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Abstract: The objective of this study is to design a robust receding-horizon observer for systems
described by nonlinear models with uncertain parameters. Robustification in the presence of
model uncertainties naturally leads to the formulation of a nonlinear min-max optimization
problem, which can either be solved numerically or which can be converted to a simpler
minimization problem using linearization along a nominal trajectory and recent results in linear
robust receding-horizon estimation. This method is first evaluated in simulation and then with
real-life experimental data collected from continuous cultures of phytoplankton.
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1. INTRODUCTION

Due to the lack of reliable on-line measurements of the key
components of cell cultures, state estimation techniques
(or software sensors) play an increasingly important role in
bioprocess monitoring. A challenge to face in the design of
software sensors is however the uncertainty associated with
the underlying bioprocess model, which motivates in turn
the development of robust state estimation techniques.

Receding-horizon estimation is a popular method where
the most-likely initial conditions of a process model are
estimated on the basis of data available in a moving
time frame by solving a minimization problem. Using the
estimated values and the process model, a state prediction
can then be computed up to the next measurement time.
Several applications of receding-horizon observers can be
found in, e.g., Bogaerts and Hanus (2001), Alamir and
Corriou (2003) and Valdéz-González et al. (2003).

In this study, we consider the classical situation where a
process model has been previously identified based on ex-
perimental data, and where, besides the estimated values
of the parameters, parameter bounds have been evaluated
(these bounds result for instance from the analysis of the
error covariance matrix and the consideration of confi-
dence intervals). Our objective is to design a state estima-
tion method, which would be robust to these parameter
uncertainties. The formulation of this problem naturally
leads to a nonlinear min-max optimization problem. The
latter can either be solved numerically (at the price of
expensive computation), or converted to a simpler mini-
mization problem by using a model linearization along a
nominal trajectory (defined by nominal parameter values
and the most likely initial conditions) and recent results
in linear robust receding-horizon estimation developed by
Alessandri et al. (2005).

In order to demonstrate the performance of the method,
the culture of phytoplankton in a bioreactor operated
in chemostat mode is considered. Based on on-line mea-
surements of the biovolume, the substrate concentration
as well as the internal quota are reconstructed. The
tests are first conducted in simulation using Droop model
(Droop (1968)), then using real-life experimental data. In
both cases, preliminary parameter identification provides
bounds on the uncertain parameters, that can be exploited
in the robust observer design.

Based on this application example, a comparison between
the two numerical solution approaches to the min-max
optimization problem is carried out. In order to reduce
the computational expense required by the “brute-force”
approach to the min-max optimization problem, advantage
is taken from the monotonicity properties of the considered
application example.

This paper is organized as follows. Section 2 describes the
class of nonlinear systems that we are considering and
formulates the optimization problems underlying receding-
horizon estimation (classical formulation and robust for-
mulation). In Section 3, the continuous culture of phyto-
plankton and Droop model are presented. Section 4 is de-
voted to the simplified numerical solution of the min-max
optimization problem based on the monotonicity proper-
ties of the application example, whereas Section 5 makes
uses of a model linearization and of recent results in linear
robust estimation theory. Finally, Section 6 illustrates the
algorithm performance with real-life experimental data
and Section 7 is dedicated to conclusions and future work.

2. PROBLEM STATEMENT

Let us first assume that the system can be modelled by
the following equations for t ≥ t0:
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(Σ) :

{

ẋ = f(x(t),u(t), θθθ) x(t0) = x0

yk = y(tk) = Cx(tk) + ǫǫǫ(tk)
(1)

The first part in (Σ) is the evolution equation and is repre-
sented by continuous-time differential equations where f is
a vector of nonlinear functions, x(t) ∈ ℜnx is the vector of
state variables, u(t) ∈ U ⊂ ℜnu is the vector of inputs with
U the set of admissible controls, a subset of the space of
measurable bounded functions and θθθ ∈ ℜnθ is a parameter
vector.

The second part is the observation equation and is mod-
elled by linear discrete-time equations where C is the
measurement matrix, y(tk) ∈ ℜny is the vector of sampled
measurements and ǫǫǫ(tk) ∈ ℜny is the measurement noise
vector described by a Gaussian white noise sequence with
a zero mean and a covariance matrix Q(tk).

x0 is the initial state vector containing values of the state
at the initial time t0. As usual in practice, the param-
eter vector has been estimated using some identification
procedure based on experimental data, and parameter
intervals [θθθ−θθθ+] have been evaluated (for instance using
the knowledge about the error covariance matrix) which
are likely to enclose the unknown vector θθθ.

