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Abstract: Hybrid vehicles use two energy sources for their propelling. In order to investigate an optimal 
splitting of the power flows between the engine and the electric machine, an optimal control algorithm is 
recalled. A new formulation using maps allows a very fast solving this problem which then may be used in 
real time control. In the particular case of a hybrid vehicle on a prescribed route, a new control strategy is 
proposed. It consists in computing an optimal control on the prescribed route and then updating the 
computed values in order to cope with the difference between the actual and prescribed vehicle route. 

 

1. INTRODUCTION 

Hybrid vehicle uses at least two energy sources for its 
propelling and at least one of them must be reversible. 
Usually an internal combustion engine is coupled with one or 
more electric machine. The objective of the hybridization is 
to lower both the fuel consumption and the emissions of the 
vehicle. This problem may be addressed in different ways: by 
optimizing the vehicle design, by using more efficient 
powertrain components, etc. In this paper, we will focus only 
on the energy split between the engine and the motor. 
Control strategies are algorithms that choose at each 
sampling time the power split between the engine and the 
motors to minimize a criterion, usually the fuel consumption 
and/or the pollutant emissions. Two classes of algorithms 
may be distinguished: If the vehicle driving conditions are a 
priori known, it is possible to compute in simulation an 
optimal control using for example dynamic programming 
technics / Scordia & al. 2005/ or Lagrangian approaches 
/Delprat & al. 2004/. Theses algorithms provide an expertise 
of the energy flow splitting but are not suitable for real time 
control since they require the knowledge of the whole driving 
cycle.  
Real time algorithms are not optimal but are suitable for real 
time driving conditions. Several approaches have been 
investigated, for example, energetic efficiency analysis of the 
powertrain /Seiler & al. 1998//Paganelli & al. 2000/. At last, 
some recent investigations propose to use the knowledge 
contained in the results provided by the global optimization 
algorithms to formulate real time ones /Brahma & al. 
2000/,/Scordial & al. 2005/. In the particular case of a vehicle 
following a prescribed route, to take some benefits of this 
knowledge we propose to use in real time the previously 
proposed optimal control algorithm. Results are not optimal 
anymore since the prescribed route is not perfectly followed 
in real-time. 
 
In the first part, a hybrid vehicle energetic model is presented 
and the fuel consumption minimization problem is derived. 
Then a global optimization algorithm is recalled in the second 

part. The third paragraph presents an analysis of the obtained 
optimality condition and how to derive an efficient real time 
control strategy. At last, some simulation results of the 
proposed algorithm are presented. 

2. HYBRID VEHICLE ENERGY MANAGEMENT AS AN 
OPTIMIZATION PROBLEM 

2.1. Hybrid vehicle modelling 
The considered vehicle, figure 1, is a single shaft parallel 
hybrid vehicle designed by G. Paganelli /Paganelli & al. 
2000/. It was part of a project between the LAMIH 
(Laboratoire d’Automatique, de Mécanique et d’Informatique 
industrielles et Humaines) and PSA Peugeot Citroën with the 
financial support of the ADEME (Agence de 
l’Environnement et de la Maîtrise de l’énergie), the FEDER 
(Fond Europeen pour le DEveloppement Régional), et la 
Région Nord Pas de Calais. 

 
Fig. 1.The considered parallel single shaft arrangement 

The IC engine is a 1.4l petrol engine which is able to develop 
55 kW at 5500 tr/mn. It is coupled through set a gears to a 
43kW DC motor powered by 20 modules of 26Ah 12V pure 
lead acid batteries. The gearbox has been especially design 
for this vehicle. Due to the total torque available, it has only 
two gears ( )2gbn = , corresponding approximately to a 2nd 
and 5th gear of a conventional car. 
 
