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Abstract: The traditional congestion control algorithms exhibit low convergence rate to equilibrium when 
the network capacity is very large. In this paper, we present a new group of algorithms called Quick Kelly 
Control (QKC) to accelerate the convergence rate. QKC is scalable to networks operating at very high 
speeds. The link utilization ratio function is used as feedback signal and a group of novel nonlinear update 
laws is constructed. We prove the stability of a primal-dual form of QKC (PDQKC) without considering 
delay. We also compare this algorithm with two classic algorithms and give simulation results. It is shown 
that PDQKC has powerful bandwidth scalability and offers fast convergence rate without sacrificing 
proportional fairness. 

 

1. INTRODUCTION 

Network congestion control is a distributed method to share 
network resources among competing sources. It consists of 
two components: a source algorithm that dynamically adjusts 
sending rate according to congestion in its path, and a link 
algorithm that updates congestion information and sends it 
back to sources using that link. 

The traditional algorithms were designed during a time when 
the Internet was a relatively small network compared to its 
size today. These algorithms are inefficient when the network 
capacity is very large. Therefore, researchers are forced to 
design new congestion control algorithms with the goal 
enhancing TCP to make it scalable to high-speed networks. A 
large amount of theoretical and experimental work has been 
done to design stable congestion control for high-speed 
networks. Such examples include Fast TCP (David et al., 
2006), Scalable TCP (Kelly, 2003a), and HSTCP (Floyd, 
2003). All of these methods aim to get quick convergence to 
efficiency, stable rate trajectories, fair bandwidth sharing, and 
low packet loss. Another different direction in congestion 
control is to model the network from an optimization or game 
theoretic point of view (Kar et al., 2001) (Low et al., 1999) 
(Kunniyur et al., 2001) (Kunniyur et al., 2002) (Kunniyur et 
al., 2003).The original work is done by (Kelly, 1997). 

In this paper, we aim to propose a new group of congestion 
control algorithms which can achieve quick convergence rate, 
proportional fairness. In this new group of algorithms, a link 
utilization ratio function, which is always positive, is used as 
network feedback signal. We construct a utilization ratio 
based nonlinear source controller to accelerate the 
convergence rate. A dynamic link control law is also 
proposed to give corresponding link prices. The source 
sending rate is then dynamically updated based on these link 
prices which are computed by link utilization ratios. The 

stability and performance of these algorithms are proved by 
theory and simulation results. 

The rest of this paper is organized as follows. In section II, 
we give the basic network model and review related works. 
In section III, we present QKC and prove its stability and 
proportional fairness. In section IV, simulation results are 
given. In section V, we conclude our work and suggest 
directions of future research. 

2. BASIC NETWORK FLOW CONTROL MODEL AND 
RELATED WORK 

Network flows are modelled as the interconnection of 
information sources and communication links through the 
routing matrices as shown in (Kelly et al., 1998) (Wen et al., 
2004). Suppose we have a set of users, R , and a set of links, 
L . For each user r R∈ , its route involves a set of links, 
which is a subset of L , denoted rL . For each link l L∈ , it 
has a fixed capacity lc . Based on its congestion and queue 
size, a link price lp  is computed. Associate each user r with 
a sending rate rx . Thus, each link  rl L∈ has an associated 
link aggregate rate ly . Suppose all links only feed back price 
information to the sources that utilize them. Set   1l rA = , if 

rl L∈  and set   0l rA =  otherwise. So we have the following 
relationship (Wen et al., 2004): 

y Ax=   Tq A p=  

where A is a routing matrix, Nx R∈ is the source rate vector, 
Ly R∈ is the aggregate rate vector, Lp R∈ is the link price 

vector and Nq R∈ is the aggregate price vector. In this paper, 
we make an assumption: There is no delay in the loop. The 
network flow control problem can be decomposed into a 
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static resource allocation optimization problem and a 
dynamic stabilization problem (Wen et al., 2004).  

