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A b stract: In the present paper, a new strategy for robust filtering problem of linear time-
invariant (LTI) continuous time system is proposed. The key idea consists in generalizing the
structure of a linear state estimator of the Luenberger class. As a matter of fact, the closed
loop form of this class of state estimator can be assimilated to a closed loop control problem.
Then, the standard correction term can be viewed as a Proportional controller. In this paper,
we propose a more general form of controller in order to obtain the robustness. An example
shows the efficiency of the proposed approach.
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1. IN TR O D U C TIO N

In engineering problems, there is a recurrent need of in-
formation concerning process state in order to control it.
U nfortunately, in practice, it is not systematically possible
to have access to these information. C onsequently, from
available measurements and process model, one should
manage to estimate the physically unaccessible informa-
tion. In the state-space representation of linear systems,
this problem can be tackled by the Luenberger observer.

The robustness of standard state estimators of the Lun-
berger class is intimately related to the validity of the
available model. As a matter of fact, errors in the model
parameters lead to poor performances. In order to robus-
tify this kind of linear estimators, various approaches have
been used.

H∞ robust estimators have been intensively developed in
order to guaranty a constant level of performance over
a range of possible models. C learly, this means that the
designer has to give a representation to the model errors
(termed as model uncertainties) and then, minimize the
eff ect of the worst case uncertainty on the estimation error
(Petersen [19 9 4 ], R ezaM oheimani [19 9 8 ], S ouza [19 9 5],
G ao [2005]).

Another approach consists in considering that the poor
performances are due to the lack of information on the
model. This problem has been solved by introducing the

sensitivity of the estimation error with respect the sup-
posed uncertain parameters. In this context, no uncer-
tainty modelling is required (N eveux [2001]).

Finally, a control-based approach has been considered.
As a matter of fact, state estimation can be viewed as
a state feedback control problem. C onsequently, in order
to solve the problem of biased estimation in presence of
model uncertainty, an integral action as been added to
the standard Luenberger structure (Lee [19 7 9 ], B usawon
[2000], D uan [2001]). The obtained filter is known as the
Proportional-Integral Kalman filter (PI Kalman).

In the present paper, we adopt the latter approach. The
basic idea consists in considering that even if the PI
structure is of great interest, it can be improved by
a more general form. In this work, it is shown that
the original structure of the Luenberger observer can be
modified in order to give a more general tuning framework.
In that purpose, we propose in the Laplace domain to
consider that the correcting term in the estimator is
a lead-lag controller rather than a PI. The state-space
representation is given and a H∞ tuning criterion is
given in order to ease the implementation of the proposed
estimator. The optimization will be done by a G enetic
Algorithm. This kind of heuristic optimization has been
used with success in deconvolution (C hen [2000]) and
control problems (Z hang [2005]).
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The paper is organized as follows. In section 2, we present
the system under consideration and give useful assump-
tions in order to solve the filtering problem. The structure
of the proposed robust filter is given in section 3. A tuning
criterion is given in order to ease the implementation of the
filter. An example is presented in section 4 that shows the
interest of such an approach. Finally, concluding remarks
will be given in section 5.

2. PO S ITIO N O F THE PR O B LE M

C onsider the LTI multi-input multi-output system (Σ )
represented by the set of equations:







ẋ(t) = Ãx(t) + Bu(t) + Mw(t)
y(t) = Cx(t) + v(t)
z(t) = Lx(t)

(1)

with the state x(t) ∈ <n, the deterministic input u(t) ∈
<m, the measured output y(t) ∈ <p and the desired
output z(t) ∈ <q. All the matrices are real valued matrices
with appropriate dimensions. Further, we assume that the
matrix Ã is uncertain. Hence, we decompose it as follows:
Ã = A + ∆A where A is the nominal matrix that designer
holds to design the state estimator, ∆A is the modeling
error.

The filtering problem will be solved under the following
assumptions:

(1) the system is detectable and stabilizable,
(2) w(t) and v(t) are L2 noises.

The objective of this paper is to estimate the desired
signal z(t) from the known deterministic input u(t) and
the measured output y(t) when the system is uncertain.

3. R O B U S T FILTE R D E S IG N

3.1 Structural considerations

The conventional structure of the linear state estimator is
the Luenberger one. Its state equation is given by:







˙̂xL(t) = Ax̂L(t) + Bu(t) + KLε
ε(t) = y(t) − Cx̂L(t)
ẑL(t) = Lx̂L(t)

(2)

where the matrix KL ∈ <n×p is a tuning matrix that
is generally obtained by pole assignment of the matrix
(A−KLC), and x̂L(t) ∈ <n is the state estimate. The most
popular state estimator of this class is the Kalman filter
that sets KL according to the minimum variance criterion
(G elb [19 7 4 ]).

