
Modeling of asynchronous discrete-event
systems as networks of input-output

automata

Sebastian Drüppel ∗, Jan Lunze ∗∗, Martin Fritz ∗∗∗

∗ Robert Bosch GmbH, Corporate Sector Research and Advance
Engineering, Mechatronic Engineering Group, D-70442 Stuttgart,

Germany (Tel:+49-711-811-49402; e-mail:
drueppel.sebastian@de.bosch.com).

∗∗ Ruhr-University Bochum, Institute of Automation and Computer
Control, D-44780 Bochum, Germany (e-mail: lunze@atp.rub.de).

∗∗∗ Robert Bosch GmbH, Automotive Aftermarket, D-73207
Plochingen, Germany (e-mail: martin.fritz@de.bosch.com).

Abstract: A new approach for component-oriented modeling of asynchronous discrete-event
systems is presented where input-output (I/O) automata are used for representing the com-
ponents. Coupling signals are introduced to describe the interactions among the components.
The resulting network of I/O-automata has a direct correspondence to the block diagram. By
using the parallel composition rule known from standard automata modeling as an example, it is
shown that the new model is applicable for at least the same class of asynchronous discrete-event
systems as the known modeling formalisms.

Keywords: Discrete-event system, component-oriented modeling, coupling signals, standard
automaton, input/output automaton

1. INTRODUCTION

The well known problem of state space explosion in
the modeling of discrete-event systems can be overcome
by component-oriented modeling philosophies, where the
overall system is treated as a set of interacting com-
ponents. The separate models that are set up for the
components are coupled to represent the overall system
(Sreenivas and Krogh (1991)).

This modeling way has several advantages in contrast to
monolithic modeling. First, setting up models of smaller
components is much easier than describing the composite
overall system by a unique model. Second, component-
oriented models retain the structure of the system, which
can be used later in the analysis or the design tasks carried
out by means of these models.

This paper proposes a new component-oriented modeling
framework for asynchronous discrete-event systems that is
motivated by the diagnosis of technical systems (Blanke
et al. (2006)). The overall system is considered as a
set of interacting input-output (I/O) automata. Coupling
signals si and ri are used to represent the interactions
in an explicit way (Fig.1). The overall model retains the
structure of the system and has a direct correspondence to
the block diagram, which is widely used in the modeling
of technological systems and control design.

The idea to use networks of I/O-automata has been
followed by only a few authors. Three types of inter-
connections have been considered in literature: side-by-
side-composition (parallel connection), cascade composi-

N1

v1w1

z01

s1 r1

Ni

vi wi

z0i

si ri

Nν

vν wν

z0ν

sν rν

K

Fig. 1. Network of input/output-automata in block dia-
gram form

tion (series connection) and feedback composition (Lee and
Varaiya (2003) and Lunze (2006)). Due to the assumption
that all components behave in synchrony, conditions have
to be met to obtain a well-defined feedback connection
(Neidig and Lunze (2005)). This paper will show that the
structure of the system has not to be restricted to these
three connection types but may be described by a more
general interaction block K introduced in Fig. 1.

This model distinguishes severely from component-orien-
ted descriptions published in the past that likewise use
automata to represent the components, but which define
the interactions among the components in terms of events.
The components are described by finite-state machines
that will be referred to as standard automata here to
distinguish them from I/O-automata. The main difference
lies in the fact that the state transitions are represented
by events rather than input symbols (Cassandras and
Lafortune (1999) and Wonham (2005)). For component-
oriented modeling, several composition operators have
been proposed in literature (see Wenck and Richter (2004)
for an overview). The main idea is to distinguish pri-

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 544 10.3182/20080706-5-KR-1001.2943

vate events that may occur in a single component, from
common events that have to occur in all components.
The synchronous product is used to describe the syn-
chronization of the behavior of two components for all
common events, whereas the parallel composition permits
autonomous state changes of single components for their
private events (cf. Section 3.1). For systems with higher
priority events, the prioritized synchronous composition
can be used (Heymann (1990)).

The paper proposes the new model in Sec. 2 and shows
the relation to the modeling formalism with standard
automata in Sec. 3.