Finally, let us define x(t)

x(t) = g(t,x0,ut0→t, θθθ) (2)

the state vector computed thanks to (1) from the initial
state x(t0) and corresponding to the input trajectory from
u(t0) to u(t).

2.1 Receding-horizon estimation

The basic principle of the receding-horizon observer is to
compute estimates of the state trajectories using the pro-
cess model and the best knowledge of the initial state vec-
tor resulting from an optimization procedure. Typically,
the initial condition of a moving time frame is computed
by minimizing the distance between the measurement data
collected in the considered time frame and model predic-
tion.

Let us consider a time interval containing N + 1 mea-
surements instants {tn−N , . . . , tn} with measurements
{

yn−N , . . . ,yn

}

. The typical receding-horizon optimiza-
tion problem computes an estimation of the initial state
x̂n−N,n :

x̂
◦
n−N,n = arg min

x̂n−N,n

Jn,N (x̂n−N,n) with (3)

Jn,N (x̂n−N,n) =
∥

∥x̂n−N,n − x̄◦
n−N

∥

∥

2

M
(4)

+

n
∑

k=n−N

∥

∥Cg
(

tk, x̂n−N,n,utn−N→tk
, θθθ

)

− yk

∥

∥

2

Q−1(tk)

where ‖v‖P =
(

vT Pv
)1/2

is a weighted norm.

The first term in (4), weighted by the matrix M , expresses
the belief in the estimation of the initial conditions of
the moving-time horizon obtained from all the information
collected up to n. In other words, this term has a recall
action towards the solution of the optimization problem
obtained in the previous estimation step. The matrix M

is assumed to be positive definite and can be considered
as a design parameter. This matrix determines the recall
strength towards previously obtained initial conditions
(note the analogy with nonlinear predictive control, where
a reference optimal input trajectory is sometimes used in
the same way). Depending on the value of n, two situations
can be distinguished (Bogaerts and Hanus (2001)):

• n ≤ N :

A full-horizon estimation scheme is then applied. In the
Nmin − 1 first steps ((Nmin − 1)ny < nx), x◦

0 = x̄0, i.e.,
the best a priori available initial guess, in the absence of
more on-line information. For Nmin ≤ n ≤ N , x̂

◦
0,n−1 is

the solution of the optimization problem (4) on a time
window of n ≤ N time instants.

x̄◦
0 =

{

x̄0 n < Nmin

x̂
◦
0,n−1 n ≥ Nmin

(5)

• n > N :

In this case, enough information is available and a
receding-horizon can be used. The “reference” initial con-
ditions of the time window x̄◦

n−N are based on the optimal
estimation computed in the previous step (tn−N−1) and a
one-step prediction computed with the system model.

x̄◦
n−N = g

(

tn−N , x̂◦
n−N−1,n−1,utn−N−1→tn−N

, θθθ
)

(6)

Knowing x̂
◦
n−N,n, estimations until the next measurement

time tn+1 are given by :

x̂(t) = g
(

t, x̂◦
n−N,n,utn−N→t, θθθ

)

∀t ∈ [tn, tn+1] (7)

2.2 Robust receding-horizon estimation

The previous procedure assumes a perfect knowledge of
the parameter vector θθθ. In the case of uncertain parameters
(a parameter interval [θθθ−, θθθ+] is nonetheless available), an
alternative procedure can be proposed implying a min-max
optimization (see Alessandri et al. (2005) for the linear
formulation):

x̂
◦
n−N,n = arg min

x̂n−N,n

max
θ̂θθ∈[θθθ−,θθθ+]

J̄n,N

(

x̂n−N,n, θ̂θθ
)

(8)

with J̄n,N

(

x̂n−N,n, θ̂θθ
)

=
∥

∥x̂n−N,n − x̄◦
n−N

∥

∥

2

M
+

n
∑

k=n−N

∥

∥

∥
Cg

(

tk, x̂n−N,n,utn−N→tk
, θ̂θθ

)

− yk

∥

∥

∥

2

Q−1(tk)
(9)

and

• If n ≤ N :

x̄◦
0 =

{

x̄0 n < Nmin

x̂
◦
0,n−1 n ≥ Nmin

• If n > N :

x̄◦
n−N = g

(

tn−N , x̂◦
n−N−1,n−1,utn−N−1→tn−N

, θθθnom

)
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with

θθθnom =
θθθ− + θθθ+

2

When n > N , the “reference” initial conditions of the time
window x̄◦

n−N are based on the optimal estimation com-
puted in the previous step (tn−N−1) and a one-step predic-
tion computed with a nominal model (nominal means here
using average parameters in the interval [θθθ−, θθθ+]). Indeed,
as the time window is shifted of one step ahead, the previ-
ous knowledge on the initial conditions is “extrapolated”
using an average process model.