In presence of model uncertainty, three approaches have
been developed in order to guaranty robust signal esti-
mation. In the following, two of them, related to control
approaches, will be developed. In order to explain their
strategies, we give the general transfer function form of
the Luenberger like estimator, that is:

x̂L(s) = P (s)Bu(s) + P (s)KL(s)ε(s) (3)

with

P (s) = (sI − A)−1 (4 )

The block diagram corresponding to this relation is given
in figure 1. C learly, it appears that this structure is a
control one where an additive control ζ(t) ∈ <n permits
the estimator to fit the state of the system.

KL(s) P (s)

C

B

i+i-y(t)

+
-ε(t) -ζ(t) - -x̂L(t)-

-u(t)

?

¾

6−

Fig. 1. B lock diagram of the generalized structure of the
filtering problem.

In presence of model uncertainty, the following control-
based strategies are adopted in order to avoid biased
estimation:

(1) increase the matrix gain KL in order to enlarge the
bandpass of the estimator. In the case of Kalman
based design technique, the robust estimator is based
on a modelling of the model uncertainties by means of
a stochastic (Petersen [19 9 4 ], R ezaM oheimani [19 9 8 ],
S ouza [19 9 5]) or a polytopic decomposition (G ao
[2005]).

(2) consider that KL(s) is a Proportional Integral con-
troller (Lee [19 7 9 ], B usawon [2000], D uan [2001]). The
state-space equations of the corresponding estimator
is obtained from the relations in the Laplace domain
and give rise to the PI Kalman filter.

Though efficient, the first class of solution introduces an
important level of noise in the state estimate (due to
an important enlargement of the bandpass in comparison
with the H2 Kalman filter) while the second class permits
to overcome this problem (B usawon [2000]). N evertheless,
the stability of the PI Kalman filter should be carefully
treated. This problem has been addressed in D uan [2001]
and solved by means of eigenstructure assignment in the
discrete-time context.

3.2 T he lead-lag controller

The PI controller is a so-called universal controller. C onse-
quently, it may not be perfectly adapted to the case under
study. In order to overcome this drawback, we propose the
following structure for KL(s):

Kij
L (s) =

1 + πijκijτjs

1 + τjs
(5)

which represents the lead-lag controller. The tuning pa-
rameters are τj and πij . Parameters κij are Kalman filter
gains.

In order the give trends on the lead-lag controller, let
introduce αij = πijκij . This parameter permits to define
the controller properties as follows:

• if αij > 1, then Kij
L (s) is a lead controller. It permits

to increase the rapidity of the system due to an
increased bandpass of the closed-loop system.
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• if 0 < αij < 1, then Kij
L (s) is a lag controller. This

action acts essentially on a very low frequency range.
It does not infl uence the bandpass and the rapidity
of the closed-loop system.

Remark 1. From the tuning point of view, we should sys-
tematically ensure that αij is positive. As a consequence,
the parameters πij should have the same sign as the

corresponding κij . Furthermore, as the controller Kij
L (s)

should be stable, it is clear that τj is at least be positive.

¦

In the robust estimation problem, the objective is to
enlarge the bandpass of the estimator in comparison to
the standard Kalman filter. B ut a compromise should
be found, between a too large bandpass that will entail
an important level of noise on the state estimate and
an unbiased (and reliable) state estimate. The proposed
approach should permit such a compromise by an adapted
frequency shaping of KL(s).

3.3 T he lead-lag H∞ robust estimator

In order to obtain an estimate of the state of the system
with a prescribed H∞ level of performance, we should give
the state equation of the proposed lead-lag estimator. The
following lemma permits to obtain such an equation:

Lemma 1. The estimate ẑ(t) of the signal z(t) of the
uncertain system (Σ ) with KL(s) as a lead-lag controller
of the form (5) is given by:



















˙̂x(t) = Ax̂(t) + Bu(t) + ζ(t)
χ̇(t) = F (χ(t) − ε(t))
ζ(t) = Gχ(t) + Hε(t)
ε(t) = y(t) − Cx̂(t)
ẑ(t) = Lx̂(t)

(6 )

where

F = −diag ([1/ τ1 . . . 1/ τp]) ; H = Π ? K; G = 1 − H (7 )

with

• τj is a strictly positive real, that sets the high fre-
quency bandpass of the controller related to the mea-
sured output j,

• K = {κij} is the <n×p Kalman gain matrix,
• Π = {πij} is a <n×p weighting matrix,
• 1 is the <n×p matrix with all elements equal to one,
• Π ? K is the Kronecker product of Π with K.

? ?

