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Abstract: This paper presents an on-line fault inference, diagnosis ,and detection strategy for
large-scale event-driven controlled systems. First of all, the controlled plant is decomposed into
some subsystems, and the global diagnosis is formulated using the Bayesian Network (BN),
which represents the causal relationship between the fault and observation in subsystems. The
graph structure of the BN is constructed based on the control law adopted in the system.
Second, the local diagnoser is developed using the conventional Timed Markov Model, and the
local diagnosis results are used to specify the conditional probability assigned to each arc in the
BN. By exploiting this decentralized architecture, the computational burden for the diagnosis
can be distributed in the subsystems. As the result, the diagnosis for large scale practical system
can be realized on-line. Finally, the usefulness of the proposed strategy is verified through some
experimental results of an automatic transfer line.

1. INTRODUCTION

Event-driven controlled systems based on the Programmable
Logic Controller (PLC) are widely used in many industrial
processes. This type of control systems occupies more
than eighty percent of the entire existing control systems.
Recently, the demands for production facilities are shifting
from high speed and highly efficiency to safety and high
reliability. In order to meet these requirements, several
strategies for fault diagnosis and recovery procedure have
been proposed.

In the field of fault diagnosis of discrete-event systems,
lots of deterministic approaches have been proposed [1, 2,
3, 4, 6, 7]. These approaches, however, are not applicable
to the faults that do not explicitly change the order of
the occurrence of events; for example faults in motors
embedded in the production line that may reduce the
speed of conveyor line. On the other hand, Lunze proposed
a stochastic fault diagnosis framework based on system
modeling with Timed Markov Model (TMM)[5]. This
framework is applicable to the faults that do not affect
on the order of the occurrence of events thanks to the
stochastic expression of time interval between successive
events in the TMM.

However, one of the significant drawbacks of TMM based
approach is an explosion of the computational burden
which comes from the enormous number of combinations
of successive events. This drawback is particularly em-
phasized when the number of components in the entire
system becomes large. In order to overcome the problem,
the decentralized approach is highly recommended wherein
the diagnosis is performed by each diagnoser together with
the communication with other diagnosers.

This paper presents a new decentralized fault diagnosis
strategy based on the local/global probabilistic inference.
First of all, the controlled plant is decomposed into some
subsystems, and the global diagnosis is formulated using
the Bayesian Network (BN), which represents the causal
relationship between the fault and observation over sub-
systems. The graph structure of the BN is constructed
based on the control law applied to the system. Second, the
local diagnoser is developed using the conventional Timed
Markov Model (TMM), which was originally developed
in [5], and the local diagnosis results are used to specify
the conditional probability assigned to each arc in the
BN. Finally, the usefulness of the proposed strategy is
verified through some experimental results of an automatic
transfer line which is widely used in the industrial manu-
facturing systems.

2. PROBLEM STATEMENT

First, we assume that the controlled system can be divided
into n subsystems in consideration of the architecture
of the hardware and/or software (see Section 6 for the
detail). Furthermore, the output (event) sequence, which
corresponds to the series of the ON/OFF of sensors and
actuators, can be observed in each subsystem. Then, the
event sequence for the k-th subsystem Ek

t (th) is defined as
follows:

Ek
t (th) = (ek

0 , tk0 ; ek
1 , tk1 ; . . . ; ek

H , tkH) , tkH ≤ th (1)

where ek
H is the H-th event and tkH is the occurrence time

of the H-th event in the k-th subsystem. In addition, the
κ-th fault in the k-th subsystem is represented by rk

κ, and
a combination of faults for all subsystems is defined as
“r–combination of faults for the entire system”. The set of
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Fig. 1. Bipartite Bayesian
Network for fault diag-
nosis

Fig. 2. Example of Bayesian
Network

r–combination of faults for the entire system, R is defined
by

R =
{
r = (r1, r2, · · · , rn)|rk ∈ {rk

1 , rk
2 , · · · , rk

fk
}} (2)

where fk is the number of faults of k-th subsystem which
includes normal (non-faulty) situation. This paper deals
with the following diagnosis problem:

Given : output sequence E1
t (th), · · · ,En

t (th)

Find : fault r ∈ R

3. GLOBAL DIAGNOSIS BASED ON BAYESIAN
NETWORK

Bayesian Network (BN) is a probabilistic inference net-
work which expresses qualitative causal relations between
some random variables by a graph structure together with
the conditional probability assigned to each arc [8].