2.1  Static optimization problem 

The static resource allocation optimization problem is to 
maximize the whole networks’ performances. Its solution 
provides the desired steady state equilibrium: *x , *y , *p , 
and *q . Each user r is associated with a utility function 

( )r rU x  which indicates the utility to the user r. Then the 
static resource allocation optimization problem (Kelly et al., 
1998) is 

            max  ( )r r
r

U x∑                                        (1) 

subject to    Ax C≤    over     0 rx<    r R∈  .  

where C is a vector of link capacities lc , and   ( )r rU x is an 
increasing, strictly concave and continuous differentiable 
function. The equilibrium condition for problem (1) is (Kelly, 
1997): 

'
   ( ) 0r r rU x q− = ,            r R∈ .                  (2) 

 

0,
0,

l l
l

l l

if y c
p

if y c
= <⎧

⎨≥ =⎩
 ,            l L∈ .             (3) 

2.2  Dynamic optimization problem 

The dynamic stabilization problem is to design source rate 
and link price dynamic update laws which guarantee stability 
and robustness of the equilibrium. In (Kelly et al., 1998), two 
complementary congestion control algorithms are proposed: 
primal algorithm and dual algorithm. The primal algorithm 
can be expressed as follow. For each user r, 

'
      ( )( ( ) )r r r r r rx x U x qκ= −
i

                             (4) 

where    ( )r rk x  is an appropriately chosen scaling function. 
Each link l computes its price as  

    
   2

( )
( ) l l

l l l
y c

p f y
ε

ε

+− +
= =  .                       (5) 

Kelly (Kelly et al., 1998) has shown that this primal 
algorithm globally converges to a unique equilibrium point. 

The dual algorithm can be expressed as follow. Each link l 
updates lp (Wen et al., 2004) (Kelly, 2003b) (Liu et al., 2003) 
by a dynamic equation: 

     ( ) ( )l l l llp g p y c += −
i

                             (6) 

The source update law is directly given by the primal solution: 

                           ' 1
  ( )r r rx U q−=                                    (7) 

For this dual algorithm, global stability has proved in (Kelly 
et al., 1998) (Liu, 2003). 
Therefore, (4) and (6) can be regarded as the primal-dual 
algorithm. In (Wen et al., 2004) (Liu et al., 2003), its global 
stability in the absence of feedback delay is proved. 

In (Kelly et al., 1998),   ( )  r r rk x xκ=  and '
    ( ) /r r r rU x w x= . 

Substituting these into (4), we can get  

 
   

 

 ( )r
r r r

r

w
x x q

x
κ= −

i
                          (8)  

In general, no price should be charged at the links which are 
not fully utilized. Under these circumstances, the sources 
increase their rates by rwκ  per unit time before they reach 
full link utilization at the slowest link. This results in linear 
AIMD-like probing for new bandwidth. Thus the link 
utilization is very low in high-speed networks. That is un-
scalable to large link capacity.   

3.  QUICK KELLEY CONTROL (QKC)  

3.1  Motivation 

We start our discussion with the following observations. To 
overcome the drawback of classic Kelly control, a variant 
version of Kelly’s algorithms which is called Max-min Kelly 
Control (MKC) is proposed in (Zhang et al., 2004). MKC 
abandons proportional fairness and utilizes negative network 
feedback which signals the sources to increase their sending 
rates when l ly c< . Its price function can be expressed as 
follow: 

 
 

 

l l
l

l

y c
p

y
−

=                                          (9) 

  :   
max  r ll l Lr

q p
∈

=                                       (10) 

MKC achieves max-min fairness and exponential 
convergence to efficiency. However, when the link capacity 
is very large and the number of flows is unknown, MKC 
flows need a long time to converge to max-min fairness. 

 In fact, negative price is only one of the possible choices and 
any price form which gives sufficient link state information is 
feasible. Links can feed back their utilization ratios to the 
sources that utilize them. Obviously, the sum of the 
utilization ratios is always positive and those large links with 
low utilization ratios have small weights. This idea provides 
credible link prices even though certain sources use those 
links with huge difference. To accelerate the convergence 
rate, we give a new form of the source update law:  

     ( )  ( )r r r r rx w S q x E qκ κ= ⋅ − ⋅
i

                  (11) 

where ( )rS q  is a positive decreasing function and ( )rE q  is  
a positive increasing function. Following these, a group of 
algorithms called Quick Kelly Control (QKC) is proposed in 
the following part of this section. 
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3.2  Primal Quick Kelly Control 

Set  
 

1( )r
r

S q
q

=  and   ( )r rE q q= . We have  

     
    

 

( )r
r r r r

r

w
x k x q

q
= −

i
                            (12) 

       
:   

r l
l l Lr

q p
∈

= ∑                                            (13) 

where  rk is a gain constant and rw  is a positive constant.  
Let 

       
  

 

( )l
l l

l

y
p f

c
= .                                           (14) 

We assume that each penalty function  ( )lf i  is positive and 
monotonically increasing, such as the follow form: 

2   
 

   

( ) exp[ 1]l l l
l

l l l

y y y
f

c c c
ω= + − ⋅                    (15) 

where ω  is a small positive constant. We call the resulting 
controller (12)-(15) Primal Quick Kelly control (PQKC). 

