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Abstract: This paper presents an algorithm for solving optimization problems with bilinear
matrix inequality constraints. The algorithm is based on a combination of gradient-based
optimization and LMIs, which makes it fast and enables it to handle a large number of decision
variables. It is applied to two controller synthesis problems: static output feedback controller
synthesis and robust controller synthesis for linear parameter varying (LPV) systems using the
idea of quadratic separation. Since the second problem has large number of decision variables,
a hybrid approach is applied, in which LMI solvers are used for the evaluation of the cost
function. The algorithm is applied to two examples, and results are compared with some existing
approaches.
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1. INTRODUCTION

Many controller synthesis problems can be formulated as
optimization problems subject to bilinear matrix inequal-
ity (BMI) constraints. In general, these problems can be
expressed in the form

min
x

cT x, where x ∈ Rn (1)

s.t M0 +
n

∑

i=1

xiMi +
∑

1≤i<j≤n

xixjQij ≤ 0

where, M0, Mi and Qij are symmetric, known matrices
and M ≤ 0 means that M is semi-definite.

The importance of being able to solve such problems for
various control applications has been recognized for many
years and a number of approaches have been proposed for
this purpose. Early attempts to solve these problems were
based on converting them into a sequence of LMI prob-
lems. One such approach is presented in (Hassibi et al.,
1997), where BMI constraints are linearized using first
order perturbations. These techniques may however be
difficult to initialize if the set of feasible solutions is small.
A Lagrangian-based approach is presented in (Kocvara
and Stingl, 2005). However, this approach is best suited for
problems where BMI constraints can be transformed into
problems with nonlinear equality constraints and convex
inequality constraints. An alternative is the use of stochas-
tic optimization techniques like that proposed in (Farag
and Werner, 2004). This approach is however not suitable
when the number of decision variables is large.

In this paper a two-loop approach is proposed to solve the
BMI problem (1). In the outer loop a linear cost function
cT x is minimized while in the inner loop a BMI constraint
is applied by minimizing the spectral abscissa α of the BMI
matrix. The algorithm can be summarized as follows.

Step 1 Initialize the objective function with a suitable
large value and fix all values of xi that correspond to
nonzero coefficients of c. (In many control problems a
performance index γ is minimized that is also a decision
variable, so c consists only of zeros and a single 1, see
Section 3 and 4).

Step 2 Find values for the remaining entries of xi such
that the BMI is satisfied. This step is performed using
gradient-based optimization. Repeat this step m times
with random initialization and select the best solution
x.

Step 3 If Step 2 returns a feasible solution reduce the
value of the objective function and repeat, otherwise
increase it.

Step 4 Iterate till no further reduction in the objective
function is achieved.

In the inner loop, a semi-stochastic gradient-based opti-
mization approach can be used if an explicit expression
for ∇xα - the gradient of α with respect to the decision
variables x - can be found. In this work an approach
presented in (Horn and Johnson, 1985) is used for this
purpose. The term semi-stochastic refers to the fact that
in each iteration the gradient-based search is initiated by
a number of random values, and the best cost function
achieved is used for the next iteration.

In this paper we illustrate the proposed algorithm by
solving two BMI constrained controller synthesis prob-
lems: synthesis of a H∞ optimal static output feedback
(SOF) controller, and a fixed-structure, robust controller
design for a linear parameter varying (LPV) system using
a technique based on quadratic separation (Chughtai and
Werner, 2006). Since the latter problem has a large number
of decision variables, an extension to the algorithm is also
proposed to improve its speed and convergence.
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The paper is organized as follows: Section 2 presents a way
of constructing the gradient of the spectral abscissa of the
matrix appearing in the BMI constraint. The proposed
algorithm is applied to the SOF problem in section 3.
Section 4 discusses an extension of the algorithm to solve
robust synthesis problem for LPV systems. Section 5
presents two examples, and the results are compared with
previously proposed approaches. Some concluding remarks
are given in section 6.