In this section, the proposed global diagnosis method is
explained. First, two types of random variables are defined.
The first one is Rk which takes rk

κ (κ ∈ {1, · · · , fk})
as a realization. The second one is the Ek which takes
the observed event sequence as a realization. In the BN,
the causal relationship between these random variables
are defined using a graph structure wherein each node
corresponds to each random variable. For the purpose of
the fault diagnosis, we restrict the structure of the BN
in the bipartite graph. One subset consists of the set of
Rks, and the other subset consists of the set of Eks (Fig.
1). We also assume that there are no causal relationship
between nodes in the same subset. The development of an
appropriate graph structure must be made by considering
the physical and logical interactions between subsystems.
In Section 6, some algorithms are introduced to construct
the graph structure of the BN based on the control law
applied to the system. The fault diagnosis can be realized
by calculating the occurrence probability of each fault
conditioned by the observed event sequence:

P (Rk = rk
i |E1 = E1

t (th), · · · , En = En
t (th)).

Figure 2 shows the example of the BN for fault diagnosis.
The occurrence probability of the fault in the subsystem 1
can be systematically calculated as follows: First, the joint
probability distribution (JPD) is uniquely decided based
on the graph structure.

P (R1, R2, E1, E2) = P (R1)P (E1|R1, R2)P (R2)P (E2|R2).

(3)

Then, the occurrence probability of the fault in the subsys-
tem 1 is calculated by marginalizing the JPD. For example,

the fault occurrence probability of the fault r1
α in the

subsystem 1 is calculated as follows:

P (R1 = r1
α|E1 = E1

t (th), E2 = E2
t (th))

=
1
Z

{
P (R1 = r1

α)
∑

R2

P (E1 = E1
t (th)|R1 = r1

α, R2)

×P (R2)P (E2 = E2
t (th)|R2)

}
(4)

where Z is normalized term and is represented as (5).

Z =
∑

R1

P (R1)
∑

R2

P (E1 = E1
t (th)|R1, R2)

×P (R2)P (E2 = E2
t (th)|R2). (5)

In (4), the term P (E1 = E1
t (th)|R1 = r1

α, R2) represents
the conditional probabilities assigned to the corresponding
arc. This conditional probability can be calculated using
the local diagnosis results and the Bayesian estimation (see
section 5.1 for detail). Also, the prior probabilities (for
example P (R1 = r1

α) in (4) are supposed to be given in
advance.

4. LOCAL DIAGNOSIS BASED ON TMM

4.1 Timed Markov model

For the local diagnosis, the relationship between two
successive events observed in the corresponding subsystem
are represented by means of a Timed Markov Model
(TMM). The TMM is one of the Markov model wherein
the state transition probabilities depend on time. In other
words, state transition probabilities vary according to
the time interval between two successive events. In the
following, representation of the event driven system based
on the TMM is briefly described [5].

First of all, the set of fault random variables which
are connected to the random variable Ek in the BN is
defined and denoted by Rk1 , Rk2 , · · · , Rkmk where mk is
the number of the fault random variables (for example, R1,
R2 for E1, and R2 for E2 in Fig.2). Then, a combination
of these realizations is defined as “rk–combination of faults
for the k-th subsystem”. Furthermore, the set of these is
denoted by
Rk = {rk = (rk1 , rk2 , · · · , rkmk )|rk ∈ {rk

1 , rk
2 , · · · , rk

fk
}. (6)

Roughly speaking, rk consists of the realization of the
faults which affect on the measurement of the k-th sub-
system Ek. For example, in Fig. 2, r1 = (r1, r2), and
r2 = (r2). Based on definition of the rk, the following
two functions are defined to specify the stochastic charac-
teristics in the TMM.
Definition 1. fek

H+1ek
H

(rk, τ) represents a probability den-
sity function for the time interval τ under the situation
that the fault rk exists. Note that τ is a time interval
between two successive events ek

H+1 and ek
H in the k-th

subsystem.
Definition 2. Fek

H
(rk, th) represents a probability distri-

bution function at the sampling time th that the event
ek
H+1 does not occur within th− tkH after the event ek

H has
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Fig. 3. Example of measured data and estimated proba-
bility density function fek

H+1ek
H

(rk, τ)

Fig. 4. Time and events in the cases (a) and (b)

occurred at tkH under the situation that the fault rk exists.
Fek

H
(rk, τk) is represented as follows:

Fek
H+1ek

H
(rk, th) =

th−tk
H∫

0

fek
H+1ek

H
(rk, t)dt, (7)

Fek
H

(rk, th) = 1−
∑

ek
H+1∈Ek

Fek
H+1ek

H
(rk, th) (8)

where Ek is the set of events that occur in the k-th
subsystem.