Proof 1. From (6 ), express the transfer matrix KL(s) and
verify that it coincides with (5). It comes, that:

KL(s) =
ζ(s)

ε(s)
= GTχ ε (s) + H (8 )

with

Tχ ε (s) =
χ(s)

ε(s)
= −(sI − F )−1F (9 )

C learly, we have:

Tχ ε (s) = diag
( [

(

s + τ−1

1

)−1

. . .
(

s + τ−1

p

)−1
] )

E xpressing H and G and replacing in (8 ) leads to (5). This
completes the proof.

◦ ◦

Remark 2. The PI Kalman state equation can be easily
derived form (6 ) by modifying the equation of the variable
χ(t) and set HP I = H = K. Further F and G become
tuning matrices denoted FP I and GP I respectively. C on-
cerning χ(t), we should write that:

χ̇(t) = FP I ε(t)

¦

Remark 3. B y construction, it appears that the state
χ(t) associated to the lead-lag controller is a vector of
dimension p, the number of measured output. Hence,
compared to standard approaches, the increase of the
numerical burden is reasonable. C ompared to the PI
Kalman, as the order of KL(s) remains unchanged, the
two approaches are equivalent from this point of view.

¦

In order to find the tuning parameters such that the
proposed estimator has a H∞ performance, we have the
result:

T heorem 1. The robust lead-lag estimator given in Lemma
1 achieves H∞ performance if the tuning matrices F and
Π are such that

• The estimation error z̃(t) = z(t) − ẑ(t) satisfies

‖φz̃z̃‖
2

∞ = sup
ω ∈ <

‖φz̃z̃(jω )‖2

2
< γ2 (10)

with

φz̃z̃ = T ∗
z̃w̃(s)Tz̃w̃(s) (11)

and

Tz̃w̃(s) =
z̃(s)

w̃(s)
= L

(

sI − A
)−1

M (12)

A =

[

A − HC −G
−FC F

]

; M =

[

M −H
0 F

]

; L = [L 0 ]

where T ∗(s) is the transpose complex conjugate of
T (s), i.e. T ∗(s) = T ′(−s), and ‖ · ‖2 is the E uclidian
norm,

• The matrix A is a stable matrix.

5 5 5

Proof 2. In order to express φz̃z̃, we define the state
estimation error x̃(t) = x(t) − x̂(t) then:

˙̃x(t) = Ax̃(t) + Mw(t) − ζ(t)

N ow, consider the state X̃ ′(t) = [x̃′(t)χ′(t)] then, we have:
{

˙̃X(t) = AX̃(t) + Mw̃(t)

z̃(t) = LX̃(t)
(13)

where
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w̃(t) =

[

w(t)
v(t)

]

The result in Theorem 1 is obtain after trivial manipula-
tions. This completes the proof.

◦ ◦

The minimization of the H∞ scaling parameter γ will be
done by means of a G enetic Algorithm (G A). This method
has been used with success in control problems (Z hang
[2005]) as well as in deconvolution (C hen [2000]) in order to
optimize tuning parameters according to a given criterion.
S ee references in the above mentioned papers for more
information on G A. In the present case, we have to find
the (n+1)p parameters that constitute the matrices F and
Π such that γ is minimized.

Remark 4. In complement to R emark 3, it should be
noticed that the proposed approach requires the same
number of parameters as the PI Kalman filter does.

¦

4 . E X AM PLE

Let consider a single input-single output LTI system
defined by the set of nominal matrices:

A =

[

0 1 0
0 0 1

−a0 −3 −2

]

; B = M =

[

0
0
1

]

C = L = [10 0 0 ]

where the parameter a0 is assumed to be uncertain. Its
nominal value is a0 = 5. In order to validate the proposed
approach to standard robust H∞ estimators, we consider
that the uncertainty range represents δ = ±15% of the
nominal value. This example is interesting in the sense
that some of its poles are located close to the imaginary
axis. As a matter of fact, for the nominal model, we have
the poles [−1.8 4 3;−0.07 8 + 1.6 4 5j;−0.07 8 − 1.6 4 5j ].

4.1 T he protocol

In the following, we will consider that the true value of a0 is
varying in the proposed range. In figure 2, we have plotted
the deterministic input u(t) together with the measured
output y(t) for δ = +15% . The validation of the proposed
approach will be done by inspecting the following aspects:

• the behavior of the estimation error with respect with
the noises, i.e., we will plot ‖φz̃z̃‖2.

• the relative root mean square error of each state xi(t)
of the system, i.e.

R R MS Ei =

√

E{x̃2

i (t)}

E{x2

i (t)}

evaluated over 200 realizations of the noises. For
each state, we will plot the corresponding R R MS E
over the range δ = ±15% . E{·} stands for the
mathematical expectation.

E ach plot will permit to compare the proposed estimator
to the standard H∞ estimator (S ouza [19 9 5]) and to a PI
Kalman filter designed under the terms in Theorem 1.

Remark 5. N ote that the desired signal z(t) is 10 times
the state x1(t). Hence, R R MS E1 is also the R R MS E of
the estimation error of the z(t).

