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Abstract: The motion recovery for a class of movements in the space by using stereo vision is considered 
by observing at least three points in this paper. The considered motion equation can cover a wide class of 
practical movements in the space. The observability of this class of movement is clarified. The estimations 
of the motion parameters which are all time-varying are developed in the proposed algorithm based on the 
second method of Lyapunov. The assumptions about the perspective system are reasonable, and the 
convergence conditions are intuitive and have apparently physical interpretations. The proposed recursive 
algorithm requires minor a priori knowledge about the system and can alleviate the noises in the image 
data. Furthermore, the proposed algorithm is modified to deal with the occlusion phenomenon. Simulation 
results show the proposed algorithm is effective even in the presence of measurement noises. 

 

1. INTRODUCTION 

 
In the study of machine vision, observing the motion and the 
structure of a moving object in the space by using the image 
data with the aid of CCD camera(s) has been studied recently. 
The motion treated in this field is composed of a rotation part 
and a translation part. A very typical method is the 
application of the extended Kalman filter (EKF). Numerous 
successful results have been reported until now where the 
formulation is based on a discrete expression of the motion, 
and the observability conditions are derived based on the 
perspective observations of a group of points (Azarbayejani 
and Pentland, 1995; Chiuso, et al, 2002). Such a recursive 
algorithm obviously alleviates the noises in the image data in 
contrast to the non-recursive methods based on solving a set 
of nonlinear algebraic equations (Kanatani, 1990). It should 
be mentioned that some theoretical convergence conditions 
of discrete EKF have been established both as observer and 
filter (Reif, et al, 1998).  
 
The observation problem for continuous time perspective 
systems has been studied in the point of view of dynamical 
system theory by Ghosh, et al (2000) and Loucks (1994). A 
necessary and sufficient condition for the perspective 
observability is given by Dayawansa, et al (1994) for the case 
that the motion parameters are constants. For the movements 
with piecewise constant motion parameters, the perspective 
observability problems are clarified by Soatto (1997) for the 
cases of observing one point or a group of points. 
Furthermore, for the observer design, some simple 
formulations for observing the position of a moving object 
are proposed in Chen and Kano (2002, 2004) and Jankovic, et 
al (1995). The proposed observers are guaranteed to converge 
in an arbitrarily large (but bounded) set of initial conditions, 
and since the convergence is exponential it is believed that 
the performance of the new observers are reliable, robust and 
would quickly compute the position on real data. 
 

This paper considers the problem of motion recovery for a 
class of movements under perspective observation. Naturally, 
the motions are formulated in continuous-time settings and 
the so-called motion parameters are assumed to be all time-
varying. The motion parameters are estimated by using image 
data observed through pin-hole camera with constant focal 
length (normalized to unity). The basic and important idea is 
to analyze the extent to which we can develop a scheme that 
is guaranteed to converge by observing minimum number of 
points. A dynamical systems approach is employed since it 
provides us with powerful mathematical tools, and a 
nonlinear observer is developed based on the second method 
of Lyapunov (Satry and Bodson, 1989).  

The considered motion equation can cover a wide class of 
practical movements in the space. The observability of this 
class of movement is clarified by observing three points. The 
estimation of the motion parameter is developed in this paper. 
The formulated problem can be converted into the 
observation of a dynamical system with nonlinearities. It 
should be noted that smoothened image data instead of the 
measured one is used in the proposed formulation in order to 
alleviate the noises in the image data. The assumptions about 
the perspective system are reasonable, and the convergence 
conditions are intuitive and have apparently physical 
interpretations. The attraction of the new method lies in that 
the algorithm is very simple, easy to be implemented 
practically. Furthermore, the proposed method requires minor 
a priori knowledge about the system and can cope with a 
much more general class of perspective systems. It should be 
noted that the changing of focal length is not considered in 
this paper. Furthermore, the algorithm is modified to deal 
with the occlusion phenomenon. Simulation results show the 
proposed algorithm is effective even in the presence of 
measurement noises. 