Notations: Letter T  is used for torque, P  for powers, ω  for 
speeds, µ  for efficiency. ( )R k  is the gearbox ratio for the 
kth gear (including the differential), subscript w  is used for 
wheel, m  for electric machine, e  for IC engine and gb  for 
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the gear box. ρ  is the gear ratio between the electric 
machine and the IC engine. x  is the battery state of charge. 
ϑ  is the IC engine state ( 1ϑ =  => on/ 0ϑ =  => off). i  and 
j  are sample numbers. s  is the constant sampling period. 

gbn  is the number of selectable gears in the gearbox. wr  is the 
wheel radius. 
To lighten expression, the dependence to the sample number 
i  or j  is omitted when there is no ambiguity. 
For this study, two energetic models are considered. The first, 
Model 1, one is a quite detailed model used for simulation 
purpose whereas the second one, Model 2, is a simplified one 
only used to derive the global optimization problem. Model 2 
is described by the following equations:  

• Relation on speeds: 
( ) ( )

m e
w R k R k

ω ω
ω

ρ
= =  (1) 

• Relation on torque: ( ) ( )w gb e mT R k T Tρη ρη= +  (2) 

With wT  the power to be produced at the wheel, and eT  and 

mT  the torque produced by the IC engine and electric 
machine on their output shaft. During real time experiment 
the wheel speed wω  is measured using sensors and wT  is the 
torque at the wheel set point provided by the driver.  During 
simulation wω  is given by a driving cycle and wT  is 
computed by a controller. 
• Constraint on speeds: 

min maxe e eω ω ω< <  (3) 

 
maxm mω ω<  (4) 

• Constraint on torque:  ( ) ( )_ min _ maxe e e e eT T Tω ω≤ ≤  (5) 

 ( ) ( )_ min _ maxm m m m mT T Tω ω≤ ≤  (6) 

( )_ mine eT ω , ( )_ maxe eT ω , ( )_ minm mT ω , ( )_ maxm mT ω  are 
usually maps over speed that may be either computed using 
analytic models or simply measured on a test bench. 

• Fuel consumption: ( ) ( )( ) ( )
1

0

,
N

e e
i

C q T i i i sω ϑ
−

=

= ∑  (7) 

For the considered finite horizon N , the total fuel 
consumption C  is computed using ( ),e eq T ω  the fuel mass 
flow (in g/s) required to produce the torque eT at the speed 

eω . ( ),e eq T ω  is usually given by a map. 
• Battery state of charge: 
For the optimization problem, a very simple model of the 
electric machine and its associated DC/DC converter is 
considered: 

( ) ( ) ( ) ( )( )
1

0

0 ,
N

batt m m
i

x N x P T i i sω
−

=

= − ∑  (8) 

With ( )x i  is the battery energy level at sample time i , 

abusively called state of charge and ( ),batt m mP T ω  the power 
consumption of the whole electric chain (including internal 
battery losses) to produce the mechanical torque mT  at the 
speed mω . In practice ( ),batt m mP T ω ω  is  also a map. 

2.2. Global optimization problem 

Without taking the battery state of charge into account, there 
exists a trivial solution to the optimization problem: ( ) 0iϑ =  

0.. 1i N∀ = −  which may lead to the full battery discharge. 
To avoid this solution, a constraint on the state of charge is 
needed: 

( ) ( )0x N x Soc− = ∆  (9) 
With Soc∆  a prescribed state of charge variation at the end 
of the driving cycle. A particular value is 0Soc∆ =  which 
ensures that the whole vehicle propelling is only due to the 
energy of the fuel. Then the obtained fuel consumption may 
be compared with the one obtained using a conventional 
vehicle. 
In the particular case of simulations, the vehicle speed wω  is 
provided by a driving cycle and the required power at the 
wheel wT  is computed using the vehicle dynamics model.  As 
a consequence ( )w iω  and ( )wT i  are known for 0.. 1i N= − . 
Therefore, according to (1) and (2), it is obvious that the 
whole powertrain setpoint is defined if only a torque eT  or 

mT  and the IC engine state ϑ  and the gear number k are is 
known. At each sample time, the decision vector is then 

( ) ( ) ( )( )T
eT i k i iϑ  0.. 1i N∀ = − . 

The other variables may be computed using equations (1)-(2).  
 
For sake of convenience, the whole optimization problem 
may be rewritten using only the decision variables: 

Criterion : ( ) ( )( ) ( )
1

0

min , ,
N

e
i

J Q i T i k i i sϑ
−

=

= ∑  (10) 

With ( ) ( )( ) ( ) ( ) ( )( )( ), , ,e e wQ i T i k i q T i i R k iω= . 