¦

4.2 T he tuning of the estimators

The standard H∞ estimator has been obtained after
writing the uncertainty part as:

∆A = HA∆(t)EA

with

HA =

[

0
0

0.15a0

]

; E = [1 0 0 ]

where ∆(t) is a matrix of Lebesgue measurable elements
such that ∆(t)∆′(t) < I .

The design of the standard H∞ estimator requires the
solution of two R iccati equations and the tuning of two real
parameters. In the following the optimal tuning is used in
order to evaluate the proposed approach.

The PI Kalman filter with H∞ performance and the lead-
lag robust H∞ estimator will be tuned thanks to the
M atlabr G enetic Algorithm Toolbox. In order to obtain
the optimum, we have considered a population of 1000
with a crossover of 0.50 and a mutation rate of 0.15. D ue
to the size of the problem, 4 parameters (n = 3, p = 1)
have to be tuned for each estimator. The results of the
optimization are given below:

• the PI Kalman estimator

FP I = 1.9 06 1; GP I =

[

0.3521
−0.6 8 22

0.308 0

]

; γ2

P I = 3.4 08 4

• the Lead-lag estimator

τ1 = 10−5; Π = 103

[

2.7 36 8
17 7 0.5

−1.56 8 8

]

; γ2 = 2.7 6 07 · 10−2

The B ode plots of KL(s) are given in figure 3. It appears
that the controllers have high-pass characteristic which
implies an increase in the dynamics of the closed-loop
that should guaranty the precision of the estimation. This
should be confirmed by the simulation results.

4.3 Simulation results

From figure 4 , it is clear that the proposed estimator
outperforms the standard H∞ estimator. C ompared to the
PI Kalman, the performances are equivalent. E ven if for
low |δ| the PI Kalman performs better. O n the overall
uncertainty range, the proposed estimator has a constant
level of performance which clearly sets its robustness.

Furthermore, the plots of the R R MS E of the states x2(t)
and x3(t) for the 3 filters (see figures 5-6 ) show that
the proposed estimator outperforms the two others. It
appears that the PI Kalman does not guaranty a reliable
state estimate while the standard H∞ estimator gives
reasonable estimates.
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Fig. 2. The deterministic input u(t) (dashed line) and the
measured output y(t) (solid line) for δ = +15% .
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Fig. 3. B ode plots of the optimal KL(s) guaranteeing the
H∞ performance of the proposed filter.

C learly, the criterion in Theorem 1 permits to obtain a
robust H∞ lead-lag estimator. This example shows clearly
the ability of the lead-lag controller to propose an adapted
solution to the robust estimation problem while the PI
Kalman fails.

From figure 7 , it appears that the bandpass of the standard
H∞ estimator is the largest bandpass of the 3 estimators
studied. C onsequently, its estimates, though reliable, suff er
from an important residual estimation noise. The band-
pass of the PI Kalman and the proposed estimator are
equivalent even if the rejection of the PI Kalman is stiff er
which can be compared to a C hebyshev filter. Finally,
the proposed estimator has a low gain in the bandpass.
This means that it permits to reduce the level of noise
even in its bandpass, while the other robust estimators
do not attenuate the noises in their bandpass. The latter
point explains that the optimal H∞ lead-lag estimator
outperforms the optimal standard H∞ estimator.
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Fig. 4 . R R MS E of the proposed filter (solid line) vs
standard H∞ filter (dashed line) and the PI Kalman
(dash-dotted line) for the state x1(t).
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Fig. 5. R R MS E of the proposed filter (solid line) vs
standard H∞ filter (dashed line) and the PI Kalman
(dash-dotted line) for the state x2(t).

5. C O N C LU S IO N

In the present paper, we have proposed a control point
of view to the design of robust H∞ estimator for LTI
uncertain systems. The basic idea consists in consider that
the estimator structure is a state feedback that aims at
rejecting the eff ect of noises on the measured signal in
order to estimate the state of the system. In presence of
model uncertainty, the standard Luenberger or Kalman
estimator has poor performance. As a matter of fact, they
act as Proportional controllers. W e propose to replace the
proportional by a lead-lag controller. W e have proposed
a state-space realization of the corresponding estimator.
The tuning parameters are obtained by optimizing a H∞

criterion by means of a G enetic Algorithm. An example
has shown the great ability of the proposed approach to
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Fig. 6 . R R MS E of the proposed filter (solid line) vs
standard H∞ filter (dashed line) and the PI Kalman
(dash-dotted line) for the state x3(t).
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Fig. 7 . B ode plots of ‖φz̃z̃‖2 for the proposed filter (solid
line) vs standard H∞ filter (dashed line) and the PI
Kalman (dash-dotted line).

guaranty a constant level of performance over a range of
possible systems.
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