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Abstract: This paper first discusses the adaptive control for the hysteresis described by Prandtl-
Ishlinskii model. Then, the adaptive control for the continuous-time linear dynamical systems
preceded with hysteresis described by Prandtl-Ishlinskii model is considered. The relative degree
and the upper bound of the order of the linear dynamical system are assumed to be known.
The contribution of the paper is the fusion of the hysteresis model with the adaptive control
techniques. Only the parameters (which are generated from the parameters of the linear system
and the density function of the hysteresis) directly needed in the formulation of the controller
are adaptively estimated online. The output tracking error can be controlled to approach to
zero. Simulation results show the effectiveness of the proposed algorithm.

1. INTRODUCTION

The hysteresis phenomenon can be found in diverse dis-
ciplines ranging from, e.g., smart materials (Banks and
Smith, 2000; Moheimani and Goodwin, 2001; Webb, et
al, 1998), to ferromagnetism and superconductivity (May-
ergoyz, 1991), to economics (Cross, et al, 2001), to geo-
sciences (Guyer, et al, 1994). When a plant is preceded
by the hysteresis, the system usually exhibits undesirable
inaccuracies or oscillations and even instability (Tao and
Kokotovic, 1995). The development of control techniques
to mitigate the effects of hysteresis has been studied for
decades and has recently re-attracted significant attention,
e.g. Moheimani and Goodwin (2001) and the references
therein. Much of the interest is a direct consequence of
the importance of hysteresis in numerous new applica-
tions. Interest in studying dynamic systems with actu-
ator hysteresis is also motivated by the fact that they
are nonlinear system with nonsmooth nonlinearities for
which traditional control methods are insufficient and thus
require development of alternate effective approaches (Tan
and Baras, 2004; Tao and Lewis, 2001). Development of a
general frame for control of an uncertain dynamical system
in the presence of unknown hysteresis is quite a challenging
task.

To deal with the control problem of a dynamical sys-
tem preceded by hysteresis, the thorough characterization
of the hysteresis nonlinearities forms the foremost task.
Appropriate hysteresis models may then be applied to
the formulation of control algorithms. Hysteresis model
can be roughly classified into physics-based models and
phenomenological models. Physics-based models are built

on first principles of physics (Jiles and Atherton, 1986).
Phenomenological models are used to produce behaviors
similar to those of the physical systems without neces-
sarily providing physical insight into the problems. The
basic idea consists of the modeling of the real complex
hysteresis nonlinearities by the weighted aggregate ef-
fect of all possible so-called elementary hysteresis oper-
ators. Elementary hysteresis operators are noncomplex
hysteretic nonlinearities with a simple mathematical struc-
ture. The popular phenomenological models are Preisach
model (Adly, et al, 1991; Croft, et al, 2001; Natale, et al,
2001; Mayergoyz, 1991), Prandtl-Ishlinskii model (Brokate
and Sprekels, 1996; Visintin, 1994), and Krasnosel’skii-
Pokrovskii model (Krasnosel’skii-Pokrovskii, 1989; Vis-
intin, 1994). The Preisach model and Krasnosel’skii-
Pokrovskii (KP) model are parameterized by a pair
of threshold variables (Mayergoyz, 1991), whereas the
Prandtl-Ishlinskii (PI) model is a superposition of elemen-
tary stop operators which are parameterized by a single
threshold variable (Visintin, 1994).

With the developments in various hysteresis models, it
is natural to seek means to fuse these hysteresis models
with the available control techniques to mitigate the effects
of hysteresis, especially when the hysteresis is unknown,
which is a typical case in many practical applications.
However, the results on the fusion of the available hys-
teresis models with the available control techniques is
surprisingly spare in the literature (Chen, et al, 2006;
Su, et al, 2000, 2005; Tao and Kokotovic, 1995; Zhou,
et al, 2004). The most common approach in coping with
hysteresis in the literature is to construct an inverse op-
erator, which is pioneered by Tao and Kokotovic (1995),
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and the reader may refer to, for instance, Krejci and Kuh-
nen (1999) and Tan and Baras (2004) and the references
therein. Essentially, the inversion problem depends on the
phenomenological modeling methods. Due to multi-valued
and non-smooth features of hysteresis, the inversion always
generates certain errors and possesses strong sensitivity
to the model parameters. These errors directly make the
stability analysis of the closed-loop system very difficult
except for certain special cases, e.g. Tao and Kokotovic
(1995).