2. A NEW MODELING FORMALISM FOR
INTERCONNECTED DISCRETE-EVENT SYSTEMS

2.1 The I/O-automata network

The system is considered as the interconnection of a
finite number of components Ci (i = 1, . . . , ν). Each
component is subject to two different kinds of interactions
(Fig. 1). First, the control input vi and control output wi

are used to model the interaction of the component Ci

with its environment. Correspondingly, this interaction is
represented for the overall system by the signal vectors

v = (v1 . . . vν)T ∈ Nv = Nv1 × · · · × Nvν (1)

w = (w1 . . . wν)T ∈ Nw = Nw1 × · · · × Nwν . (2)
Second, two coupling signals si and ri are introduced for
each component Ci to model the interaction with other
components. In general, this signals may be vectors as Ci

may affect more than one component via different signal
paths and may have an effect on several other components.
This arbitrary interaction is restricted in here to scalar
interconnection signals to basically explain the modeling
approach. Accordingly, the signal vectors

s = (s1 . . . sν)T ∈ Ns = Ns1 × · · · × Nsν
(3)

r = (r1 . . . rν)T ∈ Nr = Nr1 × · · · × Nrν
(4)

are related to one another by the interaction block K.

2.2 Component model

Each component Ci is represented by an I/O-automaton
Ni. The definition of I/O-automata found in Lee and
Varaiya (2003) and Lunze (2006) is extended to cope with
the coupling signals (Fig. 2). In the component models

Ni

SRHi Gi Fi

vi

wi
z′i

zi

z0i

si

ri

Fig. 2. Structure of the new I/O-automaton

Ni = (Nzi
,Nvi

,Nwi
,Nsi

,Nri
, Fi, Gi,Hi, z0i), (5)

Nzi
is the set of states, Nvi

the set of control inputs, Nwi

the set of control outputs, Nsi
the set of interconnection

inputs, Nri
the set of interconnection outputs and z0i ∈

Nzi
the initial state.

The dynamical properties of the component Ci are de-
scribed by three functions:

• The interconnection function Fi : Nzi
× Nvi

×
Nsi

→ Nri
specifies in each state zi for all control

inputs vi and interconnection inputs si the intercon-
nection output ri

ri = Fi(zi, vi, si). (6)
• The state transition function Gi : Nzi

× Nvi
×

Nsi
→ Nzi

calculates in each state zi the successor
state z′i for all control inputs vi and interconnection
inputs si

z′i = Gi(zi, vi, si). (7)
• The output function Hi : Nzi ×Nvi ×Nsi → Nwi

specifies the control output wi in each state zi for all
control inputs vi and interconnection inputs si

wi = Hi(zi, vi, si). (8)

The block ”SR” in Fig. 2 represents a shift register that
is used to store the successor state z′i calculated by (7) for
one time step. It is initialized with z0i.

2.3 The coupling model

The coupling model K is introduced to explicitly model
the interaction of the system components. It is represented
by a matrix K that links the interconnection outputs with
the interconnection inputs

s = K · r. (9)
The square matrix K has exactly one element Kij in each
row which has the value ”1” to model the connection
si = rj . All other elements have the value ”0”. Hence,
the relation

si = kT
i · r (10)

holds for all interconnection inputs with kT
i being the i−th

row of the matrix K.

By this, every component may affect several other compo-
nents via its interconnection output. The assumption to
use scalar interaction signals restricts the interconnection
in the opposite direction. There may be components that
have no effect on any other component. However, an ar-
bitrary interaction between the components is possible in
the general case of vectorial interconnection signals.

2.4 Overall system model

The model of the overall system is a network of I/O-
automata NAN
NAN =({N1, . . . ,Nν},Nz,Nv,Nw,Ns,Nr,K,z0) (11)

(Fig. 1) with the state

z = (z1 . . . zν)T ∈ Nz = Nz1 × · · · × Nzν
(12)

and the initial state
z0 = {z01 , . . . , z0ν

}T . (13)
The control input v ∈ Nv and the control output w ∈ Nw

are used to describe the interaction of the system with its
environment. The interconnection input s ∈ Ns and the
interconnection output r ∈ Nr are not seen from outside
the system.