The battery is considered as the dynamical system with: 
( ) ( ) ( ) ( ) ( )( )1 , , ,b ex i x i P i T i k i i sϑ+ = −  (11) 

With ( ) ( ) ( )( ), , ,eP i T i k i iϑ =  

( )
( )( ) ( ) ( ) ( )( )1 ,w

batt e w
gb

T i
P T i i R k i

R k iρ

ω
ρη η

⎛ ⎞⎛ ⎞
⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (12) 

The torque limitations (5)-(6) may be combined into a single 
one: ( )( ) ( ) ( )( ), ,e e eT k i i T i T k i i′ ′≤ ≤  (13) 

( )( )
( ) ( )( )( )
( )

( )( ) ( ) ( )( )( )

,

, max
e w

e w
m w

gb

T i R k i

T k i i T i
T i R k i

R k i ρ

ω ρ

ρ η ω ρ
η

⎛ ⎞
⎜ ⎟

′ = ⎜ ⎟
− ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

( )( )
( )( )
( )

( )( ) ( ) ( )( )( )

,
, min

e e

e w
m m w

gb

T i
T k i i T i

T i R k i
R k i

ω

ρ η ω ρ
η

⎛ ⎞
⎜ ⎟

′ = ⎜ ⎟
− ⋅ ⋅⎜ ⎟⎜ ⎟⋅⎝ ⎠

At last the constraints on speed may also be combined: 
( ) ( )k i K i∈  (14) 

With ( )K i  the set, at sample time i , of the admissible gear 
numbers according to the speed constraints (3) and (4). 
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3. GLOBAL OPTIMIZATION 

3.1. Principle 
Several approaches have been proposed to the optimisation 
problem. If the state variable x  is quantified, it is possible to 
formulate the optimization problem as a shortest path 
algorithm /Scordia & al. 2005/ and so a global optimum may 
be computed. The main drawback of this approach is the 
computational time required to obtain a single solution that 
varies exponentially with the quantification step.  
The approach presented in this paper is based on a 
Lagrangian method derived from classical optimal control 
theory. The control law is computed on Model 2 but is 
directly applied to Model 1, therefore the controls are 
coherent with Model 1 in particular without any SOC 
correction. The main benefits of this approach are the very 
small computational effort required. For more information 
about this algorithm, the lecturer may refer to  /Chen & al. 
2005//Delprat & al. 2004/. 
For sake of convenience, we assume that all the discrete 
variables ( )k i  and ( )iϑ  0.. 1i N= −  are a priori fixed 
according, for example, to driving comfort rules. 
Then the Hamiltonian is: 

( ) ( )( ) ( )
1

0
, ,

N

e
i

H Q i T i k i i sϑ
−

=

= ∑  (15) 

 ( ) ( ) ( ) ( ) ( )( )( ), , ,b ei x i P i T i k i i sλ ϑ+ −  

Lagrangian parameters iλ , 0.. 1i N= − , the optimal control 
should minimize the Hamiltonian and therefore the first and 
second order conditions are given by: 

( ) ( )1
1

H x i
iλ

∂
= +

∂ +
 (16) 

( ) ( )H i
x i

λ∂
=

∂
( ) ( )0iλ λ⇔ =  (17) 

( )
0H

u i
∂

=
∂

 (18) 

( )

2

2 0H
u i
∂

>
∂

 (19) 

Condition (17) allows reducing the computation of the value 
of the N  Lagrangian parameters to a single scalar 

( )0λ ∈ℜ .Condition (16) provides the system dynamics, (17) 
is the Adjoint Equation, (18) and (19) are often called 
Hamiltonian Minimization equation. At each sample time i , 
the first order conditions (16)-(18) allow computing the 
control values ( )eT i  for each subproblem: 

(18)
( ) ( ) ( ) ( ), , , , ,

0e b e
j

e e

Q i T k s P i T k
i i

T T
ϑ ϑ

ϑ λ
∂ ∂

⇔ − =
∂ ∂

 (20) 

(19)
( ) ( ) ( ) ( )2 2

2 2

, , , , ,
0e b e

j
e e

Q i T k s P i T k
i i

T T
ϑ ϑ

ϑ λ
∂ ∂

⇔ − =
∂ ∂

 (21) 