Then, relationship between two successive events observed
in the subsystem can be described by specifying the
probability density functions. Figure 3 is examples of the
probability density function fek

H+1ek
H

(rk, τ) which can be
estimated based on the operating data of the objective
system [9]. These functions play essential role in the TMM
based diagnosis, and must be identified in advance.

4.2 Local diagnosis method

The goal of the local diagnosis is to find the following fault
occurrence probability based on the observation only of the
k-th subsystem:

pk
M (rk, th) ≡ P (Rk1 = rk1

κ1
, · · · , Rkm = rkm

κm
|Ek = Ek

t (th)).

(9)
Equation (9) represents an occurrence probability of the
rk conditioned by the observation in the k-th subsystem
Ek

t (th). For the calculation of (9), the recursive algorithm
has been developed in [5]. First, the following two cases
must be distinguished:

Case(a): There is no event at time th.
Case(b): The (H + 1)-th event ek

H+1 occurs at time th.

Figure 4 shows relations between time and events in
the cases of (a) and (b). The diagnosis begins with no
information on the existence of the fault, i.e. the initial
probabilities are given by

pk
M (rk, 0) =

1
nRk

(10)

where nRk denotes the number of realizations in Rk and is
calculated as nRk =

∏mk

i=1 fki . Next, an auxiliary function
pk

a(rk, th) is calculated as follows:
Case(a) : No event is observed at time th

pk
a(rk, th) = Fek

H
(rk, th)pk

M (rk, tkH). (11)

Case(b) : The (H + 1)-th event ek
H+1 occurs at time th

pk
a(rk, th) = fek

H+1ek
H

(rk, tkH+1 − tkH)pk
M (rk, tkH). (12)

The fault occurrence probability given by (9) is updated
by

pk
M (rk, th) =

pk
a(rk, th)∑

rk∈Rk

pk
a(rk, th)

. (13)

5. OVERALL DIAGNOSIS PROCEDURE

5.1 Calculation of conditional probability in the BN

In the global diagnosis, the calculation of the conditional
probability was the key computation (see (4) as an ex-
ample). The conditional probabilities assigned to each arc
(appearing in the marginalized JPD) in the BN can be
calculated using (9) and Bayes theorem as follows:

P (Ek = Ek
t (th)|Rk1 = rk1

κ1
, · · · , Rkm = rkm

κm
) =

pk
M (rk, th)P (Ek =Ek

t (th))
P (Rk1 =rk1

κ1 , · · · , Rkm = rkm
κm)

(14)

where the prior probability P (Rk1 = rk1
κ1

, · · · , Rkm = rkm
κm

)
is given in advance. Note that the probability P (Ek =
Ek

t (th)) is not required to be calculated in advance because
it is canceled out in (4). This equation implies that the
global diagnosis can be executed by integrating results of
the local diagnosis.

5.2 diagnosis procedure

The procedure of the proposed decentralized diagnosis is
depicted in Fig. 5. First of all, observe the event sequence
in each subsystem. Second, perform the local diagnosis
in each subsystem based on the observed event sequence
and calculate the conditional probabilities in the BN using
(14). Then, calculate the fault occurrence probabilities by
means of the BN (global diagnosis). Finally, select the
greatest probability among all fault candidates in each
subsystem. The diagnosis result for the k-th subsystem
is the fault rk

i that satisfies the following equation in the
case that the fault candidates for the k-th subsystem are
{rk

1 , · · · , rk
fk
}.

Diagnosis Result for the k-th subsystem

= arg max
rk

i

(
P (Rk = rk

1 |E1 = E1
t (th), · · · , En = En

t (th)),

· · · , P (Rk = rk
fk
|E1 = E1

t (th), · · · , En = En
t (th))

)
.

(15)
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Fig. 5. Procedure of the decentralized fault diagnosis

Fig. 6. Prototype of automatic transfer line

6. CONSTRUCTION OF GRAPH STRUCTURE

In this section, the graph structure of the BN is con-
structed based on the control law implemented on the logic
controller. The construction process is explained step by
step with an example.

The total system is supposed to be given by three tuples:
G = {S,A, C} (16)

where S is the set of sensors, A is the set of actuators, and
C is the set of control laws. Then, the overall system is
divided into subsystems

Gk = {Sk, Ak, Ck}, G = G1 ∪G2 ∪ · · · ∪Gn, (17)

where Ak is a set of actuators of k-th subsystem, Ck is a
set of control laws which activates Ak. Sk is a set of sensors
which are included in the k-th subsystem.