In general, the system may have loops, where the inter-
connection output of a component depends directly or via
other components on itself. This results in the feedback
problem known from Lee and Varaiya (2003) and Neidig

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

545

and Lunze (2005). The automata network is called well-
defined if it is able to generate for an arbitrary sequence
of control inputs v exactly one sequence of states and one
sequence of control outputs w. For a precise definition, the
overall interconnection function

F (z,v, s) =

 F1(z1, v1, s1)
...

Fν(zν , vν , sν)

is introduced.
Definition 1. The I/O-automata network (11) is well-
defined, if two conditions are fulfilled:

(1) The following relation holds:
Nri ⊆ Nsj . (14)

(2) There exists for all control inputs v ∈ Nv and all
states z ∈ Nz exactly one interconnection output
r ∈ Nr that solves

r = F (z,v,K · r). (15)

2.5 The notion of asynchrony

In modeling interconnected discrete-event systems by stan-
dard automata, asynchrony means that one component
may carry out a state transition independently of the other
components, if a private event of the component triggers
the system (Cassandras and Lafortune (1999) and Lunze
(2006)). The remaining components do not perform any
state transition. To cover asynchrony, several composition
operators like the parallel composition have been defined.

This situation occurs for I/O-automata that are coupled
in the side-by-side-composition introduced in Lee and
Varaiya (2003). There, the stuttering symbol called absent
is used to allow for the reaction of a single component
in the composition. The reacting component gets a non-
vanishing input symbol due to which it performs a state
transition and generates an output symbol. The stuttering
symbol is given to the other component to remain in its
current state and not to output a new symbol. As a result,
one component performs an independent state transition.
Recall that the stuttering symbol is also called the empty
symbol and denoted by ε.

The formalism of the empty symbol ε is extended to cope
with asynchrony in the modeling approach introduced
in this paper. One I/O-automaton Ni of the network
can perform an asynchronous state transition due to a
control input vi 6= ε if all other components get the
empty input symbol ε and if there is no interaction with
the other components, i.e. if si = ε and ri = ε hold.
The interconnection functions Fi and the state transition
functions Gi have to be defined accordingly for the empty
control input or interconnection input symbols.

Asynchrony of one component can be extended to sev-
eral components if there is an interaction between these
components due to non-vanishing interconnection signals.
The participating components may get in addition non-
vanishing control inputs. In this case, the participating
components perform a synchronous state transition while
the non-participating components remain in their current
states. Hence, the interacting components move asynchro-
nously with respect to the remaining components. If all

components are part of the interaction, the whole system
performs a synchronous state transition.

2.6 Discussion

The new modeling formalism for interconnected discrete-
event systems presented here allows for a bottom-up design
of the model in four steps:

1. The system is decomposed into interconnected compo-
nents.

2. Each component is separately modeled by an I/O-
automaton without taking the other components into
account.

3. The interconnection of the components is described by
the coupling model.

4. The whole system model is composed of the component
models and the coupling model.

There are four major advantages of this kind of modeling:

(1) Changes of the properties of one component only lead
to a new component model but do not necessitate a
change of other component models or of the intercon-
nection relation.

(2) Changes in the structure of the overall system by e.g.
adding or removing a component only results in a
new coupling model but let the component models
unaffected.

(3) A model library for component models can be used
due to reasons (1) and (2).

(4) The cause-and-effect-chain of the system is explicitly
covered by I/O-automata.

2.7 Example

To illustrate the modeling formalism introduced in this
paper, the automaton graphs of N1 and N2 are shown in
Fig. 3, where a directed edge from state zi to its successor

N1 : 1 2

ε/ε/ε/ε

a/ε/a/a

ε/ε/ε/ε
a/a/ε/ε

ε/ε/a/a
a/a/a/a

N2 : 1

ε/ε/ε/ε
ε/a/a/a
a/ε/a/a
a/a/ε/ε

Fig. 3. Automaton graph of the I/O-automata N1 und N2

state z′i is labeled by vi/wi/si/ri, if (6) – (8) hold. The
interconnection functions F1 and F2 are given in Tab. 1.