2. PRELIMINARIES

The following result can be used to calculate the gradient
of the spectral abscissa of a matrix. Consider a matrix
J(t) ∈ Cn×n that depends on a scalar parameter t. Then
we have (Horn and Johnson, 1985)

Theorem 1. Let J(t) be differentiable at t = 0. Assume
that λ is an algebraically simple eigenvalue of J(0) and
that λ(t) is an eigenvalue of J(t), for small t such that
λ(0) = λ. Let v be a right eigenvector of J(0) and u a left
eigenvector of J(0) corresponding to eigenvalue λ, both
normalized to 1. Then

λ′(0) = uT J ′(0)v

where λ′ and J ′ denote derivatives with respect to t.
Moreover, if J(t) = J +tE for a fixed matrix perturbation,
E, then for t small

λ(J + tE) = λ(J) + tuT Ev + O(t2) (2)

The factor uT Ev in the linear term - taken for each
decision variable - can be used to compute the gradient
of the spectral abscissa.

3. H∞ OPTIMAL STATIC OUTPUT FEEDBACK
CONTROL

This section presents the application of the algorithm
outlined in Section 1 to the problem of designing H∞

optimal static output feedback controllers. Consider the
following plant with state space model

ẋ = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) + D21w(t)

(3)

where x(t) ∈ Rn is the state vector, w(t) ∈ Rm1 denotes
external inputs, u(t) ∈ Rm2 is the control input, z ∈ Rp1

is the controlled output and y(t) ∈ Rp2 is the measured
output. A, B1, B2, C1, C2, D11, D12 and D21 are constant
matrices with appropriate dimensions, where (A,B2) is
stabilizable and(C2, A) is detectable.

With a static output feedback controller

u(t) = Ky(t) (4)

where K ∈ Rm2×p2, the closed loop system is

Acl = A + B2KC2

Bcl = B1 + B2KD12

Ccl = C1 + D12KC2

Dcl = D11 + D12KD21

(5)

The objective is to find a controller (4) such that the
transfer function of the closed-loop system satisfies a H∞

norm constraint

‖ Tzw(s) ‖∞< γ, for γ > 0 (6)

The constraint (6) can be represented as (Cao et al., 1998),

∃P = PT > 0,K : (7)




PAcl + AT
clP PBcl CT

cl

BT
clP −γI DT

cl

Ccl Dcl −γI



 < 0, (8)

where Acl, Bcl, Ccl and Dcl are given in terms of K by
(16) and P is a Lyapunov matrix.

The SOF H∞ synthesis problem can now be expressed as
follows:

min
P,K

γ subject to (7) and (8) (9)

Note that (7) is a BMI condition, leading to a non-convex
problem. One way to solve (9) is the following.

1. For a given γ, solve

min
P,K

α(X) (10)

where α(X) is the spectral abscissa (the largest real
part of the eigenvalues of X), where

X =







PAcl + AT
clP PBcl CT

cl 0
BT

clP −γI DT
cl 0

Ccl Dcl −γI 0
0 0 0 P






< 0 (11)

2. If an α < 0 is found, reduce γ and goto Step 1.

The minimization problem (10) can be solved using
a gradient-based optimization technique. Here we use
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
which belongs to a class of Quasi-Newton methods, where
a positive definite approximation of the Hessian is pro-
duced from previous iterations and the corresponding gra-
dients.

3.1 Gradient Calculation

The main step in the above algorithm is to find the
gradient of α(X) with respect to P and K. This will be
done by first analyzing the effect of a perturbation in P
on the maximum eigenvalue of X(P ), while keeping K
constant. The perturbed matrix X can be factorized and
expressed as follows

X + δXP = X + Y T δP I1 + IT
1 δP Y + IT

2 δP I2 (12)

where Y = [A B 0 0], I1 = [I 0 0 0], I2 = [0 0 0 I], I is
the identity matrix and δP denotes the perturbation of P .
Then using Theorem (1) we can write

f(K,P + δP ) = f(K,P ) + uT
{

Y T δP I1 + IT
1 δP Y (13)

+ IT
2 δP I2

}

v + O(δ2

P )