 Let ' ( ) /r r r rU x w x= . Seting ( )rx t
i

=0, the equilibrium of 
system (12)-(15) can be computed as: 

   * ' 1 *
   ( )r r rx U q−=  ,         

*
*  

 
 

( )l
l

l

y
p f

c
= .                (16) 

PQKC and Kelly controller have an identical form of the 
equilibrium. However, this equilibrium only approximately 
satisfies the desired condition (2)-(3) and does not solve the 
system problem (1) exactly.  

3.3  Dual Quick Kelly Control 

Although PQKC gives a dynamic source update law, it does 
not take the link dynamics explicitly into account. Similar to 
(Kelly et al., 1998), we give a dual form of QKC. The 
dynamic link control law is given as follow: 

     
 

 

( 1)l
l

l

y
c

δ θ= ⋅ −
i

                                    (17) 

      
   

 

 ( , )l
l l l

l

y
p g

c
δ=                                   (18) 

where θ  is a positive constant and  2
 lp ω≥ . ω  is an 

arbitrarily small positive constant. Here, we introduce a 
positive function lg  which is strictly increasing in both 
variables  lδ  and  ly . When  lδ → −∞ , 2

 lp ω→ . The 
source update law is directly given by the primal solution: 

      ' 1  
   

 

( ) r
r r r

r

w
x U q

q
−= =                                 (19) 

We call the resulting controller (17)-(19) Dual Quick Kelly 
control (DQKC).   

3.4 Primal-Dual Quick Kelly Control 

To achieve a more exact solution and better dynamic 
performances, we combine the above two algorithms and get 
a primal-dual form of QKC. Then (12) (13) (17) and (18) is 
called Primal-Dual Quick Kelly Control (PDQKC). The 
interconnection system of PDQKC is shown in Fig 1. For this 
algorithm, at equilibrium, we have 

'  *  * 
   *

 

( ) r
r r r

r

w
U x q

x
= = ,        r R∈ ,                 (20) 

2

 

, 1,

0, 1,

l

l
l

l

l

y
if

c
p

y
if

c

ω⎧= <⎪⎪
⎨
⎪ ≥ =
⎪⎩

      l L∈ .              (21) 

Since ω  can be chosen arbitrarily small, the equilibrium 
approximates arbitrarily closely the desired condition (2)-(3) 
as 0ω → . So PDQKC converges to the solution of the 
optimization problem (1) as 0ω → .  

( 1)l
l

l

y
c

δ θ= −
i

( , )l
l l l

l

y
p g

c
δ=

ATA ( )r
r r r r

r

w
x k x q

q
= −

i

 Fig. 1. Primal-Dual Quick Kelly Controller.  

( 1)l
l

l

y
c

δ θ= −
i

( , )l
l ll

l

y
p g

c
δ

−

=

ATA ( )r
r r r r

r

w
x k x q

q
= −

i

 Fig. 2. Equivalent representation of Primal-Dual Quick Kelly 
Controller. 

3.5  Stability analysis 

In this part, we prove the stability of PDQKC similar to (Wen 
et al., 2004). We first express the PDQKC system in an 
equivalent form in Fig. 2 based on the deviation from the 
equilibrium condition, and rewrite the link update law as: 
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 *  *_
 *  *    

       
    

 ( , ) :  ( , )  ( , )l l l l
l l l l l l l

l l l l

y y y y
g g g

c c c c
δ δ δ δ− − = −   (22) 

where *δ  is the equilibrium value of δ . In practice, source 
rate  rx  is always limited by the network hardware.  
Suppose  0 rx M< < < ∞ , where M is an arbitrarily large 
positive constant. The following theorem shows that: Starting 
from any initial state, the sources rates  rx will converge to 

*
rx  as t → ∞ .  

Theorem 1 Consider the feedback interconnection shown in 
Fig. 2. The equilibrium *x x=  is asymptotically stable for the 
state space  : {0 , }rx M r Rχ = < < ∈ . 

Proof: 

Consider  

 * 2
*   

1
( )1( )

2
r r

r

x x
V x x

M k
ω −

− = ∑ . 

Obviously, 1V  is a positive-definite function. The deviation 
along the solution is  

 *  
1     

 

( )( )r
r r r r

r r

w
V x x x q

M q
ω

= − −∑
i

  

 *  
   

  

( )( )r r
r r r

r rr

x w
x x q

M xq
ω

= − −∑ . 