Table 1. Interconnection functions
(a) F1

r1 z1 v1 s1

ε 1 ε ε

a 1 a a

ε 2 ε ε

ε 2 a ε

a 2 ε a

a 2 a a

(b) F2

r2 z2 v2 s2

ε 1 ε ε

a 1 ε a

a 1 a a

ε 1 a ε

If the interconnection signals are related by
s1 = r2 s2 = r1, (16)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

546

the overall system represents a feedback connection and
it has to be checked, whether the overall system is well-
defined or not. From Fig. 3 follows directly, that (14) holds.
Relation (15) has to be checked in each state z

z = (z1, z2)T ∈ Nz =
{
(1, 1)T , (2, 1)T

}
(17)

for each input v

v =
(

v1

v2

)
∈ Nv =

{(
ε

ε

)
,

(
a

ε

)
,

(
ε

a

)
,

(
a

a

)}
. (18)

The results are shown in Tab. 2. It can be seen from Tab.
2(a) that (15) holds in state z = (1, 1)T for exactly one
combination of the interconnection signals but not in state
z = (2, 1)T (Tab. 2(b)). Hence, the overall system is not
well-defined.

Table 2. Checking (15) for N1 and N2

(a) in z = (1, 1)T

(v1, v2)T r1 = F1(·) r2 = F1(·)
(ε, ε)T ε ε

(a, ε)T a a

(ε, a)T ε ε

(a, a)T a a

(b) in z = (2, 1)T

(v1, v2)T r1 = F1(·) r2 = F1(·)

(ε, ε)T ε
a

ε
a

(a, ε)T ε
a

ε
a

(ε, a)T ε
a

ε
a

(a, a)T ε
a

ε
a

A well-defined system is obtained by removing in the
automaton graph of N1 at state 2 the transitions labeled
ε/ε/ε/ε and a/a/a/a. Then, there is exactly one combina-
tion of interconnection signals solving (15) for the state
(2, 1)T . The resulting automaton is depicted in Fig. 4,
where a directed edge is labeled by v/w.

N comp :
(
1
1

) (
2
1

)(
ε
ε

)/(
ε
ε

)(
ε
a

)/(
ε
a

)
(
a
ε

)/(
ε
a

)(
a
a

)/(
ε
ε

) (
a
ε

)/(
a
ε

)(
a
a

)/(
a
a

)(
ε
ε

)/(
ε
a

)(
ε
a

)/(
ε
ε

)
Fig. 4. Automaton graph of the composed I/O-automaton

N comp

The state transitions of the overall system can be sepa-
rated into synchronous and asynchronous moves.

(1) Synchronous state transitions occur, if both com-
ponents get non-vanishing control input symbols. In
the example, this is e.g. the case for a transition from
state z = (1, 1)T to the successor state z′ = (2, 1)T

for the control input v = (a, a)T and the generated
control output w = (ε, ε)T . Another possibility is
that there is no interaction due to non-vanishing
input symbols, e.g. the self loop at state z = (2, 1)T

for the control input v = (a, a)T and the control
output w = (ε/ε)T . It is also possible that one
component gets a non-vanishing control input while

the other one gets the empty symbol. The state tran-
sition from state z = (1, 1)T to the successor state
z′ = (2, 1)T is an example. Even though the control
input v = (a, ε)T has one vanishing element for the
first component, the control output w = (ε, a)T can
have the non-vanishing element for the second one.

(2) An asynchronous state transition can be per-
formed, if one component gets a non-vanishing control
input while the other one gets an ε and there is
no interaction between the components. This is for
example the case for the self loop at state z = (2, 1)T

for the control input v = (a, ε)T the control output
w = (a, ε)T .

3. COMPARISON OF NETWORKS OF
I/O-AUTOMATA WITH COUPLED STANDARD

AUTOMATA

The comparison of the network of I/O-automat introduced
in Sec. 2 with coupled standard automata described in Lee
and Varaiya (2003) and Wonham (2005) is presented in
the following. For simplicity, it is assumed that the system
consists of only two components C1 and C2.

