagnosis system is presented. The com-

bination of heuristic (Dempster-Shafer) and probabilistic
(Bayesian networks) models, emulates uncertain reasoning
on two levels. We attempted to obtain a more intuitive
analysis of the medical decision making process by decom-
posing the original diagnosis problem into sub-problems of
more manageable complexity, using granular computing
concepts such as Grouping, Focusing and Searching. A
partitioning of the problem domain has been presented by
cluster formation (Grouping), followed by a selection of
the relevant sub-problem domain (Searching implemented
by the DS inference on level 1), and finally, retrieving the
finer representation of the constricted domain (Focusing)
and searching for the solution by Bayesian inference on
level 2.

Preliminary tests of the system were favorable, but mainly
consisted of a comparison of results obtained by the pro-
posed system and the system designed in Munteanu [2006],
which was medically approved. This solution was chosen
because the two systems were designed starting from the
same pool of hypotheses and symptoms, so that a compar-
ison basis existed. Further testing and validation in clinical
settings is mnecessary. Also, some common performance
measures should be defined and evaluated in order to
attempt comparison to other systems.

Currently the restricted set of symptoms used in group
formation is chosen on the basis of occurrence frequency.
As future improvements of the system, the dimensionality
reduction of the symptoms space will be further studied
from the perspective of the theorems in information theory.
We plan to introduce a more accurate method of pruning
the symptoms set down to a sub-set of most relevant symp-
toms, by defining a measure to quantify the informational
value of each symptom, such as a score based on the
entropy and the specificity of the symptom in support of
each particular hypothesis. Also, in defining the bayesian
models, the reduced symptoms space will be defined by
selecting those candidates (symptoms) with the lowest
cross-correlation, thus most representative for preserving
maximum information from the higher dimensional space.

Once thoroughly tested and validated, the system could
be extended to employ adaptive Bayesian models that
learn from experience, such that the prior probabilities
in the models adjust statistically from the posteriors of
previous calculations. Additionally, online clustering pro-
cedures and bayesian model learning from symptom data
could be implemented to insure a greater autonomy for
the system. However, this aspect requires extensive study,
since complexity and run-time overload issues should also
be considered.

Since the system presents a user-friendly interface, pro-
viding a graphical representations of the results and other
explanatory facilities, it is more likely to obtain a wide
acceptance and wide spread use by clinicians, as well as
less experienced doctors.
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A case study gives the possibility to verify this DSS
proposal for medical diagnosis and to prove the viability
of its hierarchical hybrid structure.
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