The Hamiltonian (15) may be written into a more convenient 
form: 

( ) ( ) ( )( ) ( ) ( )
1 1

0 0

, , , 0
N N

e
i i

H h i T i k i i s x iϑ λ
− −

= =

= +∑ ∑  (22) 

With ( ) ( ) ( )( ) ( ) ( )( ) ( ), , , , ,e eh i T i k i i Q i T i k i iϑ ϑ=  (23) 

 ( ) ( ) ( ) ( )( )0 , , ,b eP i T i k i iλ ϑ−  

Finding the control value ( )eT i  that minimises the 

Hamiltonian H  is equivalent of minimizing ( )h ⋅ . 

As the criterion ( ),e eq T ω   and the electric machine power 

consumption ( ),batt m mP T ω  are given by maps, a second order 
piecewise continuous polynomial approximation of 

( ), , ,eh i T k ϑ  allows finding efficiently its minimum using 
conditions (20) and (21). 
So for a given ( )0λ ∈ℜ , at each sample time, it is possible 

to compute a solution ( ) ( ) ( )( )T
eT i k i iϑ  of the 

optimization problem.  Therefore, for any given ( )0λ ∈ ℜ , 
by summing (11) over the time horizon 0.. 1i N= − , a final 
state of charge ( )x N  is obtained.   So the effective state of 

charge variation over the speed cycle ( )( )0x λ∆  only 

depends on ( )0λ : 

( )( ) ( ) ( ) ( )( )
1

0

0 , , ,
N

b e
i

x P i T i k i i sλ ϑ
−

=

∆ = ∑  (24) 

The last step is to compute ( )0λ  with respect state of charge 
constraint (9). 
Therefore, the whole optimization problem is reduced to find 
the zero of a function: 
  ( ) ( )( )0 0f SOC xλ λ= ∆ − ∆  (25) 
Many numerical experiments have been conducted on many 
different driving cycles, and this function is always a 
monotonic, so a simple dichotic search is used to find the 
value of ( )0λ  that ensures socSOC x ξ∆∆ − ∆ <   with socξ∆  a 
desired tolerance. 
 
Nb: For all the subproblems with ( ) 0j iϑ = , there is no 
optimization possible since the IC engine is turned off, 

( ) 0eT i = , the hybrid vehicle is on an pure electric mode. The 

necessary control ( )mT i  is then computed using (2). If the 

discrete variable ( )k i  and ( )iϑ  are also optimised a sub-
optimal solution is obtained by considering all their 
combination and choosing the one that minimises the 
Hamiltonian. 

3.2. 3.2. Simulation results 
The controls are computed every 0.1s =  second and are 
applied to the more accurate vehicle model Model 1 that is 
simulated using a fixed step solver with 0.01 step size. The 
considered speed cycle is a trip of  12 km fig. 2. 
In this configuration, the following figure illustrates the shape 
of the obtained state of charge variation over the whole 
driving cycle as a function of ( )0λ , fig. 3  
 
 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

3358



 
 

     

 

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

Time(s)

W
he

el
 s
pe

ed
(rd

/s
)

Trail n°1 

0 100 200 300 400 500 600 700 800
-5

0

5

x 10
4

Time(s)

W
he

el
 p
ow

er
(w

)

 
Fig. 2: The considered driving cycle 
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Fig. 3:  x∆  as a function of ( )0λ  

For example, the value of ( )0λ  that ensures 

0.1%x Soc∆ − ∆ <  with 0%Soc∆ =  was computed using a 
dichotic search. Within 10 iterations, the value 

( ) -50 7.57 10λ = − ⋅  that leads to ( ) ( )0 0.447‰x x N x∆ = − =  
is obtained. The corresponding fuel consumption is 
5.14 /100l km . The computed control and the evolution of 
the battery state of charge are given fig. 4. The obtained fuel 
consumption is a minimum bound that cannot be achieved by 
any other real  time control strategy. 
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Fig. 4: Results provided by  the global optimization algorithm 

4. REAL TIME ENERGY MANAGEMENT OF A VEHICLE ON A 
PRESCRIBED ROUTE 

Notations: j  will refer to a sample number related to the 
prescribed route whereas i  will refer as the actual sample 
time of the system. 