3.1 Modeling of asynchronous discrete-event systems by
standard automata

The component Ci (i = 1, 2) is modeled by the standard
automaton Ni, which is defined by the 4-tuple

Ni = (Nzi
,Σi, δi, z0i) (19)

where Nzi is the set of states, z0i ∈ Nzi the initial state
and Σi the set of events. The state transition function
δi : Nzi ×Σi → Nzi specifies in each state zi for all events
σi the successor state z′i

z′i = δi(zi, σi). (20)

For the composition of the two components the parallel
composition rule is used. It yields the overall system model

N‖ = (Nz‖ ,Σ‖, δ‖,z0‖) (21)

with the state z‖ = (z1, z2)T ∈ Nz‖ = Nz1×Nz2 , the initial
state z0‖ = (z01, z02)T and the set of events Σ‖ = Σ1∪Σ2.
The introduction of the sets of common and private events

Σcom = Σ1 ∩ Σ2, Σpriv
i = Σi\Σcom, i = 1, 2 (22)

is needed to define the state transition function δ‖ of the
overall system

δ‖

((
z1

z2

)
, σ

)
=

(
δ1(z1, σ)
δ2(z2, σ)

)
,

if δ1(z1, σ)!
∧ δ2(z2, σ)! (23a)(

δ1(z1, σ)
z2

)
, if σ ∈ Σpriv

1
∧ δ1(z1, σ)! (23b)(

z1

δ2(z2, σ)

)
, if σ ∈ Σpriv

2
∧ δ2(z2, σ)! (23c)

undefined, otherwise (23d)
that yields the successor state z′

‖. The notation δi(zi, σ)!
means that the state transition function δi is defined for
the arguments zi and σ.

3.2 Interpretation of a network of I/O-automata as
coupled standard automata

This section shows that the network of I/O-automata can
be used to describe an asynchronous discrete-event system

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

547

modeled as the parallel composition of standard automata.
As other composition rules can likewise be modeled by
I/O-automata networks, the new model introduced in this
paper is applicable at least for the same class of systems
as known modeling methods that use standard automata.

To relate both modeling classes to one another, the events
occurring in standard automata are interpreted as inputs
to I/O-automata (like in the case where standard au-
tomata are used as acceptors of a language). It is assumed
that the same input v ∈ Nv‖ = Nv1 ∪ Nv2 is assigned to
both components, which results in the special structure of
the I/O-automata network shown in Fig. 5.

To re-build the parallel composition of two standard au-
tomata by the network depicted in Fig. 5, the intercon-
nection signals si and ri are used to enable or disable
the movement of the automaton Ni by Nj and vice versa.
Consequently, the interconnection inputs and outputs need
to have two elements: Nsi = Nri = {0, 1} (i = 1, 2). If
si = 1 holds, the automaton Ni is allowed to move, which
means that for this argument the state transition function
Gi is defined. Otherwise (si = 0), the movement of Ni is
prohibited by automaton Nj with the consequence, that
Gi is not defined for this argument. Analogously, ri = 0
means that Ni sends a prohibition to Nj and to allow for
the movement ofNj the automatonNi must output ri = 1.

N1 z01

v

v1
s1

r1

N2 z02

v2
s2

r2

Fig. 5. Interpretation of a network of I/O-automata as
coupled standard automata

The parallel composition rule (23) is realized by an ap-
propriate choice of the interconnection function Fi of the
I/O-automata as follows:
Definition 2. Interconnection function for a parallel
composition
The interconnection function FPAC

i is defined by

FPAC
i (zi, vi) = ri =

1, if Gi(zi, vi, 1)! (24a)

∨ vi /∈ Nvi

0, otherwise. (24b)

Interpretation of (24). The automaton Ni allows the
movement of automaton Nj if its state transition function
Gi is defined or if vi 6∈ Nvi . The negation of this statement
yields the condition for permitting the movement. Either
Gi is not defined or the input symbol is not known to
the automaton Ni, i.e. its a private input symbol of the
automaton Nj .

As the network of I/O automata considered here has no
control output, the automaton Ni is defined without an
output function by the 7-tuple

Ni = (Nzi ,Nvi ,Nsi ,Nri , F
PAC
i , Gi, z0i). (25)

Its structure is depicted in Fig. 6.