3. ESTIMATION OF BIOLOGICAL VARIABLES IN
CONTINUOUS CULTURES OF PHYTOPLANKTON

In order to test our algorithms, we consider the estimation
of biological variables in the culture in chemostat of the
green algae Dunaliella tertiolecta. This algae is a phyto-
planktonic cell, i.e. a microscopic plant living in aquatic
environment. Like terrestrial plants, it requires light for
photosynthesis and essential substrates for growth, such as
nitrate. As this kind of processes is difficult to study in the
open sea, the phytoplanktonic growth analysis is carried
out in a photobioreactor. A more complete description of
the experimental setup can be found in Bernard et al.
(2001).

In the following, three state variables will be considered to
describe the growth of phytoplankton :

• The biovolume X which is the total amount of
biomass per unit of volume (µm3/L).

• The internal quota Q which is defined as the quantity
of nitrogen per unit of biomass (µmol/µm3).

• The substrate (nitrate) concentration S (µmol/L).

A mathematical model is used to predict the temporal
evolution of the three above-mentioned state variables.

In contrast with the Monod model (Monod (1942)) which
assumes that the consumed substrate is directly trans-
formed in biomass, the Droop model (Burmaster (1979)
and Droop (1968)) uncouples the growth rate from the
uptake rate by introducing an intracellular store of nutri-
ents.

The time-varying evolution equations resulting from mass
balances are given by:







Ẋ(t) = −D(t)X(t) + µ(Q)X(t)

Q̇(t) = ρ(S) − µ(Q)Q(t)

Ṡ(t) = D(t)(Sin(t) − S(t)) − ρ(S)X(t)

(10)

with ρ(S) = ρm
S(t)

S(t)+kS
the uptake rate, and µ(Q) =

µ̄
(

1 −
kQ

Q(t)

)

, the growth rate. Moreover, if Q(t) < kQ,

µ(Q) = 0.

In these equations, D represents the dilution rate (1/d, d
: day), Sin the input substrate concentration (µmol/L),
ρ the uptake rate (µmol/(µm3d)) and µ the growth
rate (1/d). For the uptake rate, kS and ρm represent
respectively a half-saturation constant (µmol/L) for the
substrate and the maximum uptake rate (µmol/(µm3d)).
Concerning the growth rate, µ̄ is the theoretical maximum

growth rate (1/d), obtained for an infinite internal quota
and kQ the minimum internal quota allowing growth
(µmol/µm3).

Moreover, to complete the model description, an observa-
tion equation is defined by measurements of biovolume X
at measurement time tk:

yk = X(tk) (11)

An observability analysis of Droop model (10) shows that
it is uniformly input observable with y = X if X 6= 0 (see
Bernard et al. (1998) for further details).

4. NUMERICAL SOLUTION OF THE MIN-MAX
PROBLEM USING MONOTONICITY PROPERTIES

The solution of the min-max optimization problem (8)-(9)
is not a trivial task especially in the nonlinear case where
many local minima can occur.

In the considered application (continuous culture of phy-
toplankton described by Droop model), the monotonicity
properties of the model can be used to simplify the maxi-
mization problem. Indeed, the worst-case biomass predic-
tion (that will be compared to biomass measurements)
can be generated using parameter bounds {θθθ−, θθθ+} only,
rather than by exploring the full parameter space [θθθ−, θθθ+].

This simplification is approximate only since the biomass
evolution is coupled with other component concentrations.
However, Monte-Carlo simulations show that the com-
puted trajectories are close to the worst ones, especially
with small substrate concentrations.