Note that the inner product on the space of matrices is
defined as

〈A,B〉 = tr(AT B)

where tr(M) denotes the trace of matrix M . Then (13)
can be expressed as,
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f(K,P + δP ) = f(K,P ) + tr
(

uT
{

Y T δP I1

+IT
1 δP Y + IT

2 δP I2

}

v
)

+ O(δ2

P )

= f(K,P ) + tr
(

I1vuT Y T δP

+Y vuT IT
1 δP + I2vuT IT

2 δP

)

+O(δ2

P )

= f(K,P ) +
〈

I1vuT Y T + Y vuT IT
1

+I2vuT IT
2 , δP

〉

+ O(δ2

P )

(14)

We therefore obtain the gradient with respect to the
matrix P from (14) as

∇P f = (I1vuT Y T + Y vuT IT
1 + I2vuT IT

2 )T (15)

Similarly we can compute the gradient with respect to K.

3.2 Algorithm

Finally an iterative algorithm to solve the SOF problem
(10) can be summarized as follows.

Step 1 Choose an initial value for γ and an initial step
size t < 1.

Step 2 Generate m initial random vectors of decision
variables and solve the problem (10) m times, using (14).
Select the solution with the smallest value of α(X).

Step 3 If α(X) < 0, i.e. a feasible solution is found,
increase the step size according to t = 2t, t < 1, decrease
γ by γ = γ − tγ and goto step 5).

Step 4 If α(X) > 0, i.e. no feasible solution, replace the
step size t by t/2 and γ by γ − tγ, goto step 2).

Step 5 If the difference between the present and the past
values of γ less than a specified value, stop, if not goto
step 2).

4. ROBUST CONTROLLER SYNTHESIS FOR LPV
SYSTEMS

This section describes robust controller synthesis for LPV
systems using a technique based on quadratic separators.
The concept of quadratic separators can be used to reduce
the conservatism of robust controller design for LPV
systems when upper bounds on the rate of change of
model parameters are known, see (Chughtai and Werner,
2006). This technique utilizes the fact that the existence
of a quadratic separator is equivalent to the existence
of a parameter-dependent Lyapunov function (Iwasaki
and Shibata, 2001). The method proposed in (Chughtai
and Werner, 2006) uses a hybrid evolutionary-algebraic
approach for solving the non-convex problem of finding
a low-order and fixed structure controller that minimizes
the induced L2 norm of the performance channel from wp

to zp as shown in Fig. 1. Since the problem considered
here has typically a large number of decision variables, an
extension to the approach presented in previous section is
proposed.

Let the closed-loop system be represented in the following
LFT structure

ẋ = Ax + B∆w∆ + Bpwp

z∆ = C∆x + D∆w∆

zp = Cpx + Dpwp

w∆ = ∆z∆

(16)

z∆

G

zp

e
u

∆

r

wp

w∆

Fig. 1. Generalized plant

where w∆, z∆ ∈ Rl, wp ∈ Rd, zp ∈ Rv, and ∆(t) ∈ Rl×l,
where all the system matrices depend on controller (K)
parameters. Then the worst case L2-norm is bounded by γ
if the condition in the following theorem holds, (Chughtai
and Werner, 2006).

Theorem 2. The LPV system described by (16) is stable
and has a worst-case induced L2-gain less than γ if there
exist real symmetric matrices P > 0, S and R such that
the following conditions hold







A B
C D
I 0
E F







T 





0 0 P 0
0 Θ 0 0
P 0 0 0
0 0 0 Γγ













A B
C D
I 0
E F






< 0

[

I
∇

]T

Θ

[

I
∇

]

> 0 (17)

Γγ =

[

I 0
0 −γ2I

]

Θ :=

{ [

ΥRΥ S
ST −R

]

: R ∈ SD, S ∈ SG

}

(18)

where

A =

[

A B∆

0 0

]

, B =

[

Bp 0 0
0 I 0

]

,

C =















C∆ D∆

C∆A C∆B∆

C∆ D∆

0 I
0 0
0 0















, D =















0 0 0
C∆Bp D∆ 0

0 0 0
0 0 0
0 I −I
0 0 I















,

E =

[

Cp 0
0 0

]