This paper first develops an adaptive control method for
the output of hysteresis described in PI model. Then, a
new adaptive control approach is proposed for uncertain
linear continuous time dynamical systems preceded with
hysteresis, where the adaptive control techniques and the
PI hysteresis model are fused together. The considered un-
certain linear continuous time dynamical system contains
unknown parameters, where the relative degree and the
upper bound of the order of the linear system are assumed
to be known. The Prandtl-Ishlinskii model of hysteresis
is adopted in this paper. Only the parameters (which are
generated from the parameters of the linear system and
the density function of the hysteresis) directly needed in
the formulation of the controller are adaptively estimated
online. The adaptive controller is synthesized by using
the estimated parameters. All the signals in the closed
loop are bounded and the output tracking error can be
asymptotically controlled to be zero.

The remainder of this paper is organized as follows.
Section 2 describes the PI-type hysteresis model and the
adaptive control for the output of the PI-type hysteresis.
In Section 3, first, the control problem for the linear
continuous system preceded by hysteresis is formulated.
Then, the parameters (which are generated from the
parameters of the linear system and the density function
of the hysteresis) directly needed in the formulation of the
controller are adaptively estimated. Finally, the adaptive
controller is formulated and the stability of the closed
system is analyzed. Simulation results are presented to
show the effectiveness of the proposed method. Section
4 concludes this paper.

2. MODEL AND CONTROL OF HYSTERESIS

2.1 Hysteresis Model

In this paper, the Prandtl-Ishlinskii (PI) model is adopted.
The hysteresis is denoted by the operator H[∗](t)

u(t) = H[v](t), (1)
where v(t) is the input, u(t) is the output of the hysteresis.
The basic element of the PI operator is the so-called stop
operator. For arbitrary piece-wise monotone function v(t),
define er : R̄ → R̄ (where R̄ denotes the space of real
numbers.) as

er(v) = min(r, max(−r, v)) (2)

For any initial value w−1 ∈ R̄ and r ≥ 0, the stop operator
Er[∗; w−1](t) is defined as

Er[v; w−1](0) = er(v(0) − w−1), (3)
Er[v; w−1](t) = er(v(t) − v(ti) + Er[v](ti)), (4)

for ti ≤ t ≤ ti+1, where the function v(t) is monotone
for ti ≤ t ≤ ti+1 (Brokate and Sprekels, 1996). The
stop operator is mainly characterized by the threshold
parameter r ≥ 0 which determines the height of the
hysteresis region in the (v, u) plane. For simplicity, denote
Er[v; w−1](t) by Er[v](t) in the following of this paper. It
should be noted that the stop operator Er[v](t) is rate-
independent. The PI hysteresis model is defined by

u(t) =
∫ ∞

0

p(r)Er[v](t)dr. (5)

where p(r) is the density function which is usually un-
known, satisfying p(r) ≥ 0 with

∫ ∞
0

rp(r)dr < ∞ (Su,
et al, 2005; Visintin, 1994; Webb, et al, 1998). Since the
density function p(r) vanishes for large values of r, it is
reasonable to assume that there exists a constant R such
that p(r) = 0 for r > R (Brokate and Sprekels, 1996;
Visintin, 1994). Thus, model (5) gives

u(t) =
∫ R

0

p(r)Er[v](t)dr. (6)

Figure 1 shows the relation between v(t) and u(t) given by
model (6) with p(r) = e−0.067(r−1)2 , R = 20, w−1 = 0 and
v(t) = 7 sin(3t)

1+t . It can be seen that the PI model (6) indeed
generates the hysteresis curves and can be considered to
be well-suited to describe the rate-independent hysteretic
behavior.
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Fig. 1. Hysteresis curves given by model (6).