The simplified algorithm is tested in simulation and com-
pared with a standard receding-horizon observer, as de-
scribed by (3)-(4), using an erroneous system model. The
reference model parameters are the following : ρm = 9.3×
10−9 µmolµm−3d−1, kS = 0.105 µmolL−1, µ̄ = 2 d−1

and kQ = 1.8×10−9 µmolµm−3. The uncertain parameter
subspace [θθθ−, θθθ+] is given by [0.8θθθ, 1.5θθθ]. The input param-
eters (Sin,D) are assumed perfectly known. The parame-
ters of the erroneous model are chosen on the parameter

subspace border (θθθfalse = [θθθ+(1), θθθ−(2), θθθ+(3), θθθ−(4)]
T
)

and correspond thus to one of the worst-case model. The
initial estimation x̄0 is randomly chosen in the interval
[0.7x0, 3x0] with x0, the reference initial conditions given
in Table 1.

Unit Reference value

X0 µm3/L 0.1× 109

Q0 µmol/µm3 4.5× 10−9

S0 µmol/L 50

Table 1. Reference values for initial conditions

The measurements of biovolume yk (11), are corrupted
by a Gaussian white noise (with a relative standard
deviation of 0.08 and a minimum s.d. of 1.5×109 µm3/L).
Figure 1 compares the performance of the two above-
mentioned algorithms. Expectedly, an erroneous model
usually provides poor state estimates. In contrast, robust
estimation provides satisfactory estimation, despite the
uncertainty on the parameter values. Note however that
this estimation is biased as the average model provides
biased prediction of the real system state.
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The main disadvantage of the present formulation is its
high computational demand (even with the simplification
based on the monotonicity properties of the considered
example). This motivates the use of other artifices to
obtain a more computationally effective formulation.
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Fig. 1. Estimation performance in simulation. Real tra-
jectories are in grey and estimations are in black.
Biomass measurements are used for estimation. Sim-
plified robust receding-horizon (−) and receding-
horizon with an erroneous model (−−) have both as
tuning parameters N = 4 and M = 0.1I (I is the
identity matrix).

5. ON THE USE OF LINEARIZATION TECHNIQUES

To reduce the computational demand, we will make use
of linearization techniques. Indeed, in the linear case, a
theorem is available (Sayed et al. (2002)) for converting a
min-max optimization problem into a standard minimiza-
tion problem λ◦:

Theorem 1. Consider a regularized robust least-squares
problem of the form :

min
z

max
‖S‖≤1

‖z‖
2
V + ‖[D + δD(S)] z − [e + δe (S)]‖

2
W (12)

δD(S) = HSEd, V > 0, δe(S) = HSEe, W ≥ 0

Problem (12) has a unique global minimum z◦ given by:

z◦ =
(

V̂ + DT ŴD
)−1 (

DT Ŵe + λ◦ET
d Ee

)

where

V̂ = V + λ◦ET
d Ed

Ŵ = W + WH
(

λ◦I − HT WH
)†

HT W

and the scalar parameter λ◦ is determined as

λ◦ = arg min
λ≥‖HT WH‖

‖z(λ)‖
2
V + λ ‖Edz(λ) − Ee‖

2

+ ‖Dz(λ) − e‖
2
Ŵ (λ)

z (λ) =
(

V̂ (λ) + DT Ŵ (λ)D
)−1 (

DT Ŵ (λ)e + λET
d Ee

)

V̂ (λ) = V + λET
d Ed

Ŵ (λ) = W + WH
(

λI − HT WH
)†

HT W

Matrix norm, like e.g. ‖P‖ is related to the maximum
singular value of the corresponding matrix i.e. ‖P‖ =
(

σ̄
(

PT P
))1/2

with σ̄(P ) the maximum eigenvalue of P .
† denotes the left pseudoinverse.

Proof. A demonstration can be found in Sayed et al.
(2002).

In order to apply this theorem to the min-max optimiza-
tion problem (8)-(9), we have to linearize the nonlinear
function g with respect to x̄◦

n−N and θθθnom (Bogaerts and
Hanus (2000)):

g
(

tk, x̂n−N,n,utn−N→tk
, θ̂θθ

)

≈ gnom (n − N, tk) + Gx (n

−N, tk)
(

x̂n−N,n − x̄◦
n−N

)

+ Gθ (n − N, tk) (θθθ − θθθnom)

with

gnom (n − N, tk) = g
(

tk, x̄◦
n−N ,utn−N→tk

, θθθnom

)

(13)

Gx (n − N, tk) =
∂g

(

tk,xn−N ,utn−N→tk
, θθθ

)

∂xn−N

∣

∣

∣

∣

∣ xn−N=x̄
◦

n−N

θθθ=θθθnom

(14)