4.1. Problem statement 
Predictive control has been already investigated for Hybrid 
vehicle control /Beck & al. 2007/. But the particular case of a 
vehicle following a predefined route is quite interesting 
because it may be possible to use the optimal controls 
computed off line. Many professional vehicles are working 
on this kind of conditions: bus, delivery truck, cleaning 
machines, etc. 
Of course, the main drawback of this approach is that the 
actual driving conditions must be close enough to the 
predefined route. The word “route” will not only refer to the 
vehicle itinerary but also the variation of its speed along this 
itinerary. For a given geographical itinerary, significantly 
different traffic conditions (fluid, traffic jam, etc.) will lead to 
different route. 
We assume that a prescribed route is a known set of wheel 
speed and wheel torque ( ) ( )( ),w wj T jω  0.. 1j N∀ = −  with 

N  the prescribed number of sample.  
In order to investigate the variations from one run to the other 
on the same route, several experiments have been conducted 
in Lyon with real traffic conditions, fig. 5, on a 12km long 
route.  
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Fig. 5: Vehicle speed recorded on 4 runs on the same route 

Of course the vehicle speed may differ due to the traffic, but 
if when the vehicle speed is considered as a function of the 
distance, the runs exhibits quite similar patterns. Therefore it 
seams possible to take some benefits of this knowledge. 
 

4.2. Real time optimization problem solving 
Let us recall that if the route was perfectly followed by the 
vehicle, it would be possible to predict the necessary value of 

( )0λ  to bring the battery state of charge from its initial value 

( )0x  to a final value ( )fx x N= . Moreover, from (20)-(24) 

it is obvious that if the route is perfectly known, at each 
sample time i , the control is only a function of ( )0λ . 
Therefore, the real time control is reduced to the value of 

( )0λ  in order to compensate for difference between the 
actual route followed by the vehicle and the prescribed one. 
 
So the proposed control strategy consists at some sampling 
time i  to update the value of  ( )0λ according to : 
• the battery state of charge constraint : The battery state of 

charge should evolve from its actual value ( )x i  to a 
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desired state of charge fx  at the end of the prescribed 
driving cycle, so we define : 

( )fSoc x x i∆ = −  (26) 
• The prescribed route. At sample time i , we assume that 

the vehicle has already cover a distance ( )d i  on the 
prescribed itinerary: 

( ) ( )
0

i

w w
j

d i j r sω
=

= ⋅ ⋅∑  (27) 

Due to disturbances, at each sample time i , the actual speed 
may differ from the prescribed one ( ) ( )w wi iω ω≠  so the 

actual covered distance ( )d i  may differ from the prescribed 
one :  

( ) ( )d i d i≠  (28) 
With the “prescribed” distance at sample time i  : 

( ) ( )
0

i

w w
j

d i j r sω
=

= ⋅ ⋅∑  

So, at sample time i , the uncovered part of the prescribed 

route is defined by  ( ) ( )( ),w wj T jω  1..j j N= . 1j  is given 

by: ( ) ( )1d i d j=  (29) 

To update the value of ( )0λ , the following optimization 
problem needs to be solved: 
System: ( ) ( ) ( )1 , , ,b ex j x j P j T k sϑ+ = −  

Criterion: ( ) ( ) ( ) ( )
( )

( ) ( ) ( )( )
1

1

1

0 , , ,
.. 1

min , ,

0 , , ,

e

N

e
T j k j j j jj j N

b e

J Q j T k s

x j P j T k s

λ ϑ
ϑ

λ ϑ

−

=∀ = −

=

+ −

∑
 (30) 

Under constraints:  ( )( ) ( ) ( )( ), ,e e eT k j j T j T k j j′ ′≤ ≤  

 ( ) ( )k j K j∈  and  ( ) fx N x=  

With ( )eT j , 1..j j N= , the chosen IC engine torque for the 

prescribed route and ( )x j  1..j j N=  the state trajectory on 
the prescribed route. 