2.2 Implicit Inverse of Hysteresis

In this subsection, an input v(t) is tried to calculate for
a given output u(t) for the operator described in (6). For
this purpose, suppose the density function p(r) is known
in this subsection. Without loss of generality, suppose u(t)
is monotonically increasing on the interval ti ≤ t ≤ ti+1.
For each t ∈ [ti, ti+1], define a new variable v̄(t, µ) with
v̄(t, 0) = v(ti) and another new variable uµ(t), where µ is
a parameter varying in the range µ ∈ [0, 2R]

v̄(t, µ) = v̄(t, 0) + µ (7)

uµ(t) =
∫ R

0

p(r)Er[v̄(t, µ)]dr (8)

Let [vmin, vmax] be the input range, which is a subset of
[−R,R], to the hysteresis operator, and∫ R

0

p(r)Er[vmax](t)dr = Ū (9)∫ R

0

p(r)Er[vmin](t)dr = U (10)

If u(t) > Ū , let v(t) = vmax

If u(t) < U , let v(t) = vmin
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If U ≤ u(t) ≤ Ū , the value of v(t) is derived from the
following algorithm.

Step 1: Let µ increase from 0.
Step 2: Calculate v̄(t, µ) and uµ(t). If uµ(t) < u(t), then

let µ increase continuously and go to Step 2;
Otherwise, go to Step 3.

Step 3: Stop the increasing of µ, memorize it as µ0 and
define v(t) = v̄(t, µ0)

Remark 1. For t = 0, v̄(0, 0) can be defined as v̄(0, 0) =
vmin.

2.3 Implementation for the Implicit Inverse of Hysteresis

In this subsection, the implementation of the proposed
implicit inverse algorithm for the hysteresis in Section 2.2
is considered. Suppose U ≤ u(t) ≤ Ū . For an assigned
admissible error δ, we try to find the pseudo-inverse v∗(t)
such that ∣∣∣ ∫ R

0

p(r)Er[v∗](t)dr − u(t)
∣∣∣ ≤ δ (11)

Now, select a small value ∆ = R
L , where L is a very large

integer. The algorithm of determining v∗(t) is as follows.

Step 1: v(0)(t) := v∗(ti) , l := 0 .
Step 2: u(l)(t) :=

∫ R

0
p(r)Er[v(l)](t)dr.

If |u(l)(t) − u(t)| ≤ δ , go to Step 6;
Else if u(l)(t) < u(t)− δ , let v(l+1)(t) := v(l)(t)+∆ and
l := l + 1 , then go to Step 3.
Else (i.e. u(l)(t) > u(t) + δ), let v(l+1)(t) := v(l)(t) − ∆
and l := l + 1 , then go to Step 4.

Step 3: u(l)(t) :=
∫ R

0
p(r)Er[v(l)](t)dr.

If |u(l)(t) − u(t)| ≤ δ , go to Step 6;
Else if u(l)(t) < u(t)− δ , let v(l+1)(t) := v(l)(t)+∆ and
l := l + 1 , then go to Step 3.
Else (i.e. u(l)(t) > u(t) + δ ), let v(l)(t) := vl−1(t) and
v̄(l)(t) := v(l)(t), then go to Step 5.

Step 4: u(l)(t) :=
∫ R

0
p(r)Er[v(l)](t)dr.

If |u(l)(t) − u(t)| ≤ δ , go to Step 6;
Else if u(l)(t) > u(t)+ δ , let v(l+1)(t) := v(l)(t)−∆ and
l := l + 1 , then go to Step 4.
Else (i.e. u(l)(t) < u(t) − δ ), let v(l)(t) := vl(t) and
v̄(l)(t) := v(l−1)(t), then go to Step 5.

Step 5: u(l)(t) :=
∫ R

0
p(r)Er[v(l)](t)dr,

ū(l)(t) :=
∫ R

0
p(r)Er[v̄(l)](t)dr,

v(l+1)(t) := v(l)(t) + (v̄(l)(t) − v(l)(t)) u(t)−u(l)(t)

ū(l)(t)−u(l)(t)
.

Let l := l + 1 and u(l)(t) :=
∫ R

0
p(r)Er[v(l)](t)dr.

If |u(l)(t) − u(t)| ≤ δ , go to Step 6;
Else if u(l)(t) < u(t) − δ, let v(l)(t) := v(l)(t) and
v̄(l)(t) := v̄(l−1)(t) , then go to Step 5;
Else (i.e. u(l)(t) > u(t) + δ), let v(l)(t) := v(l−1)(t) and
v̄(l)(t) := v(l)(t) , then go to Step 5.