Figure 6 shows an automatic transfer line used for exper-
iment. Figure 7 shows the illustrative diagram of Fig.
6. This system transfers works to the unload station by
means of four belt-conveyors (L1, L2, L3, L4: their length
are 50cm) and two cranes (C1, C2). Sensors (S1 to S12)
are installed at the beginning, end and center of each
conveyor, and the sensor S13 is installed at the unload
station. The events are observed when the work crosses
the sensors, and are superimposed in Fig. 7. This transfer
line system is decomposed into the six subsystems (Lane1,
Lane2, Crane1, Lane3, Lane4, Crane2) as shown in Fig. 7.

Fig. 7. Diagram of transfer line and definition of events

Table 1. Set of events in each subsystem

Lane1 E1 ={e1, e2, e3} Lane2 E2 ={e4, e5, e6}
Crane1 E3 ={e3, e6, e7, e10} Lane3 E4 ={e7, e8, e9}
Lane4 E5 ={e10, e11, e12} Crane2 E6 ={e9, e12, e13}

Fig. 8. Ladder logic of control law C1

The set of events observed in each subsystem is specified
in Table 1.

The implemented control low is summarized as follows:

• Each lane is interlocked with its terminal sensor (S3,
S6, S9, and S12), and stops when the terminal sensor
is fired.

• The lane continues to behave in the absence of the
interlock.

• Crane1 and Crane2 transfer a work from Lane1 to
Lane3 and from Lane2 to Lane4, respectively.

• The crane transfers a work to the other lane when the
destination lane halts by the interlock

This control low can be described in the form of a ladder
logic [10]. For example, Fig. 8 shows a ladder logic of C1

wherein the operating condition of the Lane1 is expressed
as L1 = (X ∨ L1) ∧ S3 ∧ C1. Based on representation as
ladder logic, the causal relationships between sensors and
actuators are expressed by a sensor actuator dependency
(SAD) graph by the following algorithm:

Algorithm 1: Construction of SAD graph
Step 1 For all k = 1, · · · , n, allocate the set of sensors
Sk on the left side and the actuator Ak on the right
side.

Step 2 For all k = 1, · · · , n, draw a dashed arrow
from Ak to Sh when the controller Ch includes the
operating condition of Ak.

Step 3 For all k = 1, · · · , n, draw a solid arrow from
Sh to Ak when Ck includes the sensor sh ∈ Sh as
the starting or halting condition of Ak,
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Fig. 9. Sensor actuator dependency (SAD) graph

Fig. 10. Dependency tree for Crane2 (Subsystem 6)

The SAD graph is constructed as Fig. 9 from the ladder
logic. In the next step, a dependency tree (DT) is produced
from the SAD graph by the following algorithm:

Algorithm 2: Construction of DT
Step 1 Set k = 1.
Step 2 Set l = 1.
Step 3 Allocate Sh under Ak and set the level of Sh

to be l if Sh is connected to Ak by a dashed arrow
in the SAD graph and has not appeared in the level
less than l.

Step 4 Allocate Am under Sh in level l if Am is
connected to Sh by a solid arrow in the SAD graph
and has not appeared in the level less than l.

Step 5 Go to Step 6 if no actuator exists in Step 4,
else go to Step 3 with l = l + 1.

Step 6 End the algorithm if k = n, else go to Step 2
with k = k + 1.

The DT is produced as Fig. 10 from Fig. 9. In the last
step, the structure of BN is produced from the DT by the
following algorithm:

Algorithm 3: Construction of graph structure of
BN
Step 1 For all k = 1, · · · , n, allocate the nodes of the
random variable Rk and Ek on the upper side and
the lower side, respectively.

Step 2 For all k = 1, · · · , n, draw an arrow from Rk

to Eh for all h where Sh is included in the level 1 to
L of Ak’s DT.

Fig. 11. Graph structure 1

Fig. 12. Graph structure 2 Fig. 13. Graph structure 3

Table 2. Candidates of faulty condition

Symbol Detail of fault

r1
1 Lane1 is normal

r2
1 Lane2 is normal

r2
2 Speed of the belt-conveyor L1 is reduced

r3
1 Crane1 is normal

r3
2 Speed of the crane C1 is reduced

r4
1 Lane3 is normal

r5
1 Lane4 is normal

r5
2 Speed of the belt-conveyor L2 is reduced

r6
1 Crane2 is normal

r6
2 Speed of the crane C2 is reduced

In this algorithm, parameter L is a threshold to take into
consider the causal relationship between the subsystems
into the graph structure of the BN. Figure 11 is the re-
sultant graph structure when L = 2. Note that this graph
structure is specified to diagnose faults in the actuators
because the DTs which is used to construct the graph
structure start from the actuators. In order to diagnose
faults in the sensors, another graph structure needs to
be constructed from DTs which start from the sensors.
The DT starting from a sensor is easily constructed by
modifying Algorithm 2.