4.3. Real time update of ( )0λ  
Even if the proposed global optimization algorithm does not 
require a lot of computation compared to dynamic 
programming approaches, it may not be suitable for real time 
solving of (30). To overcome this, it should be noticed that to 
solve the optimization problem, only the important value is 

( )0λ  that is computed using only ( ), , ,b eP i T k ϑ . Since eT , 

k  and ϑ  depend only ( )0λ , and wω  and wT  (cf  (12)), it is 

possible to approximate ( ), , ,b eP i T k ϑ  by a map, fig. 6: 

  ( )( )0 , ,b w wP Pλ ω= Μ   (31) 
Let us recall the state of charge constraint: 

( ) ( )
1

1

, , ,
N

b e f
j j

x i P j T k s xϑ
−

=

+ =∑  (32) 

Finally, the optimization problem (30) is then reduced to 
solve 

( )( )0x Socλ∆ = ∆  (33) 

With ( )( ) ( ) ( ) ( )( )
1

1

0 0 , ,
N

w w
j j

x j P j sλ λ ω
−

=

∆ = Μ∑  
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Fig. 6. Map of  bP  as a function of wω  and wP  for ( )0λ  

(33) may be solved by approximating ( )( )0x λ∆  by a cubic 

spline. So for a given route ( ) ( )( ),w wj P jω  0.. 1j N∀ = − , 

the state trajectory, (33) allows finding the values of ( )0λ  

such as ( ) fx N x= . As no complex computation is involved, 

this calculation can be processed online. 
 
At each sampling time i , ( )0λ  is updated if 

( ) ( )1 xx i x j ε− >  that is if the actual value of the state of 

charge ( )x i  differ significantly from the value of the state 

trajectory over the prescribed route ( )1x j  . If  ( )0λ  and the 

vehicle operating point ( ),w wTω  is known, ( ), , ,b eP j T k ϑ  is 

also known. The map ( ),batt m mP T ω being invertible, mT  can 
be obtained and (2) allows computing the control eT  . 

4.4. Simulation results 
All the simulations are performed using the most detailed 
model, Model 2. The reference cycle is the trial n°1 of fig. 5. 
The control strategies performances will be investigated for 
another trial, trial n°2. Let us recall that both cycle were 
recorded using a real vehicle. The initial state of charge was 

( )0 80%x =  and the targeted final one was 80%fx = . The 
only parameter to be tuned is the tolerance on the state 
trajectory xε  that has been tuned after several trials and 
errors to 1%xε = . The obtained results are shown fig. 7 and 
the corresponding control are shown fig. 8. The fuel 
consumption was 5.29 l/100km and the final state of charge 
was 79.38%. The number of ( )0λ update remained low (only 
4). One of the main differences with classical control 
strategies is that it is not a strictly sustaining control strategy 
since, in real time, the state of charge has to follow non 
constant trajectory. The prescribed state trajectory is the state 
trajectory computed by the optimal control for the 
applied ( )0λ . 
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Fig. 7. Real time results 
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Fig. 8.  Real time control values 

As there are two energy sources, it is not possible to evaluate 
the performance of the proposed simply on a single run. Fig. 
9 propose a complete view of the control strategy 
performances. It represents the fuel consumption as a 
function of the overall state of charge variation 

( ) ( )0Soc x N x∆ = −  on the whole driving schedule. The 
control strategy results are compared with the result provided 
by the optimal control. 

5. CONCLUSION 
A global optimization algorithm has been recalled and the 
computation process has been significantly speeded up by 
building maps.  Considering the particular case of a vehicle 
driving on a prescribed path, experimental data shows that 
the driving cycles recorded on the same route exhibits similar 
patterns. The proposed real time algorithm consists in 
computing the value of the Lagrangian parameters of the 
optimisation problem that bring the state of charge from its 
currend values to the desired final value assuming that the 
prescribed route will be perfectly followed. As this 
hypothesis is never fulfilled in real time driving conditions, 
several updates are needed. The first simulation results 
illustrate the benefits of the proposed approach. Compared 
with other real time control strategies, it allows the state of 
charge varying from a nominal set point. 
Further work will be devoted to robustness analysis and in 
particular to find a bound on the actual final state of charge 
with respect to the driving cycle variation. 
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Fig. 9. Fuel consumption as a function of Soc∆  
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