Step 6: v∗(t) := v(l)(t) and stop.
Remark 2. It is obvious that v∗(t) can be found by finite
steps of operations, i.e. l is finite when the operation
is stopped. By discretizing [0, R] uniformly into L sub-
intervals, the integrals can be calculated by the well-known
”Simpson Method”.

2.4 Adptive Control for the Output of Hysteresis

In this subsection, the output u(t) of the hysteresis is
controlled to track a desired signal ud(t), which is differen-
tiable and uniformly bounded. Since the density function
p(r) is unknown in the practical control. Let the estimate
of p(r) at instant t be p̂(r, t) for a fixed r. Define

û(t) =
∫ R

0

p̂(r, t)Er[v](t)dr (12)

and e1(t) = u(t) − û(t).
The estimate p̂(r, t) is updated by the following algorithm
with projection

˙̂p(r, t) =


αe1(t)Er[v](t) if p̂(r, t) > 0
0 if e1(t)Er[v](t) < 0

and p̂(r, t) = 0
(13)

where α is the adaptation gain satisfying α > 0, p̂(r, 0)
should be chosen such that p̂(r, 0) > 0 and

∫ R

0
rp̂(r, 0) <

∞. Let p̃(r, t) = p̂(r, t) − p(r) and consider the function
L1(t) =

∫ R

0
p̃2(r, t)dr. Taking the derivative of L1(t) yields

d

dt
L1(t) ≤ −2αe2

1(t) (14)

Lemma 1. For the estimated density function p̂(r, t),∫ R

0
p̃2(r, t)dr is uniformly bounded and e1(t) ∈ L2.

For the input range [vmin, vmax], suppose the satura-
tion output of

∫ R

0
p̂(r, t)Er[v](t)dr be Usat and Ūsat. If

Usat(t) ≤ ud(t) ≤ Ūsat(t), based on the method proposed
in Section 2.2, a signal v∗

1(t) can be derived such that

ud(t) =
∫ R

0

p̂(r, t)Er[v∗
1 ](t)dr (15)

The control input is chosen as
v(t) = v∗

1(t) (16)
Theorem 1. If Usat(t) ≤ ud(t) ≤ Ūsat(t) for all t ≥ 0,
then the output tracking error of the hysteresis can be
guaranteed to be zero by using the input (16).

Proof: By referring the derivation method of v(t), it can
be proved that v(t) is uniformly continuous by some
elementary operation. Then the uniform continuity of u(t)
can be proved. Thus e1(t) is uniformly continuous. The
theorem is obvious by applying the famous Barbalat’s
Lemma to Lemma 1.

2.5 Simulation Results for the Output Control of Hysteresis

Consider the output control of the hysteresis described by

u(t) =
∫ R

0

p(r)Er[v](t)dr., (17)

with p(r) = e−0.067(r−1)2 and w−1 = 0. The control
purpose is to drive the output of the above hysteresis to
track the signal ud(t) = 5sin(2πt). In the simulation, the
parameter R is chosen as R = 20, L is chosen as L = 2000,
δ is set to δ = 1.0 × 10−7, the sampling period is set to
0.001, the design parameter is chosen as α = 5.0, the initial
value is chosen as p̂(r, 0) = 1.0. The estimated parameter
is shown in Figure 2. The control input is shown in Figure
3. The output tracking error is shown in Figure 4.
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3. MODEL AND CONTROL OF HYSTERESIS

3.1 Problem Statement

Consider the adaptive control for the continuous-time
systems preceded by hysteresis described by

P (s)[y](t) = kpZ(s)[u](t), (18)
u(t) = H[v](t), (19)

where y(t) ∈ R is the output of the linear plant, u(t) ∈ R is
the input of the linear plant, kp is the high frequency gain,
P (s), Z(s) are described by the following polynomials.

P (s) = sn0 + pn0−1s
n0−1 + · · · + p1s + p0, (20)

Z(s) = sm + zm−1s
m−1 + · · · + z1s + z0, n0 > m (21)

The control purpose is to drive the output of the system
to track the output ym(t) of the reference model described
by

Pm(s)[ym](t) = q(t), (22)
where Pm(s) is a monic polynomial with degree n∗ = n0−
m, q(t) is the input of the reference model.
We make the following assumptions for the control system.