Gθ (n − N, tk) =
∂g

(

tk,xn−N ,utn−N→tk
, θθθ

)

∂θθθ

∣

∣

∣

∣

∣ xn−N=x̄
◦

n−N

θθθ=θθθnom

(15)

Jacobian matrices defined in (14) and (15) can be com-
puted for time t ∈ [tn−N , tn] by solving numerically
the following differential equations together with (1) (for
x(tn−N ) = x̄◦

n−N and θθθ = θθθnom):

Ġx (n − N, t) =
∂f(x(t),u(t), θθθnom)

∂x
Gx (n − N, t) (16)

Ġθ (n − N, t) =
∂f(x(t),u(t), θθθnom)

∂x
Gθ (n − N, t)

+
∂f(x(t),u(t), θθθ)

∂θθθ

∣

∣

∣

∣

θθθ=θθθnom

(17)

The initial conditions of (16) and (17) are respectively
given by :

Gx (n − N, tn−N ) =
∂g

(

tn−N ,xn−N ,utn−N→tn−N
, θ

)

∂xn−N

=
∂xn−N

∂xn−N
= Inx

Gθ (n − N, tn−N ) = 0nx
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A new cost function can now be given by the following
expression :

J̌n,N

(

x̂n−N,n, θ̂θθ
)

=
∥

∥x̂n−N,n − x̄◦
n−N

∥

∥

2

M
+ (18)

∥

∥Ḡn
x,n−N

(

x̂n−N,n − x̄◦
n−N

)

−
(

Y n
n−N − ḡn

n−N − Ḡn
θ,n−NS∆θθθmax

)∥

∥

2

W

with ∆θθθmax = θθθ+−θθθ−

2 and ‖S‖ ≤ 1,

W= diag
(

Q−1(tn−N ), . . . , Q−1(tn)
)

a bloc diagonal ma-

trix, Y n
n−N=

[

yT (tn−N ) . . . yT (tn)
]T

the column vector
containing all the measurements,

ḡn
n−N =







Cgnom (n − N, tn−N )
...

Cgnom (n − N, tn)






the column vector con-

taining the measured state vectors for the “nominal”

case
(

x̄◦
n−N , θθθnom

)

, Ḡn
x,n−N =







CGx (n − N, tn−N )
...

CGx (n − N, tn)






re-

grouping the Jacobian matrices related to the initial state

variables and Ḡn
θ,n−N =







CGθ (n − N, tn−N )
...

CGθ (n − N, tn)






regroup-

ing the Jacobian matrices related to the parameters.

Finally, the solution of the robust receding-horizon prob-
lem can be summarized as :

Theorem 2. The problem defined by (8) with (18) as cost
function has a unique solution given by

x̂
◦
n−N,n = x̄◦

n−N +
(

M + Ḡn,T
x,n−NŴ Ḡn

x,n−N

)−1

Ḡn,T
x,n−NŴ

(

Y n
n−N − ḡn

n−N

)

with Ŵ (λ◦) = W + WḠn
θ,n−N

(

λ◦I − Ḡn,T
θ,n−NWḠn

θ,n−N

)†

Ḡn,T
θ,n−NW

λ◦ is computed from the following minimization

λ◦ = arg min
λ≥‖Gn,T

θ,n−N
WGn

θ,n−N‖
‖z̄(λ)‖

2
M + λ ‖∆θθθmax‖

2

+
∥

∥Gn
x,n−N z̄(λ) −

(

Y n
n−N − ḡn

n−N

)∥

∥

2

Ŵ (λ)

with

z̄(λ) =
(

M + Ḡn,T
x,n−NŴ (λ)Gn

x,n−N

)−1

Ḡn,T
x,n−NŴ (λ)

(

Y n
n−N − ḡn

n−N

)

Ŵ (λ) = W + WḠn
θ,n−N

(

λ◦I − Ḡn,T
θ,n−NWḠn

θ,n−N

)†

Ḡn,T
θ,n−NW

Proof : a trivial application of Theorem 1.

Of course, the linearized model differs from the nonlin-
ear one, and results in an approximation of the original
problem. The quality of this approximation will mostly
depend on the fact that the worst linearized model is

as worse as the worst nonlinear one. This algorithm is
now applied in simulation to the continuous culture of
phytoplankton with the same parameter subspace, input
values and initial conditions as in Section 4. Figure 2 shows
these results obtained with the linearized robust receding-
horizon observer. The design parameters are a time win-
dow with 6 instants (N = 5) and a weighting matrix for
the initial guess M = I. The algorithm performs well
and offers a very significant computational load reduction
(from several hours to a few minutes using Matlab on a
standard PC).