, F =

[

Dp 0 0
I 0 0

]

(19)

and,

SD := {D : D∇ = ∇D,D = DT > 0}

SG := {G : G∇ = ∇G,G + GT = 0}
(20)

where
∆(t) = diag{q1(t)Ir1

, ..., qm(t)Irl
},

∆̇(t) = diag{δq1(t)Ir1
, ..., δqm(t)Irl

},

∇ := diag(∆,∆, ∆̇),

(21)
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X =







PA + AT P + CT ΘC + ET ΓγE PB + CT ΘD + ET ΓγF 0 0
BT P + DT ΘC + FT ΓγE DT ΘD + FT ΓγF 0 0

0 0 P 0
0 0 0 R






< 0 (25)

where the index ri represents the multiplicity of the ith

uncertain parameter and all varying parameters qi(t) and
their rate of change δqi(t) are bounded such that |qi(t)| <
φi and |δqi(t)| < ρi, ∀ i = 1, ..., l. Then,

Υ := diag(Υφ,Υφ,Υρ)

Υφ := diag(φ1Ir1
, ..., φmIrm

)

Υρ := diag(ρ1Ir1
, ..., ρmIrm

)

(22)

The theorem stated above can be used to analyze the
worst-case L2-norm of a closed loop system. In the syn-
thesis problem, the LMI (17) turns into a bi-linear matrix
inequality in P , Θ, Γγ and K. The synthesis problem can
be expressed as

min
P,Θ,K

γ such that (17) holds. (23)

4.1 Algorithm

Let us define X as in (25), then an iterative algorithm to
solve problem (23) can be formulated as:

Step 1 Choose an initial value for γ and an initial step
size t < 1.

Step 2 Generate m initial random vectors of the decision
variables representing the parameters of the controller
K.

Step 3 Given γ and K, solve m generalized eigenvalue
problems by solving the LMI problems

min
P,Θ

α(X)

Step 4 Given γ, P and Θ, use the BFGS algorithm to
solve

min
K

α(X)

m times
Step 5 Select the solution with the smallest value α(X).
Step 6 If α(X) < 0, i.e. feasible, replace the step size t

by 2t, t < 1, and γ by γ − tγ, goto step 8.
Step 7 If α(X) > 0, i.e. infeasible, replace the step size t

by t/2 and γ by γ − tγ, goto step 2.
Step 8 If the difference between the present and the past

values of γ is less than a specified value stop, if not goto
step 2.

The calculation of the gradient of α(X) with respect to K
can be computed using the presented idea in section 2.

Remark: It should be noted that the proposed algorithm
is applicable for the systems which are robustly stabiliz-
able. Under this condition the algorithm can find a con-
troller for arbitrary value of γ. As the algorithm proceeds
the γ is decreased by the outer loop as long as a feasible
solution is obtained in the inner loop. Hence, the γ will
decrease monotonically and the algorithm will converge to
a local minimum. Since, a global solution is not guaranteed
for BMI constrained optimization problems.

Table 1. PID control design performance using
different approaches

PENBMI HEA ILMI Zheng Proposed

et al. method

1.00 1.00 1.00 5 1.00

5. EXAMPLES AND RESULTS

In this section the above algorithms are illustrated by ex-
amples, and results are compared with previously proposed
techniques.

5.1 Example 1: Multivariable PID H∞ Controller Design

This example illustrates that when applied to relatively
simple problems with a small number of decision variables,
it yields the same performance as previously proposed
techniques. The conversion of a multivariable PID H∞

controller design problem into a SOF control problem was
presented in He and Wang (2006). This method is applied
here to a plant that was also used in He and Wang (2006)
for illustration; the model is given in (26).

The method of Section 2 is applied, and the values of
γ are listed together with those obtained with different
methods in Table 5.1. The other methods listed are the
method in (Zheng et al., 2002), the ILMI method in He
and Wang (2006), PENBMI (Kocvara and Stingl, 2005)
and the HEA approach (Farag and Werner, 2004). One
can see that the proposed method yields the same result
as the other techniques.