A1: Z(s) is a stable polynomial.

A2: The upper bound for the degree n0 of P (s) is known
as n.

A3: The sign of the plant high frequency gain kp is known.
A4: The degree of n∗ of Pm(s) is known.

It is well known in the literature that the control input of
the plant should have the following form (Tao, 2003)

u(t) = θT
1 ω1(t) + θT

2 ω2(t) + θ20y(t) + θ3q(t), (23)
where ω1(t) and ω2(t) are defined as

ω1(t) =
a(s)
Λ(s)

[u](t), ω2(t) =
a(s)
Λ(s)

[y](t);

Λ(s) is a (n − 1)th order monic stable polynomial; the
parameters θ1 ∈ Rn−1, θ2 ∈ Rn−1, θ20 ∈ R, θ3 ∈ R
should satisfy the following equation.

θT
1 a(s)P (s) + (θT

2 a(s) + θ20Λ(s))kpZ(s)
=Λ(s)(P (s) − θ3kpZ(s)Pm(s)), (24)

Since the parameters in the P(s) and Z(s) are unknown,
the parameters θ1, θ2, θ20, θ3 are all unknown.

3.2 Adaptive Control Algorithm

Multiplying the both sides of (24) with y(t) and applying
(18) yields∫ R

0

p(r)Er[v](t)dr = θT
1

a(s)
Λ(s)

∫ R

0

p(r)Er[v](t)dr

+θT
2

a(s)
Λ(s)

[y](t) + θ20y(t) + θ3Pm[y](t), (25)

In the following, without loss of generality, assume that
θ3 = k−1

p = 1. Otherwise, regard kpp(r) as p(r), where
p(r) is the density function of the hysteresis operator.

Suppose that the estimates of p(r), θ2, θ20 are respectively
p̂(r, t), θ̂2(t), θ̂20(t) at instant t, and suppose the estimate
of the product θ1 and p(r) is θ̂1(r, t) at instant t.

Now, let us consider the variable V (t) which should satisfy
the next equation.∫ R

0

p̂(r, t)Er[V ](t)dr =
∫ R

0

θ̂T
1 (r, t)

a(s)
Λ(s)

Er[V ](t)dr

+θ̂T
2 (t)

a(s)
Λ(s)

[y](t)+θ̂20(t)y(t)+q(t). (26)

The variable V (t) satisfying (26) can be derived by the
method proposed in Section 2.2. The control input of the
system preceded by hysteresis should be chosen as

v(t) = V (t) (27)
Define

e(t) = y(t) − ym(t) (28)
Therefore, from (25) and (26), it yields

e(t) =
1

Pm(s)

{
−

∫ R

0

p̃(r, t)Er[v](t)dr

+
∫ R

0

θ̂T
1 (r, t)

a(s)
Λ(s)

Er[v](t)

− θT
1

a(s)
Λ(s)

∫ R

0

p(r)Er[v](t)dr

+ θ̃T
2 (t)

a(s)
Λ(s)

y(t) + θ̃20(t)y(t)
}

, (29)
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with p̃(r, t) = p̂(r, t) − p(r), θ̃2(t) = θ̂2(t) − θ2, θ̃20(t) =
θ̂20(t)−θ20. Now, introduce a (n∗−1)th order monic stable
polynomial L(s), and define a new error ϵ(t)

ϵ(t) = e(t) +
L(s)

Pm(s)

{
ξ(t) − κϵ(t)m2

0(t)
}

, (30)

where κ > 0 is an arbitrary constant, and

ξ(t) =
∫ R

0

θ̂T
1 (r, t)L−1(s)

a(s)
Λ(s)

Er[v](t)dr

+ θ̂T
2 (t)L−1(s)

a(s)
Λ(s)

y(t) + θ̂20L
−1(s)y(t)

−
∫ R

0

p̂(r, t)L−1(s)Er[v](t)dr

− L−1(s)ζ(t)+L−1(s)
∫ R

0

p̂(r, t)Er[v](t)dr, (31)

ζ(t) =
∫ R

0

θ̂T
1 (r, t)

a(s)
Λ(s)