7. APPLICATION TO AUTOMATIC TRANSFER
LINE

In this section, the proposed diagnosis procedure is applied
to the automatic transfer line depicted in Fig. 7. The
diagnosis procedure is executed by means of three graph
structures. Graph structure 1 depicted in Fig. 11 is derived
by using the algorithm described in Section 6. Graph
structure 2 depicted in Fig. 12 considers full connection,
in other words, L = ∞. Graph structure 3 depicted in
Fig. 13 considers the case that the fault in each subsystem
influence only on the corresponding subsystem.

7.1 Candidates of fault

In this paper, we consider the candidates of fault in each
subsystem specified in Table 2. For the lane, the “normal”
implies the case that the speed of the belt-conveyor is
between 7.8cm/sec and 8.6cm/sec, and the “Speed of the
belt-conveyor is reduced” implies the case that the speed
of the belt-conveyor goes down between 7.0cm/sec and
7.8cm/sec. Faults r2

2 and r5
2 may come from a fatigue

of the actuator. For the crane, the “Speed of the crane
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is reduced” implies the case that it takes more 0.2 sec
than the “normal” condition to transfer a work to the
destination lane. Thus, 1×2×2×1×2×2 = 16 faulty cases
are investigated for the entire system including cases that
some faults occur simultaneously in some subsystems.

7.2 Experimental conditions

Experimental conditions are specified as follows:

• Works are provided to the Lane1 and Lane2 alter-
nately with almost constant intervals (about 2 sec).

• Works do not exist in the system at time th = 0.
• The experiment is finished if ten works are transferred

to the unload station.
• A sampling time for observation of events is 0.1 sec.

Under these experimental conditions, the event sequences
are collected. The probability density functions (PDFs)
for every combination of two successive events in each
subsystem are estimated before fault diagnoses. In this
paper, the PDFs are estimated through fifty trials per each
faulty case in advance.

7.3 Results of fault diagnosis

We have performed the experiments ten times for each
faulty case, i.e., the total number of the trials is 10 ×
16 = 160. The statistics of the diagnosis results are listed
in Table 3. In Table 3, the “Success Rate” means the rate
that the all diagnosis results coincide with the actual fault
situation, the “Wrong Diagnosis Rate” means the rate
that at least one of the subsystems had wrong diagnosis
result, and the “Undetection Rate” means the rate that
the diagnosis result was “normal” in spite of existence of
the fault.

The success rate of the graph structure 1 and 2 are both
increased compared with the structure 3. This reason
is considered that the causal relationships between the
subsystems are ignored in the structure 3. The structure 2
is better than the structure 1 from viewpoint of the success
rate, however, the number of the PDFs of the structure
1 is almost half of that of the structure 2. Because the
number of the PDFs is concerned with the computational
burden for the realtime inference, the structure 1 can be
realized with less computational burden than the structure
2. The computing time in Table 3 is the resultant time
of diagnosing 150.5 second data, and which was obtained
from the maximum computing time of the local diagnosers
and the computing time of the global diagnoser. The level
threshold L of Algorithm 3 should be selected from the
both viewpoint of the success rate and the computational
burden.

8. CONCLUSIONS

This paper has presented a new decentralized fault di-
agnosis strategy for the event-driven controlled systems.
First of all, the controlled plant was decomposed into
some subsystems, and the global diagnosis was formulated
using the Bayesian Network (BN), which represents the
causal relationship between the fault and observation be-
tween subsystems. The graph structure of the BN was

Table 3. Comparison of diagnosis results
among graph structure: Computing time for

diagnosing 150.5sec data

Graph Success Wrong Undetected Number Computing
structure of PDFs time

1 91.3% 8.1% 0.6% 482 21.0sec
2 94.4% 3.8% 1.9% 976 51.7sec
3 86.3% 7.5% 6.3% 104 1.8sec

constructed based on the control law applied to the sys-
tem. Second, the local diagnoser was developed using the
conventional Timed Markov Model (TMM), and the local
diagnosis results were used to specify the conditional prob-
ability assigned to each arc in the BN. By exploiting the
decentralized diagnosis architecture, the computational
burden for the diagnosis can be distributed to the subsys-
tems. As the result, large scale diagnosis problems in the
practical situation can be solved. Finally, the usefulness
of the proposed strategy has been verified through some
experimental results of an automatic transfer line.
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