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Abstract: Networked automation architectures with Ethernet-based fieldbuses instead of
traditional fieldbuses are more and more often used in industry, even for critical systems such as
chemical or nuclear power plants. The strong safety requirements of these processes impose to
evaluate the time performances of these complex architectures. Formal verification techniques
are promising solutions to reach this objective. Hence, this paper focuses on the applicability
of formal verification techniques to check time performances. On the basis of a case study, it is
shown how formal models of networked automation architectures which are simple enough to be
checked by existing timed model-checkers while yielding meaningful results can be developed.

1. INTRODUCTION

Networked automation architectures (NAA) are used in
many industrial domains and even in critical industries
such as chemical or power plants. Ensuring the dependabil-
ity of these architectures requires not only to check their
functionalities but also to evaluate their performances, and
in particular their time performances.

Several methods have been developed to evaluate time
performances. Some of them consist in testing the real
system (measurements as in Viegas et al. [2006] or Lee
and Lee [2002]). Other ones need a representation of the
architecture and can therefore be used during the design
phase. These ”a priori”, i.e. prior to implementation,
methods are mainly simulation (Pereira et al. [2004],
Zaitsev [2004] or Marsal [2006]), analytic methods (Worst
Case evaluation Hung et al. [2004], Network Calculus
Georges et al. [2002]) and timed model-checking (Witsch
et al. [2006]). Model-checking is the most interesting
method for critical applications because it is based on an
exhaustive analysis of the state space and then seems to
be the most appropriate method when safety constraints
are considered.

In spite of this possibility, timed model-checking is not
used to evaluate time performances of NAA in industry,
because of its well-known sensitivity to combinatory ex-
plosion. Its advantage, the exhaustivity of the analysis,
becomes very quickly a limitation for large-sized models.

The aim of this paper is to contribute solving of this issue.
More precisely, it will be shown how to construct and
analyse formal models of NAA which are simple enough to
be checked by existing timed model-checkers while yielding
meaningful results.

Section 2 presents the kind of automation architecture
that is considered and the time performance which is
focused on; a simple but non-trivial example illustrates
this presentation and will be used as a case study in the
remainder of the paper. The modelling and verification

principles which were adopted during this study are given
in section 3. Then different models of the architecture and
the components are depicted respectively in sections 4
and 5, whilst section 6 explains how the verification of
time performance is carried out. Finally, the results which
were obtained with the different models are presented and
compared in section 7.

2. NETWORKED AUTOMATION ARCHITECTURES

2.1 Considered class of architecture

Several Ethernet-based industrial solutions (Ethernet IP,
Modbus TCP, Powerlink, Profinet, . . . ) can be selected to
implement a NAA. This paper considers only NAAs which
rely on the Modbus TCP protocol, while the methodology
which is presented can be applied to other kinds of
networks. More precisely, focus is put on architectures
where logic controllers and remote input-output modules
(RIOMs) communicate to carry out automation functions;
with the selected protocol, controllers are clients and
RIOMs are data servers. Figure 1 shows an example of
such an architecture that will be used as a case study in
this paper.

The main features of the physical components of these
architectures are:

• Controllers (Programmable Logical Controllers
(PLCs) or industrial computers) are modular.
Within each controller, a calculus processor runs a
program cyclically, while a communication processor
performs a periodic scanning of some RIOMs, termed
I/O scanning. It matters to underline that the cycles
of these two processors are asynchronous, data
exchanges being made by means of a shared memory.

• The network includes Ethernet switches and Ether-
net links and is dedicated only to communications
between the PLCs and RIOMs; there is no other
additional traffic.
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• Inputs and outputs from/to the plant are gathered in
RIOMs which are directly connected to the network.
One RIOM may be shared by several PLCs.

Moreover, it will be assumed that there is no frame loss.
This explains why probabilistic model-checking Greifenei-
der and Frey [2007], an interesting verification technique
for architectures which require probabilistic modelling,
was not considered in this work.