The I/O-automaton N‖ representing the parallel compo-
sition of N1 und N2 is defined by the 4-tuple

Ni

SRFi Gi

vi

z′i

zi

z0i

si

ri

Fig. 6. Structure of the reduced I/O-automaton

N‖ = (Nz‖ ,Nv‖ , G‖,z0‖) (26)
with the set of states Nz‖ = Nz1 × Nz2 and the initial
state z0‖ = (z01, z02)T . The state transition function of
the network of I/O-automata

G‖ : Nz‖ ×Nv → Nz‖ (27)
is obtained by the following procedure. First, the value of
the interconnection outputs r1 and r2 are calculated by
(24) in each state z‖ ∈ Nz‖ for each input v ∈ Nv‖ and
linked to the interconnection inputs as shown in Fig. 5.
Next, the successor state z′

‖ = (z′1, z
′
2)

T is calculated using
(7). Hence, the state transition z′

‖ = G‖(z‖, v) is possible
for the overall system.

3.3 Example

As a formal proof of the equality of both approaches can-
not be given here due to space limitation, the comparison
of the modeling formalisms is illustrated by an example
(Fig. 7). If the automata graphs are interpreted for the
standard automata, a directed edge from state zi to z′i
labeled with σi is used for all possible state transitions
z′i = δi(zi, σi). For the interpretation as I/O-automata,
the edge is labeled with the pair vi/si for all possible
state transitions z′i = Gi(zi, vi, si). Hence, it contains in
addition the value of the interconnection input.

N SA
1 :

(N IO
1 :) 1 2

p1
1

(p1
1/1)

a
(a/1)

a
(a/1)

p1
2

(p1
2/1)

N SA
2 :

(N IO
2 :) 1

a
(a/1)

p2
1

(p2
1/1)

Fig. 7. Automaton graph of the standard automata N SA
1

and N SA
2 (and the I/O-automata N IO

1 and N IO
2)

The sets of events of the components are chosen to be
Σ1 = {a, p1

1, p
1
2} = Nv1 Σ2 = {a, p2

1} = Nv2 . (28)
Note that common events have the same name and pri-
vate events are denoted by pi

x where the superscript i
corresponds with the component Ci and the subscript
x = 1, 2, . . . is used consecutively to enumerate the events
of the component

Σcom = {a} = N com
v (29)

Σpriv
1 = {p1

1, p
1
2} = N priv

v1
Σpriv

2 = {p2
1} = N priv

v2
. (30)

The set of events of the overall system is given by
ΣSA

‖ = {a, p1
1, p

1
2, p

2
1} = Nv‖ (31)

and the set of states Nz‖ by

Nz‖ =
{
(1, 1)T , (2, 1)T

}
(32)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

548

with the initial state z0‖ = (z01, z02)T = (1, 1)T .

The standard automaton N SA
‖ depicted in Fig. 8 is ob-

tained from the application of the parallel composition rule
(23) to N SA

1 and N SA
2 .

N SA
‖ :

(
1
1

) (
2
1

)p1
1

p2
1

a
a
p2
1

p1
2

Fig. 8. Automaton graph of the composed standard au-
tomaton N SA

‖

The construction procedure to obtain the I/O-automaton
N IO

‖ is shown step-by-step in Tab. 3. Comparing this
results with the standard automaton depicted in Fig. 8
shows the equality of the two models.

Table 3. Construction of the composed I/O-
automaton N IO

‖

z
‖

=
(z

1
z
2

)
v r 1

=
s 2

r 2
=

s 1

G
1
(·

)!
?