2. PROBLEM STATEMENT  

Consider the movement of the object described by  
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where  is the position; [ Txxxtx 321 ,,)( = ] )(tiω  and 

 are the motion parameters.  )3,2,1=()( itbi

 
It is supposed that the observed position by Camera 1 is 
defined by 
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and the observed position by Camera 2 is defined by  
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where m and n are constants. The perspective observations 
are defined in (2) and (3). The combination of the 
observations in (2) together with (3) is called “stereo vision”.  
 
In this paper, we make the following assumptions. 
(A1). m and n are known constants with . 022 ≠+ nm
(A2). The motion parameters )(tiω  and  are 

bounded.  
)3,2,1()( =itbi

(A3).  meets the condition )(3 tx 0)(3 >>ηtx , where η  is a 
constant. 

(A4).  and  are bounded. )(ty )(* ty

Remark 1. It is easy to see that assumptions (A3) and (A4) 
are reasonable by referring to the practical systems.  
 
The purpose of this paper is to estimate the motion 
parameters )(tiω  and )3,2,1()( =itbi  by using the 
perspective observations. 
 

3. FORMULATION OF THE MOTION RECOVERY 

 
Define 
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Then, equation (1) can be transformed as  
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Let  
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Thus, the first two equations in (5) can be rewritten as 
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Similarly, for , it gives )(* ty
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From (2) and (3),  can be calculated by the average )(3 ty
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Thus, )(tφ  and  are available. )(* tφ
 
In the following, the vectors )()( tt θφ ⋅  and are 
estimated in section 3.1 by using the perspective observations 
defined in (2) and (3). Then, the motion parameters 

)()(* tt θφ ⋅

(i )tω  
and )3,2,1()( =itbi  are estimated in section 3.2 by using the 
stereo observation of at least three points. 
 
3.1 Identification of )()( tt θφ  and  )()(* tt θφ
 
In the following, the observer of system (8) is formulated. 
We consider the system described by 
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where iiif βα ,,  are positive constants,  can be any 
small constants, and  is chosen as . 
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The next theorem is obtained. 
 
Theorem 1. All the generated signals in (12)-(15) are 
uniformly bounded and  is the asymptotic estimate of )(tw

)()( tt θφ ⋅ , i.e.  
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Proof. For simplicity, we only give the proof for i=1. Let 
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The uniformly boundedness of )(1 tη  and )(1 tη  can be easily 
derived by using the assumptions. Thus, there exist constants 

01 >λ  such that 
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Now, consider the Lyapunov candidate  
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Differentiating  yields )(tV
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Thus, it can be seen that  and the integral ∫  are 

bounded. Therefore, r  as 
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theorem is proved. 
 
Similarly to (10), construct the equation 
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by using the obtained image data  from Camera 2. 
Similar to Theorem 1, it can be concluded that  is 
uniformly bounded and  

)(* ty
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i.e.  is the asymptotic estimate of . )(* tw )()(* tt θφ

3.2 Identification of )(tθ   

Relations (17) and (28) tell us that, by observing one point 
via stereo vision, four relations about )(tθ  can be obtained. It 
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can be easily checked that the rank of the matrix  is 

three. It can be argued that the relations about 
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By Theorem 1, it gives  
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About the rank of the matrix )(tΦ , we have the next lemma.  
 
Lemma 1. The matrix )(tΦ  is of full rank if and only if at 
least three points are not on a same line. 
Proof. The proof is omitted. 
 
Lemma 1 means that at least three points are needed in the 
proposed formulation.  
 
Theorem 2. If at least three observed points are not on a 
same line, then the motion parameters are observable and it 
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Since the image data is directly used in )(tΦ , the 
measurement noise will directly influence the accuracy of the 
estimation. In the practical application of the proposed 
algorithm, the image data  and  can be 
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where γ  is a positive constant.  
 