Because  2
 lp ω≥  and 

:   
r l

l l Lr

q p
∈

= ∑ , we have 2
 rq ω≥ .  

Since  0 rx M< < , we can get  

 

r

r

x M
q ω

< . 

Consequently, 

 *  
1    

 

( )( )r
r r r

r r

w
V x x q

x
≤ − −∑

i
. 

By adding and subtracting *q from q , we have  

 *  *  * 
1      

 

( )( )r
r r r r r

r r

w
V x x q q q

x
≤ − − + −∑

i
 

 *  *  
     *

  

( )( )r r
r r r r

r r r

w w
x x q q

x x
= − − + −∑  

 *  *  *  
       *

 

( )( ) ( )( )r r
r r r r r r

r rr r

w w
x x x x q q

x x
= − − + − −∑ ∑  

Since  

 *  * * *
    ( )( ) ( ) ( )T
r r r r

r
x x q q x x q q− − = − −∑  

* *( ) ( )T Tx x R p p= − −  

* *( )( )y y p p= − − −  

we can obtain 

* * *  
1    *

  

( )( ) ( )( )r r
r r

r r r

w w
V x x y y p p

x x
≤ − − − − −∑

i
 

Consider the storage function for the l th link  

 
 *
 

 *  *  *  *   
2     

  

( )  (  ( , )  ( , ) ) l

l

l l l
l l l l l l

l l

c y y
V g z g dz

c c
δ

δ
δ δ δ

θ
− = −∫  

Since lg  is strictly increasing with respect to lδ , 2lV is a 
positive-definite function. Taking the deviation of 2lV  along 
the solution, we have  

 *  *
 *   

2   
   

( ( , ) ( , ) ) ( 1)l l l l
l l l l l

l l l

c y y y
V g g

c c c
δ δ θ

θ
= − −

i
 

Rewriting the right side of the above equation, we can 
observe that  

 *  *
 *  

    
 

( ) ( ( , ) ( , ) )l l
l l l l l l

l l

y y
y c g g

c c
δ δ− −   

 
 *  *

 *  *  
    

  

( )( ( , ) ( , ) )l l
l l l l l l

l l

y y
y y g g

c c
δ δ≤ − − .           (23) 

If  *
 l ly c= , then both sides are identical. If  *

 l ly c< , then 
 *
 lδ → −∞ . Since lg  is strictly increasing with respect to lδ , 

we have  

 *  *
 *  

  
  

( ,  ) ( ,  ) 0l l
l l l l

l l

y y
g g

c c
δ δ− > . 

So the inequality holds. By adding and subtracting  
 

 

( ,  )l
l l

l

y
g

c
δ  to the right side of (23), we have  

 *
 *   

2     
 

 *
 *  

  
  

 *
 *   

    
  

( )[ ( ( ,  ) ( , ))

                                                        ( , ) ( , ) ]

   = ( )[ ( ,  ) ( ,  )]

   

l l
l l l l l l l

l l

l l
l l l l

l l

l l
l l l l l l

l l

y y
V y y g g

c c

y y
g g

c c

y y
y y g g

c c

δ δ

δ δ

δ δ

≤ − − −

+ −

− − −

i

 *
 *  *  

    
  

                                     ( )[ ( ,  ) ( ,   ) ]l l
l l l l l l

l l

y y
y y g g

c c
δ δ+ − −

  Since lg  is strictly increasing with respect to ly , 
*

  ( )l ly y−  has the same sign as  

 *
  

 
  

( ,  ) ( , )l l
l l l l

l l

y y
g g

c c
δ δ− . 

We can get that  
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 *
 *  *  

2     
  

( )( ( ,  ) ( ,  ) )l l
l l l l l l l

l l

y y
V y y g g

c c
δ δ≤ − −

i
 

 *  *
    ( )( )l l l ly y p p= − −  

Let 2 2 l
l

V V= ∑ . Then we can obtain  

 *  * * *
2     ( )( ) ( )( )l l l l

l
V y y p p y y p p≤ − − = − −∑
i

 

Now, we can use  1 2V V V= +  as a Lyapunov function and 
obtain  

 *   
   *

  

( )( ) 0r r
r r

r r r

w w
V x x

x x
≤ − − ≤∑

i
 

Note that 0V <
i

 for *x x≠  and 0V <
i

 for *x x= . Thus 1V  is 
strictly decreasing with t , unless *x x= .  Since M can be 
chosen arbitrarily large to include any initial state in 

 : {0 , }rx M r Rχ = < < ∈ . Hence, the equilibrium *x x=  is 
globally asymptotically stable. The theorem follows.  