2.2 Example description

The architecture of the case study encompasses three
PLCs and nine RIOMs. PLC 1 communicates with four
RIOMs (RIOMs 1 to 4), PLC 2 communicates with five
other RIOMs (RIOMs 5 to 9); thus, these two PLCs do not
share any RIOM. PLC 3, which runs monitoring functions,
communicates with all RIOMs and consequently shares
respectively four and five RIOMs with PLC 1 and PLC 2.
To evaluate the time performances of this architecture, an
input event and two output events are introduced. The
input event, which could correspond to a global ”start” or
”stop” event, is observed by two RIOMs: RIOM R1, which
is scanned by PLC 1, and RIOM R5, scanned by PLC 2.
The responses of the architecture to the input event, from
PLC 1 and PLC 2, are respectively output1 and output2
and are sent to the plant through the same RIOMs.

Fig. 1. Studied architecture

The configurations of the 3 PLCs are given in table 1.

Table 1. Configurations of the 3 PLCs

PLC 1 PLC 2 PLC 3

calculation duration 2 to 3 ms 3 to 4 ms 5 to 6 ms

I/O scanning cycle time 10 ms 10 ms 50 ms

RIOMs scanned R1 to R4 R5 to R9 R1 to R9

2.3 Required performance

There are several global time performances of a NAA,
such as response time (delay between an input event and
the output event which is its consequence) or the minimal
duration of an input event which can be always detected
by the automation architecture, for example.

Fig. 2. Difference of response times

This paper focuses on a particular time performance: the
delay between 2 output events which are both conse-
quences of the same input event (fig. 2). This performance
is worth checking when the synchronisation between two
processes must be ensured; it will be called difference of
response times and noted d. Hence, the property to check
can be written, in a informal way, as follows:

d is always lower than τ ,

where τ is the maximal difference of response times which
ensures system dependability.

3. MODELLING PRINCIPLES

Two principles have been defined to produce and analyse
formal models which are small enough to be processed
by timed model-checker Uppaal, without combinatory
explosion and in reasonable times, while yielding mean-
ingful results. The first principle consists in lessening the
complexity of the models of both the architecture and the
components (PLC, Network, RIOM). The second principle
is to use state space approximation to speed up properties
verification; such an approximation is an option of Up-
paal (section 3.2).

To study the benefits of these 2 principles on the basis of
the case study, three models were designed and compared
(table 2). The first model is the fine reference model on
which the first principle is applied to obtain model 2.
Model 3 is the consequence of the application of the second
principle on model 2.

Table 2. Presentation of the models

model 1 model 2 model 3

Architecture modelling fine coarse coarse

Components modelling fine coarse coarse

Time approximation without without with

3.1 Overall description of the models

Model 1, called fine model, is the model which represents
the NAA as precisely as possible. All the components are
taken into account and the behaviour of each component is
modelled in a detailed way; no state space approximation
is planned to check this model.

Model 2 is called coarse model. The models of components
which do not directly impact the studied performance are
removed and the behaviours of the remaining components
are simplified, provided that this does not reduce the confi-
dence level in the obtained results. It matters to note that
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it does not make sense to use fine models of components
with a coarse model of architecture because, in this case,
the fine components models express behaviours which are
not necessary for the coarse architecture model. Model 3
is an over-approximation of model 2, as explained below.

3.2 State space representation

Uppaal (Larsen et al. [1997]) is based on the theory of
timed automata (Alur and Dill [1994], Cassandras and
Lafortune [1999]) and uses a subset of CTL (Clarke and
Emerson [1981]) for formal properties writing. This model-
checker proposes different state space representations: with
or without approximation.

Fig. 3. State space representation

Two representations with approximation are possible:
over-approximation and under-approximation. Fig. 3 shows
the principles of these approximations. The approximated
state space is represented by a simple model, an hexagon,
which is either totally included in the real state space
(under-approximation) or which contains the whole real
state space (over-approximation). For room reasons, the
technical details of the internal representation of state
space will not be given.