0 5 10 15 20 25
0

20

40

60

80

time (d)B
io

v
o

lu
m

e
 X

 (
1

0
 9

 µ
m

3
/L

 )

0 5 10 15 20 25
0

2

4

6

8

time (d)

In
te

rn
a

l 
q

u
o

ta
 Q

 (
1

0
−

9
 µ

m
o

l/
µ

m
3
 )

 

0 5 10 15 20 25 30
0

50

100

150

time (d)

N
it
ra

te
 c

o
n

c
e

n
tr

a
ti
o

n
 S

 (
 µ

m
o

l/
L

 )

Fig. 2. Robust receding-horizon (linearized version) in
simulation with N = 5 and M = I. Real trajectories
are in grey and estimations are in black. Biomass
measurements are used for estimation.

6. EXPERIMENTAL APPLICATION

We now turn our attention to an experimental study, i.e.,
phytoplanktonic growth in the chemostat. In this setup,
the culture volume is kept constant by continuously intro-
ducing and removing culture elements. According to an
experimental protocol presented in Bernard et al. (2001),
several measurements are collected, including biovolume or
substrate concentration. The results of parameter identifi-
cation are given in Table 2 for the model parameters and
in Table 3 for the initial conditions. The experiments are
carried out with a time-varying dilution rate D(t), whose
intervals of variation are given in Table 4.

Parameter Unit Interval value

Sin µmol/L [95 , 105]
kS µmol/L [0.01 , 0.20]
µ̄ 1/d [1.70 , 2.30]

kQ µmol/µm3 [1.60 , 2.00]× 10−9

ρm µmol/(µm3d) [9.25 , 9.55]× 10−9

Table 2. Interval values for model parameters

Unit Interval value

X0 µm3/L
[

10−6 , 0.2
]

× 109

Q0 µmol/µm3 [1 , 8]× 10−9

S0 µmol/L [40 , 60]

Table 3. Interval values for initial conditions

A relative standard deviation of 0.03 is considered for the
measurement errors related to the biomass concentration.
Figure 3 shows some estimation results with the linearized
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[t] (d) [0, 7.5] [7.5, 12.5] [12.5, 16.5]

D (1/d) 0 [0.92, 1.02] [0.9, 1.02]

[t] (d) [16.5, 17.5] [17.5, 24.5] [24.5, 33.5]

D (1/d) 0.9 [0.45, 0.51] [0.51, 0.59]

Table 4. Interval values for the dilution rate

robust receding-horizon algorithm described in Section 5.
Design parameters are a time window with 11 instants and
a weighting matrix for the initial estimation M = 50I.

A small value of N involves a higher sensitivity to measure-
ments errors whereas a larger one induces longer computa-
tional efforts. Furthermore, a large time window penalizes
prediction when the considered model is far from the
real one. Moreover, M is related to the a priori initial
estimation. A small value induces a higher confidence in
the measurements and estimation is sensitive to outliers,
whereas a larger one means a high confidence in the system
model.
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Fig. 3. Robust receding-horizon (linearized version) with
experimental data. Design parameters are N = 10
and M = 50I.

7. CONCLUSIONS

In this study, we consider the situation where a process
model has been identified and parameters are known
to lie within some confidence intervals. Receding-horizon
observers are then design in order to take account of these
parameter uncertainties.

The underlying min-max optimization problem is solved in
two ways. First, a brute-force numerical strategy is used,
in which the monotonicity properties of the considered
application example (continuous culture of phytoplankton
described by Droop model) are exploited to reduce the
search in the whole parameter subspace to a search on its
boundary. Even though this simplification is very effective,
the resulting computational demand is still excessive.
Second, a linearization of the process model is effected
along a nominal trajectory (defined by nominal parameters
and most-likely initial conditions) and recent results in
linear robust estimation are used to turn the original min-
max problem to a simple minimization problem.

Tests in simulation and with real-life experimental data
show good performance of robust methods with respect to

model uncertainties. Moreover, in the second version, lin-
earization allows to significantly reduce the computational
load. Tuning is easy because it is only related to the length
of the time window and to the weighting matrix of the a
priori initial estimation.

Future work will be directed to the determination of min-
max estimation bounds and their validation with other
biological applications and real data.
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