5.2 Example 2: Robust Low-order controller using Theorem
2

This example shows that for a larger number of decision
variables, the proposed method outperforms some previ-
ously published techniques. The method in Section 3 is
now applied to a design example taken from (Chughtai and
Werner, 2006) - control of a vertical takeoff and landing
(VTOL) helicopter. The linearized longitudinal dynamics
of a helicopter are given by

A =







−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 p1 −0.707 p2

0 0 1 0






,

B =







0.4422 0.1761
p3 −7.5922

−5.52 4.49
0 0






, CT =







0
1
0
0







where parameters P1, P2 and P3 are defined as:

p1 = 0.3681 + 0.05δ1

p2 = 1.42 + 0.01δ2

p3 = 3.5446 + 0.04δ3

The parameter δi depends on the flight conditions. How-
ever, for the sake of simplicity, see (Chughtai and Werner,
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A =





















−0.0266 −36.6170 −18.8970 −32.0900 3.2509 −0.7626 0 0
0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050 0 0
0.0123 11.7200 −2.6316 0.0009 −31.6040 22.3960 0 0

0 0 1.0000 0 0 0 0 0
0 0 0 0 −30.0 0 0 0
0 0 0 0 0 −30.0 0 0
0 1.0000 0 0 0 0 0 0
0 0 0 1.0000 0 0 0 0





















, B1 =





















0
0
0
0
30
0
0
0





















, B2 =





















0 0
0 0
0 0
0 0
30 0
0 30
0 0
0 0





















C1 = [0 1 0 0 0 0 0 0] , C2 =















0 1.0000 0 0 0 0 0 0
0 0 0 1.0000 0 0 0 0
0 0 0 0 0 0 1.0000 0
0 0 0 0 0 0 0 1.0000

0.0001 −1.8997 0.9831 −0.0007 −0.1708 −0.0050 0 0
0 0 1.0000 0 0 0 0















D11 = [0] ,D12 = [1 1] ,D21 = [0 0 0 0 0 0]
T

,D22 = [0 0 0]
T

, (26)

Table 2. Worst case L2-norm achieved using
different approaches

Order Decision PENBMI HEA Proposed

variables approach

1st 6 Failed 5.9 ± 0.8 3.9

4th 30 Failed Failed 4.5

2006), it is assumed that ‖δi‖ ≤ 60 and ‖δ̇i‖ ≤ 20, ∀ i =
1, 2 3. As a first step in the controller synthesis procedure,
the above system is converted into an LFT representation.
The control objectives considered here are the same as
in (Chughtai and Werner, 2006); given bounds on the
parameters and their rates of change.

The proposed algorithm of section 3 is applied along
with PENBMI and the HEA approach. The results are
summarized in Table 5.2.

Table 5.2, shows that the proposed approach gives better
results. The interesting thing here is that the proposed
approach can handle relatively large number of decision
variables where other techniques might fail, see Table 5.2.
A slight increase in the achieved performance is due to
the increase in complexity of the search space. It was also
observed that the proposed algorithm converges to the
same solution even if the initial points are far away from
the solution.

6. CONCLUSIONS

In this paper a two-loop approach is presented to solve the
BMI problem (1). In the outer loop the cost function CT x
is minimized while in the inner loop a BMI constraint is
applied by minimizing the spectral abscissa (α) of the BMI
matrix. The approach is applied on two control synthesis
problems namely, SOF and robust controller for LPV
systems.

The algorithm is semi stochastic since the gradient search
is initiated from random initial values and the best cost
function achieved is used for the next iteration. The
algorithm can handle large number of decision variables
efficiently. Secondly, due to the use of gradient information
it may converge to a local minima even if the initial points
are far from it.

The proposed algorithm is applied on two examples which
shows that it gives solution where standard BMI solvers
like PENBMI may fail. The algorithm can further be
improved by using the adaptive step size in outer loop
however, this will be the topic of our future research.
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