Lemma 2. The generated signals  and  are 
uniformly bounded and 
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Proof. By the assumptions (A2)-(A4), it can be seen that 
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By considering the Lyapunov candidate  
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If )(tΦ  is of full rank, then  is of full rank when t is 
large enough. By using Theorem 1, Theorem 2 and Lemma 2, 
it can be concluded that  
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Thus, the motion parameters can be recovered by observing 
at least three points. 
 

4. CONSIDERATION OF OCCLUSION 
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)(ˆ̂ tΦ  denotes the corresponding matrix of  defined in 

(37) where  is replaced by  defined by  
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( )+A  denotes  if A is of full rank, or the 
pseudo-inverse (Golub and Van Loan, 1996) of it if A is not 
of full rank; W  denotes the corresponding vector of  

defined in (29) in which  is replaced by ; 
 can be similarly derived by a procedure defined in 

(12)-(15), where the corresponding image data should be 
replaced by the virtual data  and ; the initial 

values at the instant  when the j-th point begins to be not 
visible should be chosen as 
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0) −j )j

)j

)j

()

;                     (42a) 

0)) −j ;                     (42b) 

0) −j .                     (42c) 
 

If the j-th point is not visible by the Camera 2 defined in (3), 
then the virtual signal for  should be similarly derived. 
Furthermore, if the j-th point is not visible by both of the two 
cameras, the virtual signals for ,  and  
should be similarly derived.  

y

)t

 
The convergence of the computed motion parameters can be 
assured, if the total length of the intervals on which the data 
from two cameras is available is much longer than the total 
length of the intervals on which at least one camera is 
occluded. 
 

5. SIMULATION RESULTS 

 
The simulation is done by the software Simulink in Matlab. 
The sampling period Δ  is chosen as 02.0=Δ . The measured 
image data at the sampling point Δk  is corrupted by a 
random noise which is in the range of )(01.0 Δky  (or 

correspondingly ). Consider the movement of the 
object described by 

)(01 * ky.0 Δ
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Four points starting at [ ]T1,1,1− , [ ] , T2,2−,1 [ ]T3,3,0  and 

[ ]T2,0,2

)()4(
1 ty

)()3( tyi

 are observed. It is assumed that the third and 
fourth points are not visible by both of the two cameras 
during the time period [1,

)()4(
2 t

,2,1

 6].  

ˆ̂ )4(
1y

)(ˆ̂ )4(
2 ty

 
Fig. 1 shows the difference between the real image data 

 and its virtual value  for the fourth point. 

The differences y , , and 

 (

)

y

(t

−

)3

)t()4(
3

ˆ̂)( 4(
3

) yt −

)(ˆ̂ )3( tyi− =i are similar to that in Fig. 1. It can 
be seen that the virtual value of the image data during the 
occlusion is effectively constructed. 

     

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7598



 
 

     

 

The simulation results are shown in Figures 2-3. The 
simulation results of the differences )(ˆ)( 22 tt ωω −  and 

)(ˆ)( 33 tt ωω −  are very similar to that in Figure 2. The 

simulation results of  and  is very 
similar to that in Fig. 3. It can be seen that very good 
estimates for the motion parameters are obtained even in the 
presence of measurement noises. 

)(ˆ)( 11 tbtb − )(ˆ)( 33 tbt −b

6. CONCLUSIONS 

The motion recovery for a class of movements in the space 
by using stereo vision has considered by observing multiple 
(at least three) points in this paper. The considered motion 
equation can cover a wide class of practical movements in the 
space. The estimations of the motion parameters which are all 
time-varying have been developed based on the second 
method of Lyapunov. The assumptions about the perspective 
system are reasonable, and the convergence conditions are 
intuitive and have apparently physical interpretations. The 
proposed method requires minor a priori knowledge about 
the system and can cope with a much more general class of 
perspective systems. Furthermore, the algorithm has been 
modified to deal with the occlusion phenomenon. Simulation 
results have shown that the proposed algorithm is effective 
even in the presence of measurement noises. 
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