3.6  An example of Primal-Dual Quick Kelly Control 

Now, we give an example of PDQKC. The source control 
law (12) is kept without change. Then the link control law of 
PDQKC is presented as follow: 

  

  
 

 
 

 

( 1), 1.2

0.1 , 1.2

l l

l l
l

l
l

l

y y
c c

y
c

θ
δ

δ

⎧ ⋅ − <⎪⎪= ⎨
⎪ >
⎪⎩

i
                                 (24) 

2   
 

  

exp( ) exp[ ( 1)] l l
l l

l l

y y
p

c c
ω δ λ= + −                   (25) 

where λ  is a positive constant. This control law consists of a 
link price discounter update law and a static price function.  

4. SIMULATION RESULTS 

Consider a simple four-source/three-link example which is 
presented in (Wen et al., 2004). The corresponding routing 
matrix is 

1 0 1 0
1 1 1 0
1 1 0 1

A
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Its topology structure is shown in Fig.3. We assume that the 
link capacities are all 0c . For algorithms (KC, PDQKC) that 
follow proportional fairness criterion, suppose that all source 
utility functions are   ( ) log( )r r rU x x= . The solution to the 
optimization problem (1) is (Wen et al., 2004) 

Fig. 3. Network example 

 

*  
0 0 0 0[0.25 0.25 0.5 0.5 ] Tx c c c c=  

[ ] *
0 0 00.75 Ty c c c= . 

For algorithms (MKC, PDQKC) that follow Max-min 
fairness criterion, the solution to the optimization problem (1) 
is  

*
0 0 0 0

1 1 1 1[ ]
3 3 3 3

Tx c c c c= ,       *
0 0 0

2
3

T

y c c c⎡ ⎤= ⎢ ⎥⎣ ⎦
. 

The initial source rate is set to  

[ ] 
0 0 0 0(0) 0.1 0.2 0.25 0.15 Tx c c c c= . 

The time step is set to 0.2. Consider the following controller: 

KC:  (9), (11) and (16). Set: 0.5rκ = , 1rw =  and 00.02cε = .  

MKC:  (11) (12) and (13). Set:  0.5rκ = ,  1rw =  

PDQKC:   (12) (13) (24) and (25). Set:  0.5rκ = ,  1rw = , 
0.05θ = , 2.0λ = ,    0.000001ω = , 0(0) 0.8ln cδ = − . 

 To compare the bandwidth scalability of these controllers, a 
Euclidean distance function, which describe the relative 
distance between the current state and the equilibrium point, 
is defined by (26). 

 * *
2 2    

 *  *
  

( ) ( )l lr r

r lr l

y yx x
d

x y
−−

= +∑ ∑ .              (26) 

It is clear that, 0d →  as *x x→ and *y y→ . Set 0 100c = , 

0 1000c = and 0 10000c =  respectively. By logarithmizing the 
time steps, Fig.4-6 show the bandwidth scalability of these 
controllers. In figure 4, d  approximately tend to zero as the 
time increases. The convergence time of d  is proportional to 
the link capacities. In figure 5, d  is sharply decreased at the 
early state and all the links tend to their equilibrium 
exponentially no matter how large the link capacities are. 
However, except for the early state, the process of d  is 
similar to Fig. 4. In Fig. 6, PDQKC shows its powerful 
bandwidth scalability and fast convergence to efficiency and 
fairness. d  converges to zero in a short time. As the link 
capacities grow from 100 to 10000, only small variation of 
the convergence time is observed. Although MKC controller 
offers exponential convergence to efficiency, its source 
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convergence rate to the optimization equilibrium is much 
slower than PDQKC.  

5. CONCLUSIONS 

This paper has presented a group of novel nonlinear network 
congestion control algorithms called quick Kelly control 
(QKC). In QKC, link utilization ratio information is used as 
feedback signal to accelerate convergence rate and improve 
the bandwidth scalability. We prove the stability of the 
PDQKC algorithm. PDQKC has very powerful bandwidth 
scalability. Compare to the classical Kelly control and MKC, 
PDQKC can achieve fast convergences to the optimization 
equilibrium. All the analysis and simulation results based on 
an assumption that there is no delay in the loop. Our future 
work involves improvement of dynamic performance and 
delay stability.  

 

Fig. 4. d of  KC  

 

Fig. 5. d  of MKC.  

 

Fig. 6.    d of PDQKC. 
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