Er[v](t)dr

+ θ̂T
2 (t)

a(s)
Λ(s)

[y](t) + θ̂20y(t), (32)

m0(t) =
( ∫ R

0

||L−1(s)
a(s)
Λ(s)

Er[v](t)||2dr

+
∫ R

0

(
L−1(s)Er[v](t)

)2
dr + ξ2(t)

+ ||L−1(s)
a(s)
Λ(s)

y(t)||2 +
(
L−1(s)y(t)

)2
) 1

2
, (33)

The parameter adaptation law is chosen as

˙̂p(r, t) =


γ0ϵ(t)L−1(s)Er[v](t) if p̂(r, t) > 0
0 if ϵ(t)L−1(s)Er[v](t) < 0

and p̂(r, t) = 0
(34)

˙̂
θ1(r, t) = −Γϵ(t)L−1(s)

a(s)
Λ(s)

Er[v](t), (35)

˙̂
θ2(t) = −Bϵ(t)L−1(s)

a(s)
Λ(s)

y(t), (36)

˙̂
θ20 = −βϵ(t)L−1(s)y(t), (37)

with γ0 > 0, Γ = ΓT > 0, B = BT > 0, β > 0. In the
following, the stability of the system (1) controlled by (27)
will be analyzed.
Lemma 2. The adaptive law (34)-(37) guarantees that
ϵ(t) ∈ L2 ∩ L∞, ϵ(t)m0(t) ∈ L2, p̂(r, t) ∈ L∞, θ̂1(r, t) ∈
L∞, θ̂2(t) ∈ L∞, θ̂20 ∈ L∞, ˙̂p(r, t) ∈ L2,

˙̂
θ1(r, t) ∈

L2,
˙̂
θ2(t) ∈ L2,

˙̂
θ20(t) ∈ L2.

Theorem 2. All the signals in the closed-loop system con-
sisting of the plant (18), reference model (22), controller
(27), adaptive law (34)-(37) are bounded and the track-
ing error e(t) = y(t) − ym(t) belongs to e(t) ∈ L2 and
lim

t→∞
e(t) → 0.

3.3 Simulation Results

In this subsection, consider the plant described by
(s + 1)(s + 2)[y](t) = (3s + 5)[u](t), (38)

u(t) =
∫ R

0

p(r)Er[v](t)dr, (39)

with p(r) = e−0.067(r−1)2 and w−1 = 0. The control
purpose is to drive the output of the above system to
track the output ym(t) of the reference model described
by (s + 1)[ym](t) = q(t) with q(t) = 10sin(2πt). In the
simulation, Λ(s) is chosen as Λ(s) = s + 3, the parameter
R is chosen as R = 20, L is chosen as L = 2000, δ is
set to δ = 0.00001, the sampling period is set to 0.001,
the design parameters are chosen as Γ = 0.8I, γ0 = 0.8,
B = 0.8I, β = 0.8, the initial values are chosen as p̂(r, 0) =
2.0, θ̂1(r, 0) = 2.0, θ̂2(0) = 1.0, θ̂20(0) = −0.1, y(0) = 0.9.
The estimated parameters are shown in Figures 5-7. The
control input is shown in Figure 8. The outputs of the
controlled system and the reference model is shown in
Figure 9. The tracking error is shown in Figure 10.

0 20 40 60 80 100

1

2

3

4

5

6

7

8

9

10

Time [s]

θ̂1(0.1, t)

θ̂1(0.2, t)

Fig. 5. The estimates of θ̂1(r, t) with r = 0.1 and r = 0.2.
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Fig. 9. The outputs of controlled system and the reference
model.
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Fig. 10. The output tracking error .

4. CONCLUSIONS

This paper discussed the adaptive control for the hysteresis
described by Prandtl-Ishlinskii model. Then, the adaptive
control for the continuous-time linear dynamical systems
preceded with hysteresis described by Prandtl-Ishlinskii
model is considered. The contribution of the paper is the
fusion of the hysteresis model with the adaptive control
techniques. Only the parameters (which are generated
from the parameters of the linear system and the density
function of the hysteresis) directly needed in the formu-
lation of the controller are adaptively estimated online.
The output tracking error can be controlled to approach
to zero. Simulation results show the effectiveness of the
proposed algorithm.
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