For the studied time performance (the difference of re-
sponse times), to guarantee the dependability of the sys-
tem, it is necessary to over-estimate the value of the
difference of response times. Over-approximation will thus
be used instead of under-approximation.

4. ARCHITECTURE MODELS

In this section, the fine and coarse models of the archi-
tecture are sketched. An architecture model is an Uppaal
model, in the form of a set of communicating timed au-
tomata. Each timed automaton, named component model,
describes precisely the behaviour of one component of the
architecture, e.g. a communication processor, and includes
parameters that represent features of this component, such
as duration of the I/O scanning cycle. The structure of an
architecture model can be represented by a graph where
nodes are components models and edges represent commu-
nications between these models, which are implemented by
communication channels and shared variables. The choices
which were made to obtain the coarse model from the fine
model are also explained.

4.1 Fine model

The fine model of the architecture includes the models of
all the components, in the form of timed automata. CALi

and COMi are respectively the models of the calculus pro-
cessor and the communication processor of PLCi. Network
and RIOj are respectively the models of the network and
remote input-output modules.

Fig. 4. Fine model of the case study

The fine model of the automation architecture is made of
16 models of components: 3 CALs, 3 COMs, 1 network
and 9 RIOMs. The model of the network is very complex;
it describes the communications between 3 COMs and 9
RIOMs, which corresponds to 18 ”communication func-
tions”, each one modelling the communications between
1 PLC and 1 RIOM. Each model has its own clock. The
clocks of models CALi and COMi evolve independently,
in an asynchronous way. For the other models, this is not
the case. The clock of each other model j is initialized by
the reception of a message coming from another model k ;
hence the clocks of models j and k are synchronized.

4.2 Model simplification

To obtain the coarse model of the architecture (fig. 5) from
the fine model (fig. 4), two kinds of simplification have
been made, on the structure of the architecture model and
on the components models.

The simplification of the structure of the architecture
model consists in keeping only the components models
that introduce delays (treatment times, waiting times
for resource availability or synchronization) which impact
directly the property to prove; all the other components
models are removed. When the property to prove refers
to a difference of response times, the components models
that must be kept can be easily found, they are ”on the
route of data”. This means that they generate, modify or
propagate data (frames or variables) which are functions
of the input or output events which the considered time
performance is based on.

However, to provide meaningful verification results which
can be used for safety/dependability analysis, the effects
of the removed components must be included within
the coarse models of the components which are kept.
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For instance, the delay that is introduced by the I/O
scanning of COM3 must be included in the formal model
of the remaining RIOMs models, as it will be shown in
section 5. The same comment applies for the delays in
COM models that represent the communications with the
removed RIOM models.

Moreover, previous experimental results can justify a
strong simplification of the network model. This simpli-
fication is also discussed in the next section.

4.3 Coarse model

Fig. 5. Coarse model of the case study

Thus, for the property that must be checked, the coarse
model includes only 8 automata: 2 CALs, 2 COMs, 2
”communication functions” that model, in an abstract
way, the network, and 2 RIOMs. Each model has its own
clock. These clocks behave as in the fine model; the clocks
of CALi and COMi evolve independently, whereas the
other ones are synchronized.

5. COMPONENTS MODELS

This section explains the simplifications which were made
on the components models. Two reasons justify these
simplifications:

• experimental results, regarding the network model.
• the consequences of the simplification of the architec-

ture model, for the other components.

5.1 Network

The fine model of the network details all its internal
mechanisms: queues management, switching process, pos-
sibilities of congestions, . . . . To ease the understanding
of this complex behaviour, this model is organized in 18
”communication functions”, each one depicting the com-
munications between 1 COM and 1 RIOM. Each one of
these 18 ”communication functions” interacts with the
other ones, as illustrated in Fig. 4.