G
2
(·

)!
?

z
′ ‖

=
(z′ 1

z
′ 2

)

E
n
tr

y
in

G
I
O ‖

(1, 1)T a 1 1 y y (2, 1)T
(
2
1

)
= GIO

‖

((
1
1

)
, a

)
(1, 1)T p1

1 1 1 y n (1, 1)T
(
1
1

)
= GIO

‖

((
1
1

)
, p1

1

)
(1, 1)T p1

2 0 1 n n - -

(1, 1)T p2
1 1 1 n y (1, 1)T

(
1
1

)
= GIO

‖

((
1
1

)
, p2

1

)
(2, 1)T a 1 1 y y (2, 1)T

(
2
1

)
= GIO

‖

((
2
1

)
, a

)
(2, 1)T p1

1 0 1 n n - -

(2, 1)T p1
2 1 1 y n (1, 1)T

(
1
1

)
= GIO

‖

((
2
1

)
, p1

2

)
(2, 1)T p2

1 1 1 n y (2, 1)T
(
2
1

)
= GIO

‖

((
2
1

)
, p2

1

)
3.4 Discussion

The preceding subsection has shown that it is possible
to define a special class of networks of I/O-automata
introduced in Sec. 2 to rebuild the parallel composition
rule known from modeling of asynchronous discrete-event
systems by coupled standard automata. This fact points
to three major advantages of the modeling formalism
introduced in this paper in comparison to the standard
automata modeling approach:

(1) The new modeling formalism can be proved to be
powerful enough to cover all composition operators
known from standard automata modeling (for a sur-
vey on composition operators see e.g. Wenck and
Richter (2004)).

(2) The cause-and-effect-chain of the system under con-
sideration is explicitly modeled by networks of I/O-
automata. For standard automata modeling, the
cause-and-effect-chain of the system is implicitly cov-
ered in the choice of the events.

(3) The way of modeling standard automata is a top-
down approach. The most important modeling step
and the major disadvantage with respect to I/O-
automata modeling is the requirement that the events
of the whole system have to be chosen and categorized
from an overall system point of view. This violates
the principles of component-oriented modeling. In

contrast to this, the formalism introduced in Sec.
2 can be used in a bottom-up approach and purely
component-oriented where the definition of the com-
ponent models are done completely separately.

4. CONCLUSION

In this paper, a new component-oriented modeling formal-
ism for asynchronous discrete-event systems has been in-
troduced. The concept of I/O-automata for describing the
components has been extended to model the interactions
among the components by coupling signals. An interaction
block K has been introduced to generally describe the
structure of the system by linking the coupling signals.
Hence, the resulting network of I/O-automata has a direct
correspondence to the block diagram.

A special case of the network of I/O-automata has been
derived to rebuild the parallel composition known from
modeling discrete-event systems by standard automata.
The equality of both approaches has been illustrated by
an example.

In future work, both approaches will be formally proven to
be equal for use with the parallel composition rule. More-
over, it will be shown that the new modeling formalism
introduced in here is even more general then modeling
asynchronous discrete-event system by standard automata
because special cases have been used for the comparison
and not the general form of the I/O-automata networks.

Since it is the author’s aim to use the modeling formalism
introduced in Sec. 2 for diagnosis, two major extensions
will be made. First, vectorial coupling signals will be
introduced to realize the most general form of interaction
between the components of a technical system. Second,
relations will be used instead of the functions Fi, Gi and
Hi to cope with nondeterminism.

REFERENCES

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki.
Diagnosis and Fault-Tolerant Control. Springer-Verlag,
2006.

C. G. Cassandras and S. Lafortune. Introduction to
Discrete Event Systems. Kluwer Academic Publishers,
1999.

M. Heymann. Concurrency and discrete event control. In
IEEE Control Systems Magazine 10, 1990.

E. A. Lee and P. P. Varaiya. Structure and Interpretation
of Signals and Systems. Addison-Wesley, 2003.

J. Lunze. Ereignisdiskrete Systeme. Oldenbourg Verlag,
2006.

J. Neidig and J. Lunze. Direct feedback in automata
networks. In Proceedings of the 16th IFAC World
Congress, 2005.

R. Sreenivas and B. Krogh. On condition / event sys-
tems with discrete state realization. In Discrete Event
Dynamic Systems: Theory and Application, 1991.

F. Wenck and J. H. Richter. A composition oriented
perspective on controllability of large scale des. In Pro-
ceedings of the 7th International Workshop on Discrete
Event Systems (WODES), 2004.

W. M. Wonham. Supervisory control of discrete-event
systems. Technical report, University of Toronto, Dept.
of ECE, Systems Control Group, 2005.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

549