However, results obtained by measurements (Denis et al.
[2007]) on this kind of architecture showed that, in spite of
this complexity, the load of the fieldbus does not impact
the transmission delays. Thus, for the communication be-
tween two components, the network can be assumed per-
fect (no limit of throughput, no congestion) and modelled
as a constant delay. This explains why the coarse model
of the network includes no more interactions between the
communication functions which are mere delays.

5.2 Other components

As mentioned in section 4, the effects of the components
whose models have been removed from the coarse model of
the architecture must be included within the coarse models
of the remaining components. This will be illustrated on

the basis of the RIOM models. During this study, Uppaal
models have been obviously designed; however, for room
reasons, only the coarse RIOM Uppaal model is shown
figure 6, whereas a simplified form of the fine model is
depicted in figure 7.

Fig. 6. Coarse model of a RIOM

Fig. 7. Fine model of a RIOM

The coarse model (fig. 6) includes only 4 states and 4
transitions and is very simple, whereas the fine model
(fig. 7) owns 11 states and 14 transitions and is more
complex. States 1, 3 and 4 in the fine model are the
same as states 1, 3 and 4 in the coarse model. States
5 to 11 are replaced by state 2 in the coarse model.
State 2 (in the coarse model) models the delay due to a
possible communication with another PLC, in our case,
PLC 3. Thus, each request sent to the RIOM may be
delayed or not by a possible communication with PLC 3,
according to the current model-checker interpretation.
This behaviour allows keeping the same confidence in the
verification results. This model can be considered as a
worst case model because each request received by a RIOM
can be delayed that is not necessarily the case with the
fine modelling. For example, in the case study, the I/O
scanning cycle time of PLC 1 is 10 ms whereas the I/O
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scanning cycle time of PLC 3 is 50 ms. With the fine
model, if one request coming from PLC 1 is delayed by
a request coming from PLC 3, it is impossible that the
four next requests would be delayed, what is not the case
with the coarse model.

The other models are also simplified using the same
methodology. For the CAL and COM models, the delays
due to the removed RIOMs are preserved in the coarse
models, for instance.

6. PROPERTY CHECKING

Fig. 8. Observer automaton

For all the models, the verification of the property (d
is always lower than τ) is made thanks to an observer
automaton and a property in a subset of CTL.

Fig. 8 shows a simplified representation of a model, named
OBS, which generates the input event to excite the archi-
tecture and observes its evolutions. From the initial state,
the input event can appear at any time (transition from
state 1 to state 2). The automaton moves to state 3 if the
output event appears in RIOM R1 first and to state 4 if
the output event appears in RIOM R5 first.

State 5 is reached only if the 2nd output event appears
after the wished delay (SIGmd). In the other cases (the
2nd output event appears before the wished delay), state 6
is reached. Thus the time property can be replaced by
a simple reachability property: if state 5 is reached, the
difference of response times is over the wished limit.

The formal property to check is therefore:

A[] not OBS.5,

i.e. for all future evolutions, state 5 is not reached. This
property is evaluated to true if and only if every reachable
state is different from state 5. It is interesting to note that
this property is non-timed whereas a time performance is
considered.

To determine the limit value of the difference of response
times, it is necessary to find τ the lowest value of SIGmd
for which the property is satisfied. This result is obtained
by dichotomy, which imposes calculus iterations, each
calculation being made with a different value of SIGmd.
It is necessary to define a validity area for SIGmd; for the
case study, the lowest limit ”l” is 0 ms and the uppermost
limit ”u” is 100 ms. With Uppaal it is impossible to use
parameters which are not integers, thus all parameters are
multiples of 10 μs. Algorithm 1 explains the method to
determine τ .

Data: l = 0 and u = 10000
Result: τ the lowest upper bound of d
while u − l > 1 do

SIGmd = int((u − l)/2);
check property;
if property is satisfied then

u = SIGmd
else

l = SIGmd

τ = u

Algorithm 1. Dichotomy algorithm

It is interesting to note that the duration of one property
checking (inside the while loop) is function of the value of
SIGmd. When the value of SIGmd is lower than the lowest
upper bound of d (τ), a counter-example can be find before
the whole state space is explored. Thus, in that case, the
result can be obtained faster than when SIGmd is higher
than τ , that requires to explore the whole state space.

7. OBTAINED RESULTS

This section presents and discusses the results that were
obtained with the three models (table 3). All the resolu-
tions were made on the same computer, with a 2.8 GHz
Pentium 4 processor and 4 GB of RAM, so that calculation
durations could be compared.

7.1 Results with model 1

Resolution is impossible with this model, because the
memory size is not sufficient to perform the whole cal-
culation. The fine model cannot be checked.

7.2 Results with model 2

Resolution is possible by using a representation without
state space approximation. Because of the resolution by
dichotomy, it is necessary to make calculus iterations
to obtain the result. The longest iteration, with SIGmd
higher than 2140, what corresponds to 21.4 ms, lasts
28 hours. Thus, the value of τ is obtained in some days.

The property is false (state 5 of OBS is reached) for a value
of τ of 21.4 ms and is satisfied (state 5 is not reached) for
a value of τ over 21.4 ms. Thus, the difference of response
times is always lower or equal to 21.4 ms. This value is the
lowest upper bound of the difference of response time.

7.3 Results with model 3

As with the previous model, resolution is possible. The
longest iteration lasts about 1 second, which is much faster
than with model 2. The lowest upper bound (τ) is obtained
in a few minutes.

The maximal difference of response time is estimated to
21.4 ms, which is the same value as with model 2. However,
the result with approximation does not exactly have the
same meaning. Indeed, the property is said maybe satisfied
for a limit of 21.4 ms and is said satisfied for a limit over
21.4 ms. These results show that the difference of response
times is never over 21.4 ms but there are no information
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about a difference of response times below this value. Then
this value is an upper bound of the difference of response
times but, contrary to the value obtained with model 2, it
is not necessarily the lowest upper bound.

7.4 Discussion

Table 3. Comparison of the results

fine model coarse model coarse model with
approximation

Verification
duration impossible 28 hours 1 second

Area always � 21.4 ms never > 21.4 ms
obtained never > 21.4 ms

These experiments clearly highlight the impact of the size
of the models. The formal verification of time perfor-
mances of networked automation architectures requires to
develop compact models that keep only the information
that are helpful for the property that must be checked.

The comparison of the results which are obtained with
model 2 and model 3 shows that:

• Model 3 leads to a very short verification time,
about 100,000 times smaller than that necessary with
model 2.

• Model 2 gives the lowest upper bound of the difference
of response times whereas model 3 gives only an upper
bound.

• In the case study, the upper bound which was given by
model 3 is the lowest, but this can not be generalized
for other models.

The potential difference between the upper bound which
is obtained with model 3 and the lowest one is not
necessarily an issue. In all cases, resolution with state
space approximation can be used to determine quickly
an approximate value of the performance which will be
used later for a resolution without approximation. This
approximate value can be seen as a limit which reduces the
area to explore to find the result without approximation.

8. CONCLUSION

This paper has presented a methodology to use the formal
verification techniques so as to evaluate the time perfor-
mances of networked automation architectures.

This methodology is based on two main principles:

• The first one is to remove the components which
have no direct impact on the studied property, i.e.
only the components which are on the routes of
the data that are used in the property are kept.
Moreover, the models of the remaining components
are simplified, while integrating the influences of
removed components.

• The second one is to use state space over-approxima-
tion, which is a possibility of model-checker Uppaal.
This approximation is chosen in order to keep con-
fidence in the obtained results, which is of primary
importance for safety/dependability analysis.

On the basis of these principles, three models of the same
architecture were developed and tested. The comparison
of the results showed the benefits of the two principles.

On-going works are aiming at extending this approach to
other time performances such as the minimal duration
of an input event which can be always seen by the
automation architecture, and to other kinds of automation
architectures.
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